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Abstract

Motivation: Reconstruction of haplotypes for human genomes is an important problem in medical

and population genetics. Hi-C sequencing generates read pairs with long-range haplotype informa-

tion that can be computationally assembled to generate chromosome-spanning haplotypes.

However, the haplotypes have limited completeness and low accuracy. Haplotype information

from population reference panels can potentially be used to improve the completeness and accur-

acy of Hi-C haplotyping.

Results: In this paper, we describe a likelihood based method to integrate short-range haplotype in-

formation from a population reference panel of haplotypes with the long-range haplotype informa-

tion present in sequence reads from methods such as Hi-C to assemble dense and highly accurate

haplotypes for individual genomes. Our method leverages a statistical phasing method and a max-

imum spanning tree algorithm to determine the optimal second-order approximation of the

population-based haplotype likelihood for an individual genome. The population-based likelihood

is encoded using pseudo-reads which are then used as input along with sequence reads for haplo-

type assembly using an existing tool, HapCUT2. Using whole-genome Hi-C data for two human

genomes (NA19240 and NA12878), we demonstrate that this integrated phasing method enables

the phasing of 97–98% of variants, reduces the switch error rates by 3–6-fold, and outperforms an

existing method for combining phase information from sequence reads with population-based

phasing. On Strand-seq data for NA12878, our method improves the haplotype completeness from

71.4 to 94.6% and reduces the switch error rate 2-fold, demonstrating its utility for phasing using

multiple sequencing technologies.

Availability and implementation: Code and datasets are available at https://github.com/vibansal/

IntegratedPhasing.

Contact: vibansal@ucsd.edu

1 Introduction

Humans are diploid and haplotype phasing—determination of the

sequence of alleles at variant sites on homologous chromosomes—is

an important problem in human genomics. Haplotype information

is crucial for a number of analyses including identification of genetic

variants associated with disease (e.g. compound heterozygotes), de-

tection of IBD (Identity by Descent) segments and genotype imput-

ation (Tewhey et al., 2011). Haplotypes are not directly observed

from genotyping or short-read sequencing but can be inferred either

directly (using long sequence reads for an individual genome) or in-

directly (using a reference panel of haplotypes). A number of algo-

rithms and statistical methods have been developed for haplotype

inference from genotype data (Browning and Browning, 2011).

Nevertheless, population-based phasing is limited in accuracy for

rare variants and in regions with high haplotype diversity in the

human genome.

Read-based haplotype phasing is a direct approach for phasing in-

dividual genomes and there is increasing interest in haplotype-resolved

whole-genome sequencing (Snyder et al., 2015). Read-based phasing is

feasible using long reads such as those generated using single molecule

sequencing technologies such as Pacific Biosciences (Pendleton et al.,

2015). Sequence reads that cover multiple variants provide partial

haplotype information and can be assembled into longer haplotypes

using computational methods (Levy et al., 2007). To address the
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computational problem of haplotype assembly, a number of combina-

torial and statistical algorithms (Aguiar and Istrail, 2012; Bansal and

Bafna, 2008; Duitama et al., 2010; Kuleshov, 2014) have been devel-

oped. At the same time, a number of methods that encode long-range

haplotype information in short reads and generate virtual long reads

have been developed (Duitama et al., 2012; Kitzman et al., 2011;

Kuleshov et al., 2014; Peters et al., 2012).

Haplotype assembly is also feasible with paired-end sequencing—

pairs of short reads derived from the ends of DNA fragments—but

requires long and variable insert lengths to assemble long haplotypes.

Hi-C sequencing generates paired-end reads with insert sizes ranging

from a few hundred bases to tens of megabases. Selvaraj et al. (2013)

exploited this property of Hi-C reads to assemble accurate haplotypes

for NA12878 using�18� Illumina whole-genome sequencing. In con-

trast to haplotyping using long reads which generates 10–100s of dis-

joint haplotype segments per chromosome, more than 90% of variants

phased using Hi-C are connected in a single chromosome-spanning

block. Although Hi-C based haplotypes span entire chromosomes, the

completeness of the haplotypes is rather low [only 18–22% of the var-

iants per chromosome could be phased using the Hi-C reads (Selvaraj

et al., 2013)]. A second limitation is the relatively low accuracy [switch

error rate of 1–2% compared to other methods (Edge et al., 2017)].

