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Lysoforte (LFT) plays a vital role in maintaining broilers’ health and intestinal morphology.

However, the mechanism behind the effects of LFT improving intestinal morphology

and health is still unclear. Therefore, this study was implemented to explore the central

genes linked to the regulatory effect of LFT. Seventy-five newly hatched Cobb 500

male broilers were randomly divided into three groups: control, LFT500, and LFT1000

groups, with 25 chicks per group. The control chicks were provided with the basal

diet, and the birds in LFT500 and LFT1000 groups were offered the same basal

diet with 500 g/ton and 1,000 g/ton LFT, respectively. GSE94622 dataset consisted

of the control and two LFT-treated groups (LFT500 and LFT1000). Jejuna samples

were obtained from Gene Expression Omnibus (GEO). Totally 106–344 DEGs were

obtained by comparing LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500.

Gene ontology (GO) enrichment suggested that the DEGs are mainly related to the

phosphatidylethanolamine biosynthetic process and neuron projection extension. KEGG

analysis suggested the DEGs were enriched in AGE-RAGE, fatty acid elongation,

ECM-receptor interaction (ECMRI), glycerophospholipid metabolism, focal adhesion,

unsaturated fatty acids biosynthesis, and ABC transporters. Moreover, 29 genes, such

as REG4, GJB1, KAT2A, APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9, CYP4V2, and

PISD, might be closely related to promoting jejunamorphology in broilers. Taken together,

our observation enhances the understanding of LFT in maintaining intestinal architecture

and the general health of broiler chickens.

Keywords: gene, signaling pathway, Lysoforte, jejuna, broiler

INTRODUCTION

Fats and oils, which are the most important dietary sources of energy, are excellent ways to
accumulate the energy requirements for the optimized weight gain of broiler chickens (1, 2).
Exogenous emulsifiers played an effective role in improving lipids utilization in broiler chickens,
as the latter fail to gain lipids due to their poor emulsification in the gut (3). Lysoforte (LFT),
a lysolecithin produced from lecithin that acts as an efficient emulsifier, could improve poultry
growth, reproduction, and carcass quality by enhancing nutrient digestion and absorption, as well
as reducing their mortality. In broiler chickens, LFT supplementation elevated average daily gain
(ADG), final body weight, relative growth rate, dressing percent, carcass quality, net profit, total
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return, economic efficiency, and reduced energy matrix value,
FCR, and mortality rate (4, 5). Previous research has shown that
LFT supplementation increased saturated fatty acids absorption.
In addition, a synergistic effect has existed between LFT and
enzymes in broilers (6). Papadopoulos et al. (7) reported that fat
digestibility, digesta viscosity, and apparent metabolizable energy
in chicken were improved by LFT supplementation.

LFT may also have a vital role in maintaining intestinal
morphology and health in broilers. LFT supplementation
decreased the mucosal thickness at 28 day and induced
alterations in the duodenum morphology (7). LFT addition
significantly increased the average villus length and width (8).
LFT addition had the potential to improve the chicken jejunal
morphology and health due to the changes inducted by LFT in
the intestinal epithelium (8). However, the mechanism by which
LFT improves intestinal morphology and health in broilers is
unclear. Therefore, we obtained the microarray data of broiler
jejuna treated with or without LFT from the GEO dataset
(https://www.ncbi.nlm.nih.gov/geo/) and identified differentially
expressed genes (DEGs) in birds’ jejuna, aiming to explore
the mechanism behind the regulation of LFT on the jejuna
morphology and health in broilers.

MATERIALS AND METHODS

Ethics Statement
The present study was approved by the protocol from
Anhui Science and Technology University (Bengbu, China)
Institutional Animal Care and Use Committee (ECASTU-2015-
P08).