The low resolution of Hi-C haplotypes is due to non-uniformity in se-

quence coverage resulting from the use a DNA restriction enzyme in

the Hi-C library preparation protocol. Recently, Edge et al. (2017)

showed using Hi-C data generated using the MboI restriction enzyme

can be used to assemble haplotypes with 65% completeness compared

to�20% completeness using the HindIII enzyme.

Hi-C sequencing leverages the Illumina technology and does not

require specialized equipment unlike other sequencing-based haplo-

typing methods such as 10X Linked-reads (Zheng et al., 2016).

Therefore, improving the completeness and accuracy of Hi-C haplo-

typing can enhance the use of this approach for phasing human

genomes. Similar to Hi-C-based haplotyping, the Strand-seq single-

cell sequencing method also generates sparse chromosome-spanning

haplotypes (Porubsky et al., 2016). Another singe-cell based haplo-

typing method, SISSOR, also generates highly accurate haplotypes

but with 70% resolution (Chu et al., 2017). One avenue for improv-

ing accuracy and completeness is to combine sequence data from mul-

tiple technologies. Edge et al. (2017) combined Hi-C data with 10X

Linked-read data to assemble haplotypes with very high resolution

and low switch error rates. Similarly, Porubsky et al. (2017) showed

that combining Strand-seq haplotypes with long-read sequence infor-

mation enables the reconstruction of dense, chromosome-spanning

haplotypes. Ben-Elazar et al. (2016) described a novel algorithmic

framework to combine short-range haplotypes with Hi-C reads for

phasing. Nevertheless, all of these methods requires sequencing using

two or more technologies, and may not be feasible for all genomes.

An alternative approach that does not require additional

sequencing is to leverage haplotype information from population

reference panels to complement haplotype information of sequence

reads. Selvaraj et al. (2013) combined Hi-C haplotypes with statis-

tical phasing to improve the completeness of haplotypes to �81%.

Kuleshov et al. (2014) developed a statistical method to combine

read-based haplotype information with population phase informa-

tion to improve the contiguity of haplotypes from long reads.

Similarly, Delaneau et al. (2013) extended their statistical phasing

method (SHAPEIT2) to incorporate haplotype information from se-

quence reads. They demonstrated that this reduced the switch error

rate, particularly for rare variants. However, it is not clear if the

Markov model underlying this method can incorporate the long-

range haplotype information present in Hi-C reads.

In this paper, we describe a new likelihood based method that

integrates long-range haplotype information from sequence reads

with short-range haplotype information from population reference

panels to dramatically improve the accuracy and completeness of hap-

lotyping human genomes using methods such as Hi-C. Our approach

leverages the existing likelihood based method HapCUT2 for read-

based haplotype phasing. To incorporate population haplotype infor-

mation, we use the statistical phasing method SHAPEIT2 to sample

haplotypes consistent with the individual’s genotypes and approxi-

mate the population haplotype likelihood as a product of second-

order distributions. Subsequently, pseudo-reads are used to encode

the approximate population likelihood and used as input along with

sequence reads for phasing using HapCUT2 (Edge et al., 2017).

We have used this integrative phasing method to investigate the

improvement in completeness and accuracy of Hi-C haplotyping

using whole-genome sequence data for two different individuals

from the 1000 Genomes Project: NA19240 (YRI population) and

NA12878 (CEU population). For both these genomes, we demon-

strate that our method improves the completeness of haplotypes

[>98% single nucleotide variants (SNVs) phased] and reduces the

switch error rate by 3–6-fold. We also show that a recent multi-

enzyme Hi-C protocol enables the phasing of �86.7% of SNVs

using Illumina whole-genome sequencing with 36� coverage. In

addition, we use whole-genome Strand-seq data to show that our

integrated phasing method can improve the completeness and accur-

acy of haplotyping for any sparse sequencing method.