Animals, Feed, and Tissue Collection
Seventy-five newly hatched Cobb 500 male broilers were
randomly divided into three groups: control, LFT500, and
LFT1000 groups, with 25 chicks per group. The control chicks
were provided with the basal diet, and the birds in LFT500 and
LFT1000 groups were offered the same basal diet with 500 and
1,000 g/ton LFT, respectively (8). The study lasted for 4 weeks.
Ingredients and nutrient contents of the basal diet are presented
in Supplementary Table 1. All birds were placed in the room
with adjoining floor pens and weighed individually per week (8).
On test day 10, five chicks per group were randomly chosen and
killed via cervical dislocation. Pieces of ∼10 cm in length were
collected from the middle of the jejuna (8).

RNA Extraction and Microarray Analysis
Given the LFT effects on chicken jejunal morphology
(Supplementary Table 2), ∼50mg of jejuna mucosa was
homogenized with Tri Reagent (8). Total RNA was extracted
using Directzol RNA columns, and the quality, purity, and
integrity of RNA were assessed (8). Microarray analysis was
performed with the chicken genome 1.0 array (8). The jejuna
gene expression data were deposited in GEO (accession number:
GSE94622) (8).

Microarray Data
GSE94622 consisted of the control (n = 5; GSM2479490,
GSM2479491, GSM2479506, GSM2479507, and GSM2479523),
LFT500-treated (n = 5; GSM2479533, GSM2479517,
GSM2479516, GSM2479501, and GSM2479500), and LFT1000-
treated (n = 5; GSM2479503, GSM2479520, GSM2479521,
GSM2479537, and GSM2479536) broiler jejuna samples
obtained at the 10th day of the experiment.

Data Processing
To obtain the DEGs between the jejuna samples treated with
and without LFT, GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r) was used to analyze the data from GSE94622. DEGs were
identified as the genes with |log2-fold change (FC)| >1 and P
< 0.05.

Analysis of KEGG and Genetic Ontology for
DEGs
KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/kobas3/genelist/) was
used to analyze the signaling pathways for DEGs. Regarding
the genetic ontology (GO) analysis, DEGs were analyzed with
DAVID (https://david.ncifcrf.gov/).

Protein Classification and Reactome
Analysis for DEGs
Protein classification and Reactome analysis for DEGs were
performed with the PANTHER (http://pantherdb.org/) and
KOBAS 3.0.

Protein–Protein Interaction
STRING (https://string-db.org/) was employed to form protein–
protein interaction (PPI). Cytoscape (version 3.8.0, http://www.
cytoscape.org/) was used for further visualization.

Hub Genes and Their Functions
CytoHubba (http://apps.cytoscape.org/apps/cytohubba) was
used to reveal hub genes from the PPI network, then the hub
gene functions were summarized using GeneCards (https://
www.genecards.org/), previous reports, and NCBI (https://www.
ncbi.nlm.nih.gov/).

RESULTS

The Outline of Transcripts and Genes in
Broilers Jejuna
A total of 38,535 transcripts and 14,086 genes were observed
in the chicken jejuna. Transcripts expression density and
UMAP are indicated in Figures 1A,B. Figures 1C–E represents
the volcano plots for DEGs in the three comparisons of
LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500,
respectively. The jejuna diagram for DEGs in the three
comparisons mentioned above is shown in Figure 1F. As shown
in Supplementary Table 3, a total of 174–547 differentially
expressed transcripts (DETs) and 106–344 DEGs were identified
by the three comparisons. Compared with the control jejuna,
311 transcripts and 224 genes were upregulated, while 236
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FIGURE 1 | Transcript and Gene Profiles in Broilers Jejuna Treated with and without LFT. (A) The density of transcripts expression; (B) UMAP; (C–E) Volcano plot of

DEGs was identified by three comparisons (LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500, respectively). The red, gray, and blue spots represent the

upregulated, unchanged, and downregulated genes. (F) Venn diagrams for the DEGs are identified in the three ways of comparisons mentioned above.
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FIGURE 2 | GO Enrichment for DEGs in Broilers Jejuna Treated with and without LFT. (A–C) GO enrichment for DEGs identified in the three comparisons (LFT500 and

LFT1000 vs. control and LFT1000 vs. LFT500, respectively). (D) GO enrichment for the common DEGs in the two comparisons (LFT500 and LFT1000 vs. control).

(E–Q) The heatmaps for DEGs in cell adhesion, cell proliferation, blood coagulation, collagen biosynthetic process, collagen fibril organization, glutathione metabolic

process, macrophage chemotaxis, negative regulation of interferon-gamma production, positive regulation of gene expression, protein phosphorylation, and the

response to oxidative stress.

transcripts and 120 genes were downregulated in LFT1000-
treated jejuna (Additional Files 1, 2); 98 transcripts and 68
genes were upregulated, while 76 transcripts and 38 genes were
downregulated in LFT500-treated jejuna (Additional Files 3,
4). The top 20 genes up- and downregulated in the three
comparisons (LFT500 and LFT1000 vs. control and LFT1000 vs.
LFT500) were revealed in Supplementary Tables 4–9.

Twenty-nine common DEGs from the two comparisons
(LFT1000 and LFT500 vs. control) are shown in
Supplementary Table 10. These genes (including REG4,
GJB1, KAT2A, APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9,
CYP4V2, PISD, PTGR1, and AKAP9) might be closely related to
promoting the jejuna morphology and health in broilers.

GO Analysis for DEGs
To reveal the biological processes associated with LFT
regulation on broiler jejuna, GO analysis of DEGs in the
three comparisons, including LFT1000 and LFT500 vs. control,
and LFT1000 vs. LFT500 was illustrated in Figures 2A–C

and Additional Files 5–7, respectively. DEGs obtained by
comparing LFT1000 vs. control may participate in multiple

biological processes, such as angiogenesis, blood coagulation,
macrophage chemotaxis, glutathione metabolic process, collagen
biosynthetic process, extracellular matrix (ECM) organization,
the response to oxidative stress, and cell adhesion, proliferation,
and differentiation.

DEGs between LFT1000 and the control may have a vital
role in protein phosphorylation; leukocyte activation; adaptive
immune response; antibacterial humoral response; inflammatory
response; innate immune response; osteoclast differentiation; the
negative regulation of viral genome replication and apoptotic
process; and the positive regulation of production of chemokine,
interferon-beta, interleukin-6, tumor necrosis factor; and the
positive regulation of NIK/NF-kB pathway.

Twenty-nine common DEGs of two comparisons (LFT1000
and LFT500 vs. control) in the chicken jejuna were closely
associated with phosphatidylethanolamine biosynthetic process
and neuron projection extension (Figure 2D). In addition,
Figures 2E–Q represents the heatmaps for DEGs in cell adhesion,
cell proliferation, blood coagulation, collagen biosynthetic
process, collagen fibril organization, glutathione metabolic
process, macrophage chemotaxis, the negative regulation of
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FIGURE 3 | KEGG Enrichment for DEGs in Broilers Jejuna Treated with and without LFT. (A–C) KEGG enrichment for DEGs was identified by three comparisons

(LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500, respectively). (D) KEGG enrichment for the common DEGs was identified by two comparisons (LFT500

and LFT1000 vs. control). (E–O) Heatmaps for DEGs in TLR, PPAR, metabolism, adipocytokine, carbon metabolism, CAMs, drug metabolism-cytochrome P450, fatty

acid degradation, mTOR, fatty acid metabolism, and Wnt signaling pathway.

interferon-gamma production, and the positive regulation of
gene expression, protein phosphorylation, and the response to
oxidative stress, respectively.

KEGG Enrichment for DEGs
To discover the pathways related to the regulation of LFT
on broiler intestinal morphology and health, DEGs in the
three comparisons, including LFT500 vs. control, LFT1000
vs. control, and LFT1000 vs. LFT500, were implemented in
KEGG analysis, and the results were shown in Figures 3A–C,
respectively (Additional Files 8–10). As illustrated in Figure 3D,
the common DEGs of two comparisons (LFT500 and LFT1000
vs. control) are mainly linked to ABC transporters, AGE-
RAGE, fatty acid elongation, focal adhesion, glycerophospholipid
metabolism, ECMRI, and unsaturated fatty acids biosynthesis
pathways. In addition, Figures 3E–O reveals toll-like receptor
(TLR), PPAR, metabolism, adipocytokine, carbon metabolism,
cell adhesion molecules, drug metabolism-cytochrome P450,
fatty acid degradation, mTOR, fatty acid metabolism, and Wnt
signaling pathway, respectively.