2 Materials and methods

Comparison of Hi-C haplotypes to high-confidence haplotypes (for

the NA12878 genome) shows that the vast majority of errors are local

errors where a single variant or a small block of variants is incorrectly

phased with respect to the chromosome-spanning haplotype block

(Edge et al., 2017). Given an individual’s genotypes, one can infer

haplotypes using information from a population reference panel

(Delaneau et al., 2013). These population-based haplotypes are highly

accurate in short blocks (30–100 kb) and provide haplotype informa-

tion that is complementary to Hi-C sequence reads. Therefore, lever-

aging haplotype information from population reference panels has

great potential to improve the completeness and accuracy of haplo-

typing using methods such as Hi-C (see Fig. 1 for an illustration).

Since sequence reads contain errors (e.g. trans errors in Hi-C) and

population-based haplotype information has ambiguity in regions

with high population diversity, a probabilistic approach for combin-

ing the two sources of haplotype information is needed. Therefore,

we consider a joint likelihood model for individual haplotyping that

combines the two independent sources of haplotype information.

2.1 Joint likelihood model for haplotyping
We assume that the variants (and genotypes) to be phased are known

in advance and only consider heterozygous variants for phasing. For

read-based phasing or haplotype assembly, the objective is to find the

most likely pair of haplotypes (H¼ (H1, H2)) for an individual genome

given the genotypes G, aligned sequence reads R and the corresponding

set of base error probabilities Q for the reads. In population-based

phasing, the goal is to find the most likely pair of haplotypes given the

genotypes and a reference panel of population haplotypes (Hp). A joint

likelihood based formulation for haplotyping is:

max
H

P HjR;Q;Hp
� �

:
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We can assume that the reads for the individual are conditionally

independent of the haplotypes for other individuals, given H. Under

this assumption, it has previously been shown that the joint likelihood

can be decomposed as a product of two terms (Delaneau et al., 2013):

P HjR;Q;Hp
� �

/ P RjH;Qð ÞP HjHp
� �

: (1)

The PðRjH;QÞ term corresponds to the read-based likelihood

and the PðHjHpÞ is the population-based likelihood of a pair of hap-

lotypes H conditional on the reference panel of haplotypes. The

read-based likelihood is simply a product of individual read likeli-

hoods defined as:

P RjH;Qð Þ ¼
Y
r2R

P rjH1;Q
� �

þ P rjH2;Q
� �

2
;

where PðrjH1;QÞ and PðrjH2;QÞ can be calculated using the base

error probabilities of the reads as follows:

P rjh;Qð Þ ¼
Y

j

d rj; hj

� �
1�Qj

r� �
þ 1� d rj;hj

� �� �
Qj

r
h i

; (2)

where dðrj;hjÞ ¼ 1 if rj¼hj and 0 otherwise, and the product is over

all variants covered j by the read r (Edge et al., 2017).

Unlike the read-based likelihood, there is no direct expression for the

population-based likelihood PðHjHpÞ. Different statistical phasing

methods use different models for capturing the relationship between an

individual’s haplotypes and the haplotypes in a population. SHAPEIT2,

a state-of-the-art statistical phasing tool, uses a Markov model for mod-

eling an individual’s haplotypes and utilizes an MCMC algorithm to

sample from the posterior distribution of PðHjHpÞ. We use the

SHAPEIT2 algorithm to obtain haplotype samples from the probability

distribution and use these samples to approximate the population haplo-

type likelihood using lower order distributions.