Reactome Enrichment and Protein
Classification for DEGs
To further reveal the pathways related to LFT regulation on

broiler jejuna heath, Reactome enrichment for DEGs in the three
comparisons was performed. DEGs identified by comparing

LFT1000 vs. the control may link to the metabolism, hemostasis,
signal transduction, small molecules transport, carbohydrates
metabolism, platelet activation, glycosaminoglycan metabolism,

ECM organization, and neuronal system (Figure 4A). DEGs
between LFT500 and the control related to hemostasis, signal
transduction, cytokine signaling, neutrophil degranulation, TLR

cascades, interleukin-2 family signaling, and platelet activation,
signaling, and aggregation (Figure 4B).

Protein classification for DEGs in the three comparisons
was performed. DEGs between LFT500 and the control groups
might play an important role in acyltransferase, RNA helicase,
kinase modulator, protease inhibitor, kinase activator, damaged
DNA-binding protein, protein-binding activity modulator,
ECM structural protein, and defense/immunity protein
kinase (Figure 4C). DEGs between LFT1000 and the control
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FIGURE 4 | Reactome Analysis and Protein Classification for DEGs. (A,B) Reactome analysis for DEGs was identified in two comparisons (LFT1000 and LFT500 vs.

control). (C–E) Protein classification for DEGs was identified in two comparisons (LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500, respectively).
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FIGURE 5 | PPI Network for DEGs in broilers jejuna treated with and without LFT. (A–C) PPI network for DEGs was identified by three comparisons (LFT1000 and

LFT500 vs. control and LFT1000 vs. LFT500, respectively).

groups might contribute to reductase, oxidase, cadherin,
deaminase, transferase, dehydrogenase, oxidoreductase,
glycosyltransferase, gap junction, transcription cofactor,
serine protease, intermediate filament, protease inhibitor, cell
adhesion molecule, ECM structural protein, ECM protein,
metabolite interconversion enzyme, cell junction protein,
protein-binding activity modulator, and ATP-binding cassette
G-protein modulator (Figure 4D). The common DEGs of
two comparisons (LFT500 and LFT1000 vs. control) might
link to decarboxylase, kinase modulator, gap junction, ECM

protein, ECM structural protein, and protein-binding activity
modulator, and immunoglobulin superfamily cell adhesion
molecule (Figure 4E).

PPI Network
To further explore key genes, DEGs in the three
comparisons, including LFT500 and LFT1000 vs. control and
LFT1000 vs. LFT500, were implemented in PPI networks
analysis, and the results are shown in Figures 5A–C,
respectively.
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FIGURE 6 | Hub Genes Linked to the Regulation of LFT on the Morphology and Health in Broiler Jejuna. (A–C) Hub genes from DEGs were identified by three

comparisons (LFT500 and LFT1000 vs. control and LFT1000 vs. LFT500, respectively). (D–F) GO and (G–I) KEGG enrichment for hub genes mentioned above.
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Hub Genes and Their Function
The top 20 hub genes from DEGs between LFT500 and
control groups included RSAD2, DHX58, DDX60, OASL, IFIH1,
IFIT5, EPSTI1, CMPK2, USP18, and HELZ2 (Figure 6A). The
top 28 hub genes from DEGs between LFT1000 and control
groups included COL1A1, COL1A2, SPARC, COL6A1, COL5A1,
MMP2, DCN, COL4A2, COL6A3, and CTGF (Figure 6B). The
top 30 hub genes from DEGs between LFT1000 and LFT500
groups included PLK1,AURKA,CCNB2,CDC20,NCAPG,NUF2,
UBE2C, CDCA3, KPNA2, and CKAP2 (Figure 6C).