2.2 Approximating population haplotype likelihood

using second-order distributions
We are given a sample of N haplotype pairs for n heterozygous var-

iants for a single individual sampled from the probability

distribution PðHjHpÞ. Using these samples, it is difficult to estimate

the full probability distribution since the number of potential

haplotypes for an individual is exponential in n and much larger

than N. Therefore, we approximate the probability distribution as a

product of lower order distributions using the N samples. This

allows us to calculate PðHjHpÞ for any haplotype pair H using a

small number of samples. Since we are interested in obtaining short-

range haplotype information from the population reference panel,

this is a reasonable approximation. For example, given two variant

sites x and y, there are only two possible phasings: (00, 11) and (01,

10). Let Hx
1 be the haplotype allele at variant x in haplotype H1.

We can use the N samples to estimate PðHx
1 ¼ 0;Hx

2 ¼ 1jHy
1 ¼

0;Hy
2 ¼ 1Þ as follows:

PðHx
1 ¼ 0;Hx

2 ¼ 1jHy
1 ¼ 0;Hy

2 ¼ 1Þ ¼ cxy 00ð Þ
cxy 00ð Þ þ cxy 01ð Þ

;

where cxyð00Þ is the count of the pair 00 in the N samples at sites x

and y. This is also equal to the probability of the phase being (00, 11).

Also, P Hx
1 ¼ 1;Hx

2 ¼ 0jHy
1 ¼ 0;Hy

2 ¼ 1
� �

¼ 1� PðHx
1 ¼ 0;

Hx
2 ¼ 1jHy

1 ¼ 0;Hy
2 ¼ 1Þ. We can approximate the full distribu-

tion as a product of n�1 second-order distributions:

P HjHp
� �

� P Hx1ð Þ
Yn�1

i¼1

P Hxiþ1
jHxi

� �
;

where ðx1;x2; . . . ; xnÞ is a permutation of the n variants. The num-

ber of possible permutations is exponential in n, so how we do

choose the permutation for approximating the probability distribu-

tion? Chow and Liu (1968) have shown that it is possible to select

the second-order approximation that has the minimum Kullback–

Leibler distance to the full distribution and hence is the best

approximation in the information-theoretic sense. The Chow–Liu

algorithm reduces the problem of finding the best permutation or

the optimal second-order approximation to finding the maximum

spanning tree of a weighted graph where the nodes of the graph cor-

respond to the n variants and the weight of an edge (x, y) is equal to

the mutual information between the two variants:

Fig. 1. Integrating haplotype information from Hi-C reads and population reference panels to improve accuracy and completeness of haplotyping. Haplotypes

assembled using HapCUT2 from Hi-C reads have three unphased variants (2, 9 and 15) and an incorrectly phased variant (#6) with respect to the large haplotype

block due to an erroneous Hi-C read (edge connecting variants 6 and 14). Haplotypes estimated using a population reference panel provide accurate short-range

phase information. This information can be combined with the Hi-C reads to phase two of the three variants with no sequence information and also correct the

phase for variant #6
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I Hx;Hy

� �
¼
X

Hx ;Hy

P Hxy

� �
log

P Hxy

� �
P Hxð ÞP Hy

� � :

We can estimate PðHxyÞ using the frequency of the pair Hxy in

the N haplotype samples. Similarly, we can estimate PðHxÞ and

PðHyÞ using the samples.

2.3 Encoding the population haplotype likelihood using

pseudo-reads
Our objective is to find a haplotype pair that maximizes the product

of the population-based haplotype likelihood PðHjHpÞ and read-

based likelihood PðRjH;QÞ [Equation (1)]. HapCUT2 (Edge et al.,

2017) uses a graph-cut based iterative method to search for a pair of

haplotypes that maximizes PðRjH;QÞ. To incorporate the popula-

tion haplotype likelihood into HapCUT2, we encode each individual

term PðHxjHyÞ in the second-order approximation of PðHjHpÞ as a

pseudo-read r with alleles rx and ry and base error probabilities qx

and qy. The allele and error probabilities are chosen such that

PðrjHxy; qx;qyÞ ¼ PðHxjHyÞ for any haplotype pair H. As a result, if

we use these pseudo-reads as input to HapCUT2 along with the se-

quence reads, the likelihood function optimized by HapCUT2 is pre-

cisely equal to the product of the read-based likelihood and the

second-order approximation of PðHjHpÞ.
For this, we define fxyð00Þ ¼ PðHx

1 ¼ 0;Hx
2 ¼ 1jHy

1 ¼ 0;

Hy
2 ¼ 1Þ and fxyð01Þ ¼ 1� fxyð00Þ. We also define q ¼ 0:5� 0:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfxyð00Þ � fxyð01Þj

p
. Then, the pseudo-read r that covers the two

variants x and y is defined as:

• If fxyð00Þ > fxyð01Þ: rx¼0, ry¼0, qx ¼ qy ¼ q
• else: rx¼0, ry¼1, qx ¼ qy ¼ q.

2.4 Integrated phasing method
Encoding the approximate population haplotype likelihood as

pseudo-reads allows us to simply use these pseudo-reads along with

the sequence reads as input to HapCUT2 for phasing. We use the

Kruskal minimum spanning tree algorithm to find the optimal

second-order approximation of the probability distribution. The full

algorithm is outlined below:

1. Given individual genotypes G and population reference panel

Hp, sample N haplotype pairs using the SHAPEIT2 MCMC

method.

2. For each pair of variants (x, y), calculate IðHx;HyÞ using the N

samples.

3. Construct a weighted graph G with each variant as a node and

the weight of the edge (x, y)¼ I(Hx, Hy).

4. Compute the maximum spanning tree of G.

5. For each edge in the maximum spanning tree, generate a pseudo-

read r.

6. Run HapCUT2 with the sequence reads R and the pseudo-reads

as input.

In Step 1, we sample N ¼1000 pairs of haplotypes. In Step 2,

for a variant x, if we calculate I(Hx, Hy) for all other variants y, the

complexity of the algorithm increases as Oðn2Þ. To reduce the run-

ning time, we compute I(Hx, Hy) only for k variants to the left and

right of x where the variants are ordered by their location. We con-

sidered different values of k (5–30) and found that using values of k

larger than 10 did not change the Minimum Spanning Tree (MST)

since for most variants, edges to neighboring variants were selected

(data not shown). Therefore, we use k ¼10 for phasing real data.

We also remove all edges (x, y) from the graph for which q<0.8

since these low-confidence edges are not reliable for phasing.

2.5 Measuring haplotyping accuracy
The accuracy of the haplotypes was measured using the switch error

rate metric (Duitama et al., 2012; Edge et al., 2017; Kuleshov, 2014).

The switch error rate is defined as the fraction of adjacent phased var-

iants for which the phase is incorrect. Two consecutive switch errors

correspond to the flipping of the phase of a single variant and are

counted separately as a single ‘mismatch’ or short switch error. To cal-

culate the absolute error rate (or the Hamming error rate) of the haplo-

types, we compute the hamming distance between the estimated and

true haplotypes and divide it by the total number of phased variants.

2.6 Datasets
We evaluated our integrated phasing method using whole-genome Hi-

C data for two individuals from the 1000 Genomes Project: NA19240

(YRI population) and NA12878 (CEU population). For NA19240,

whole-genome Hi-C data generated by the 1000 Genomes SV project

(Clarke et al., 2017) for this individual was downloaded from SRA

(project PRJEB11418, accessions ERX1299696-701) and aligned to

the hg19 reference human genome sequence using BWA-MEM (option

-SP5M). PCR duplicates were marked using the Picard tool (https://

broadinstitute.github.io/picard/). The raw data contained 467 million

read pairs with reads of length 100 bp. SNV calls from the 1000

Genomes Project were used for phasing and trio-based haplotypes were

used for assessing accuracy for these data.