GO enrichment suggested that the top 20 hub genes
in the comparison of LFT500 vs. control related to innate
immune response; the positive regulation of the production
of chemokine, interferon-alpha, interferon-beta, and tumor
necrosis factor; and the positive regulation of MDA-5, NIK/NF-
kB, and RIG-I signaling pathway (Figure 6D). The top 28
hub genes from DEGs between LFT1000 and control groups
participated in cell adhesion, endodermal cell differentiation,
cell–cell junction assembly, intramembranous ossification,
ECM organization, collagen fibril organization, blood vessel
maturation, collagen biosynthetic process, blood vessel
development, and the negative regulation of endopeptidase
activity (Figure 6E). The top 30 hub genes from DEGs between
LFT500 and LFT1000 groups are linked to cell division,
cell cycle, mitotic cytokinesis, intramembranous ossification,
kinetochore organization, chromosome segregation, blood vessel
development, mitotic cell cycle, endodermal cell differentiation,
mitotic chromosome condensation, collagen biosynthetic
process, meiotic chromosome condensation, ECM, mitotic sister
chromatid segregation, etc (Figure 6F).

KEGG enrichment suggested that the top 20 hub genes
from DEGs between LFT500 and control involved in RIG-I-like
receptor, pyrimidinemetabolism, necroptosis, and TLR pathways
(Figure 6G). The top 28 hub genes compared to LFT1000
vs. control linked to tryptophan metabolism, focal adhesion,
retinol metabolism, ABC transporters, AGE-RAGE, apelin, and
xenobiotics metabolism by cytochrome P450 signaling pathways
(Figure 6H). The top 30 hub genes fromDEGs between LFT1000
and LFT500 groups participated in p53, Fox O, AGE-RAGE, cell
cycle, focal adhesion, drug metabolism, pyrimidine metabolism,
and ECMRI signaling pathways (Figure 6I).

DISCUSSION

Hub Genes by Which LFT Maintains the
Intestinal Morphology and Health in
Broilers
In this study, multiple hub genes, such as REG4, KAT2A,
APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9, CYP4V2, and
PISD1, might participate in the regulation of LFT on intestinal
morphology and health in broilers. For instance, REG4, a
member of the small secretory protein family, was reported
to participate in inflammatory bowel diseases and intestinal
cancers (9–12).

In our study, 500 and 1,000 g/ton LFT treatment increased
the REG4 expression in the chicken jejuna (2.36- and 2.60-
fold), which is consistent with Qi et al. who demonstrated
that REG4 was involved in membrane attack complexes killed
inflammatory Escherichia coli (E. coli) to maintain gut health,
and REG4 gene knockdown increased the content of E. coli
in the intestinal tract (9). REG4 was obviously upregulated in
colorectal cancer (CRC) tissue compared to the normal tissue.
REG4 expression in CRC tissue was linked to distant and
lymph-node metastasis and histologic grade. REG4 expression
in CRC patients showed a worse prognosis (10). REG4 was the
biomarker to predict concurrent chemoradiotherapy resistance
in patients with rectal cancer. Previous research showed that the
significant upregulation of the REG4 gene was closely related to
the undesirable outcome and the aggressive phenotype in rectal
cancer patients (11). In our study, REG4 played an important
role in cell regeneration and proliferation. REG4 expression was
linked to higher overall survival and favorable clinicopathological
parameters in CRC patients (12).

KAT2A, named lysine acetyltransferase 2A, inhibited the
proliferation and growth of the intestinal cell, especially in CRC
cells. KAT2A, succinylate, and succinyltransferase could decrease
the α-KGDH complex entered the nucleus, reduce the gene
expression, and inhibit the cell proliferation and growth in
intestinal cancers (13). Histone acetyltransferase KAT2A could
interact with long noncoding RNA LBX2-AS1 and RNA-binding
protein PTBP1 and regulate the cell proliferation and invasion in
CRC (14).