For the NA12878 genome, we utilized Hi-C datasets generated

using two different protocols: (i) a multi-enzyme protocol developed by

Arima Genomics (Ghurye et al., 2019) and (ii) MboI restriction enzyme

based protocol (Rao et al., 2014). The Arima Hi-C dataset for

NA12878 was downloaded from SRA (accession SRR6675327) and

processed using the same pipeline as used for the NA19240 data. The

read length for this dataset was 150 bp and the average depth of cover-

age was 36�. Similarly, reads for the MboI Hi-C data (Rao et al.,

2014) (read length equal to 101 bp) were aligned to the reference gen-

ome using BWA-MEM and the aligned reads were down-sampled to

match the coverage of the Arima Hi-C dataset. SNV calls generated

using an independent Illumina WGS dataset (30� coverage) from the

GIAB project (Zook et al., 2016) were used for phasing and high qual-

ity phased haplotypes from the Platinum Genomes Project (Eberle

et al., 2017) were used for assessing the accuracy of phasing.

In addition, we also leveraged whole-genome Strand-seq data

(Porubsky et al., 2016) for NA12878 for analysis. Aligned Strand-seq

reads for 133 cells generated by Porubsky et al. (2017) were down-

loaded from Zenodo (doi: 10.5281/zenodo.830278) and two haplotype

fragments were generated for each cell using the list of WC regions

identified previously by Porubsky et al. (2016). This was done using

the extractHAIRS module of HapCUT2 and a custom script.

The 1000 Genomes reference panel (Auton et al., 2015) (2504 indi-

viduals from 25 different populations) was used to estimate haplotypes

for each genome using SHAPEIT2 and also to sample haplotype pairs.

Since the NA12878 (CEU population) and NA19240 (YRI population)

genomes are part of the 1000 Genomes panel, we excluded all individ-

uals from the CEU and YRI populations in the reference panel to avoid

any bias. For all datasets, only heterozygous SNVs were considered for

phasing. HapCUT2 was run with default parameters. For processing

Hi-C datasets, the option ‘�hic 1’ was used.

3 Results

3.1 Accurate haplotyping using Hi-C data for NA19240
First, we applied the integrated phasing method to whole-genome

Hi-C data for NA19240. Using the Hi-C reads, 51.3% of the 50 763
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SNVs (with heterozygous genotype) on chromosome 20 could be

phased and the largest haplotype block contained 19.9% of the

SNVs. Using the integrated phasing algorithm, 48 135 pseudo-reads

were included for phasing along with the Hi-C reads. The resulting

haplotypes covered 97.32% of the SNVs with 96.47% of the SNVs

in the largest haplotype block. The haplotypes had very high accur-

acy with a switch error rate of 0.034% and a mismatch error rate

equal to 0.266% (Table 1). Furthermore, the absolute error rate of

the Hi-C haplotypes was 0.31% demonstrating that almost all of

the errors were local (due to the incorrect phasing of a few variants

relative to the chromosome spanning haplotype block).

For comparison, we used SHAPEIT2 to phase the SNVs using

the 1000 Genomes haplotype reference panel. Phase-informative

reads were extracted using the extractPIRs tool and were included

for phasing using SHAPEIT2 (Delaneau et al., 2013). 98.67% of the

SNVs were phased with a long switch error of 0.27% and a mis-

match error rate equal to 0.76%. Although SHAPEIT2 phased more

SNVs compared to the integrated phasing method, the switch error

rate of the SHAPEIT2 haplotypes was almost 8-fold higher than the

haplotypes assembled using the integrated phasing approach

(Table 1). In addition, the SHAPEIT2 haplotypes had an absolute

error rate of 42.1% due to the presence of long switch errors. As a

result, these haplotypes cannot be used to reliably infer the phase be-

tween distant pair of variants.

3.2 Comparison of different Hi-C protocols on NA12878

genome
Next, we compared the accuracy and completeness of phasing using

whole-genome Hi-C data for NA12878. 72.1% of SNVs (on chromo-

some 20) could be phased using the MboI Hi-C data with a switch

error rate of 1.3% and a mismatch error rate of 1.1%. In comparison,

86.7% of the SNVs were phased by HapCUT2 using the Arima Hi-C

reads with 2-fold lower switch and mismatch error rates (Fig. 2A).

Furthermore, the largest haplotype block contained 80.92% of the

SNVs. The greater completeness and accuracy of the haplotypes

assembled using Arima Hi-C data was a result of the improved uni-

formity in sequence coverage. Analysis of the sequence data showed

that 3.63% SNVs had less than 5� coverage in the Arima Hi-C data.

In comparison, the MboI Hi-C data had 11.7% SNVs with such low-

coverage (Fig. 2C). Single-enzyme Hi-C using the MboI (or similar)

restriction enzyme results in non-uniform sequence coverage due to

the preference of the restriction enzyme for specific sequences. The

Arima Hi-C protocol utilizes multiple restriction enzymes to digest

chromatin which reduces the coverage bias.

Phasing the Arima Hi-C data using the integrated phasing

method increased the completeness to 98.14% from 86.7% and

improved the accuracy of the haplotypes (Fig. 2). Using sequence

reads, the ability to phase a variant does not depend on its

population allele frequency but only on the number of links to other

variants. Analysis of the phased SNVs showed that the integrated

phasing method could phase 86.65% of the rare variants (minor al-

lele frequency <1% in the 1000 Genomes reference panel), 3.5%

points more than using Hi-C reads alone (Fig. 2B). This was not sur-

prising, since using a population reference panel, rare variants are

less likely to be phased compared to common variants. Analysis of

phasing accuracy and completeness for all autosomes (chromosomes

1–22) demonstrated that the integrated phasing algorithm was able

to phase 97.65% of SNVs with an average switch (mismatch) error

rate equal to 0.038% (0.049%). In comparison, the switch and mis-

match error rates using HapCUT2 on the Hi-C reads alone were

0.25 and 0.33% respectively, more than 6-fold higher.

To assess the ability to assemble haplotypes using low-coverage

Hi-C data, we down-sampled the Arima dataset to various depths of

coverage (5�, 10�, 15�, 20� and 30�) and calculated the com-

pleteness and accuracy of the haplotypes using HapCUT2 (reads

only) and the integrated phasing method. The results (Fig. 2D) show

that using Hi-C reads only, the completeness of the haplotypes

increases gradually from 50 to 84.3% as coverage is increased from

5� to 30 �. In comparison, using the integrated phasing method,

96.6% of the SNVs can be phased with an absolute error rate of

1.1% at a coverage of 10�. This demonstrated that chromosome-

spanning haplotypes with long-range accuracy can be assembled

using low-coverage sequencing.

3.3 Analysis of Strand-seq data
Recently, Porubsky et al. (2016) developed a single-cell strand

sequencing approach, Strand-seq, and showed that it enables accur-

ate whole-chromosome phasing of diploid genomes. However, only

74.6% of SNVs could be phased for the NA12878 genome using

183 Strand-seq libraries (Porubsky et al., 2016). To assess if our

new integrated phasing method could improve the completeness and

accuracy of haplotyping using Strand-seq, we applied our method to

this dataset.

After processing the raw data (see Section 2.6), 140 fragments

were obtained for chromosome 20 and each fragment had allelic in-

formation for �750 SNVs (1.5% of the total number of heterozy-

gous SNVs) on average. Using these fragments, 71.4% of the SNVs

were phased into a single, chromosome-spanning haplotype block

using HapCUT2. In comparison, using the integrated phasing

method, 94.56% of the SNVs were phased and the chromosome-

spanning haplotype block contained 94.1% of the SNVs. In add-

ition, the mismatch error rate was reduced 2-fold, while the long

switch error rate was also lower (Table 2). These results demon-

strate that the integrated phasing method can significantly improve

the completeness and accuracy of haplotyping for multiple sequenc-

ing technologies.