In humans and animals, APOA5 was a vital gene for
intestine chylomicron production and lipids metabolism.
APOA5 decreased the serum triglyceride (TG) by restraining
ANGPTL3/8-mediated lipoprotein lipase inhibition (15).
Variants in the APOA5 gene affected TG concentrations
and the entire lipoprotein subclass distribution and caused
hypertriglyceridemia (16). Hypermethylation in exon 3 of the
APOA5 gene had a positive correlation with the lipoprotein
profile and TG concentration linked to atherogenic dyslipidemia.
The highest TG concentrations were observed in carriers with a
high methylation percentage in the exon 3 of the APOA5 gene
(17). In our study, APOA5 expression was obviously improved
1.65- and 2.05-fold in chicken jejuna by 500 and 1,000 g/ton
LFT treatment, which was consistent with the previous finding
that APOA5 might control TG synthesis and secretion in the
intestine. In the TC-7 cell line, saturated fatty acids stimulation
obviously increased the APOA5 gene expression; Similarly, fatty
acid butyrate administration improved APOA5 expression by
∼4 times; PPARα agonist treatment also enhanced the APOA5
expression by 60% (18). In addition, PPARα has a vital role in
lipid metabolism and improves ketogenesis and oxidation of
fatty acid. PPARα activation reduced food intake and improved
insulin sensitivity. Wy-14643 administration significantly
increased the expression of HMG-CoAS2 and CPT1A genes
in the jejunum. The induction of HMG-CoAS2 and CPT1A
expression in the jejunum was linked to the decreased content
of lipid droplet. HMG-CoAS2 and CPT1A were two important
enzymes for ketogenesis (19).
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SERPINE2 might be a vital gene for intestinal health and
disease, such as colorectal cancer. Intestinal epithelial cells
(IECs), activation of oncogenic extracellular signal-related kinase
(ERK), Ras, or BRAF strongly upregulated the SERPINE2 protein
expression and secretion (20). SERPINE2 gene expression was
also dramatically increased in CRC cells compared with normal
IECs; In the HCT116 cell, SERPINE2 knockdown distinctly
decreased the anchorage-independent growth, tumor formation,
and cell migration in nude mice; SERPINE2mRNA level in CRC
cell lines was markedly decreased by U0126 (a highly specific
MEK1/2inhibitor) administration (21).

ELOVL1, a widely expressed gene in tissues from the ELOVL
family, encoded the fatty acid elongase to produce C20–C28
fatty acids. In this study, ELOVL1 was observably upregulated
in chicken jejuna from LPC-treated groups, consistent with the
report that ELOVL1 regulated the very-long-chain fatty acid
and sphingolipids synthesis, and was closely associated with the
intestinal barrier function (22, 23). ELOVL1 expression induced
by inhibiting mTOR1 decreased fatty acids synthesis (22, 23). A
previous study in mice indicated that ELOVL1 knockout induced
the defects in the epidermal barrier and the death after birth.
In the epidermis of ELOVL1 knockout mice, the content of C24
sphingomyelin was reduced, but the C20 sphingomyelin level was
increased (23).

ABCC2, the gene encoding multidrug resistance protein 2
(MRP2), was located on the small intestinal epithelial brush
border membrane. ABCC2 had a vital role in regulating the
absorption of nutrients and toxins (24–26). In this study,
ABCC2 expression was dramatically improved in chicken jejuna
from LPC-treated groups. This result agreed with the report
that ABCC2 could limit the absorption of toxins, improve the
endogenous xenobiotics and substances efflux, and mediate
the beneficial effect of Lactobacillus plantarum on poultry
intestines (24). The expression pattern of MRP2/ABCC2 in
the small intestinal tract was tightly regulated. MRP2/ABCC2
expression in the small intestine was closely associated with ezrin
phosphorylation status (25). ABCC2, ABCC3, and ABCG2 were
expressed in the intestine and could transport the glucuronidated
compounds. ABCC2 knockout significantly decreased the biliary
excretion in mice (26). The exposure to thymeleatoxin reduced
the amount of ABCC2 protein and the active ezrin. Moreover,
cPKC activation weakened the interaction between ABCC2 and
ezrin proteins (27).