4 Discussion

In this paper, we have described a novel likelihood based method

that can integrate sparse, long-range haplotype information from se-

quence reads with haplotype information from population reference

panels to enable dense and accurate whole-genome haplotyping of

individual genomes. We have demonstrated that this approach sig-

nificantly improves the completeness and accuracy of haplotype

phasing using whole-genome Hi-C data for human genomes. We

also find that a new multi-enzyme Hi-C chemistry developed by

Arima Genomes significantly improves the completeness of whole-

genome haplotyping compared to existing single-enzyme Hi-C data.

Table 1. Comparison of the phasing completeness and accuracy on

whole-genome Hi-C data for NA19240

Method SNVs

phased (%)

Absolute

error

rate (%)

Switch

error

rate (%)

Mismatch

rate (%)

Run

time

Reads only 51.30 0.49 0.20 0.365 02:43

Integrated

phasing

97.32 0.31 0.034 0.266 08:57

SHAPEIT2 98.67 42.1 0.27 0.76 04:57

Note: Results shown are from the analysis of chromosome 20 only. The

run-time is reported as minutes:seconds.
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Using 30–40� Illumina whole-genome sequencing using the

Arima Hi-C protocol, the integrated phasing method can assemble

highly accurate and complete haplotypes for human genomes

(>98% of variants phased and error rates <0.2%). Recent work

(Porubsky et al., 2017) showed that combining data from 10 Strand-

seq cells with 10�Pacific Biosciences long read data was sufficient

to phase more than 95% of variants into a single chromosome-

spanning block. Here we have shown that it is possible to obtain

dense and chromosome-spanning haplotypes with very low error

rates using data from a single sequencing technology. Therefore,

using low-coverage (�10�) Hi-C sequencing for genomes in projects

such as the Genotype-Tissue Expression (GTEx) project (Lonsdale

et al., 2013) would be highly informative since it would provide ac-

curate long-range haplotype information for eQTL mapping as well

as information about the 3D structure of the genome.

Our integrated phasing method approximates the haplotype like-

lihood from a population reference panel using second-order prob-

ability distributions that capture the uncertainty in the phase

information from population data and can be combined with se-

quence reads for phasing using HapCUT2. This approach is not lim-

ited to Hi-C data and we have shown that it improves the

completeness and accuracy of phasing using another sparse haplo-

typing method, Strand-seq. For Hi-C data, our method significantly

outperforms an existing statistical phasing method, SHAPEIT2, in

terms of switch error rates. Even though this method can leverage

haplotype information from sequence reads (Delaneau et al., 2013),

our results indicate that SHAPEIT2 is unable to fully utilize the

long-range haplotype information in Hi-C reads.

One limitation of our integrated phasing method is that the abil-

ity to phase rare variants that are not linked by sequence reads to

other variants is limited by the size of the population reference

Fig. 2. Completeness and accuracy of haplotyping using Hi-C data for NA12878 (all statistics are for chromosome 20 only). (A) Error rates for haplotypes esti-

mated using HapCUT2 on the MboI and Arima Hi-C datasets, and the integrated phasing algorithm applied to the Arima Hi-C data. (B) Haplotyping completeness

(percentage of SNVs phased) across the three different methods. (C) Distribution of read-depth across SNV sites using the Arima and MboI Hi-C datasets (36�
coverage). (D) Haplotype completeness for Arima Hi-C data as a function of sequence coverage

Table 2. Phasing completeness and accuracy on whole-genome

Strand-seq data for NA12878

Method SNVs

phased (%)

Switch

error

rate (%)

Mismatch

error

rate (%)

Absolute

error

rate (%)

Reads only 71.38 0.091 0.268 0.905

Integrated phasing 94.56 0.0364 0.134 0.868

Note: Results are shown for data on chromosome 20 only. Switch and mis-

match error rates were calculated by comparison to Platinum Genomes haplo-

types for NA12878.
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panel. In this paper, we have used the 1000 Genomes Project refer-

ence panel which has haplotypes from 2504 individuals. Use of

larger haplotype reference panels such as the recently published

HRC panel (McCarthy et al., 2016) with 64 976 haplotypes will

likely improve the ability to phase rare variants.
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