Signaling Pathways by Which LFT
Maintains the Intestinal Morphology and
Health in Broilers
Our study found that LFT regulated the intestinal morphology
and health in broilers via multifarious signaling pathways,
including AGE-RAGE, ECMRI, focal adhesion, and ABC
transporters. For example, AGE expression in the jejunal villi
crypt as well as RAGE expression in the villi significantly
enhanced the jejunal layer thickness, weight per length, and
wall area (28). RAGE signaling was closely linked to intestinal
permeability and inflammation. AGE-RAGE signaling and

RAGE activation in the intestinal epithelium contributed to
intestinal permeability and pathogenesis (29).

ECM, a vital component of the intestine, provided the
structural framework and conveyed tissue-specific signals to the
adjacent enterocytes. Porcine epidemic diarrhea virus (PEDV)
infection resulted in extensive ECM remodeling in IECs.
SERPINE1 and CD44, two ECM-regulated genes, could enhance
or inhibit the PEDV infection (30).

A previous research found that various signaling pathways
were involved in intestinal schistosomiasis and trinitro-benzene-
sulfonic acid-induced ileitis, such as ABC transporters, cell
adhesion, ECMRI, antigen processing and presentation, TLR,
and the response to chemical stimulus categories (31). The
ABC-transporter mediated the cellular uptake, absorptive
permeability, and intestinal absorption. For instance, the ABC-
transporter-mediated efflux and the poor permeability were the
major reasons for Rh2 poor absorption (32).

Fatty acid metabolism, such as fatty acid biosynthesis and
elongation, might play a vital role in intestinal absorption and
health. In our study, DEGs in chicken jejuna between LFT-treated
groups and the control also enriched in fatty acid elongation
and unsaturated fatty acids biosynthesis signaling pathways that
were consistent with the report that polyunsaturated fatty acids,
including oleic acid, linolenic acid, and conjugated linoleic acid
(CLA), had a protective effect in the intestine morphology and
health (33). In IECs, long-chain saturated fatty acids stimulated
TG synthesis, and stearic acids and palmitic also stimulated
phospholipid synthesis (34).

CLA potentially modulates gut microbiota and intestinal
permeability. CLA increased intestinal permeability in the
normal mice and obviously improved the tight junction
proteins in the intestine of leptin-deficient mice (35). CLA
increased the abundance of beneficial bacteria (such as Roseburia,
Dubosiella, and Anaerostipes) and increased the abundance of
pro-inflammatory bacteria (such as Alistipes and Tyzzerella) in
eptin-deficient mice. In addition, gut microbiota was associated
with intestinal permeability [39]. CLA increased the SIgAmRNA
and SIgA protein content in the jejunal mucosa. CLA treatment
significantly increased PPARγ expression in jejunum as well
as lymphocyte proliferation, and the percent of T lymphocytes
(CD8+) in Peyer’s node of broilers (36).

CLA addition could obviously enhance the immunity and
antioxidant capacity of the intestinal mucosa in broilers. CLA
supplementation at the level of 1.50% notably improved the
CD8+ T lymphocytes percentage in the duodenal epithelium,
reducing the concentration of malondialdehyde and glutathione
in the duodenal mucosa of the birds infected by Eimeria
acervuline but had no effects on the activities of catalase and
superoxide dismutase (37).

CONCLUSION

Taken together, signaling pathways (such as AGE-RAGE,
fatty acid elongation, ECMRI, glycerophospholipid metabolism,
focal adhesion, unsaturated fatty acids biosynthesis, and ABC
transporters) and 29 genes (including REG4, GJB1, KAT2A,
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APOA5, SERPINE2, ELOVL1, ABCC2, ANKRD9, CYP4V2, and
PISD) might be closely related to promoting jejuna morphology
in broilers. Our observation enhances the understanding of LFT
in maintaining intestinal architecture and the general health of
broiler chickens.
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