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ABSTRACT: With the increasing demands on energy and environmental domains,
not only high oil production but also its accurate quantification has become one of the
most important topics in academia and industry. This paper initially proposes a
comprehensive workflow in which an integrated hierarchy−correlation model is used to
thoroughly evaluate the influences of all relevant reservoir parameters on the ultimate
oil recovery for water-flooding oil reservoirs. More specifically, the analytic hierarchy
process, grey relation, and entropy weight are combined through the multiplicative
weighting method to quantitatively describe the production parameters. Accordingly,
novel multivariable linear and nonlinear correlations are developed to predict the
production performance and validated through comparisons with numerical reservoir
simulations. Seven factors, including five reservoir parameters, namely, permeability
and its contrast, porosity, thickness, and saturation, and two production parameters,
namely, the injection−production ratio and the operating pressure, have been identified
as the most influential factors on recovery performances and thus are employed in the
proposed correlations to predict the ultimate oil recovery factor. The results obtained by the proposed method are quite close to the
real-time simulation data, while the accuracy is retained. The numerical results show that the recovery factors of water-flooding oil
reservoirs are about 33.5−59.5%, and the corresponding linear and nonlinear correlation coefficients are 0.903 and 0.789,
respectively. In comparison with the numerical simulation, the approximation error by the linear correlation is about 0.5%, which is
lower than that of nonlinear correlation, for example, 12.3%. This study will be beneficial to analyze the reservoir-related parameters
and provide a useful tool for rapid production performance evaluation of the water-flooding production scenario.

1. INTRODUCTION

The recovery factor is the ratio of the amount of oil that can be
recovered from an oil reservoir to the geological reserves
within a certain economic limit under the conditions of
modern technology. It is an important indicator to evaluate the
production performance and developmental effect. The flow
characteristics of oil and water become complicated when the
oil field is in the middle and later stages of development. To
adjust the developmental project and improve the production
and economic benefits, it is important to accurately predict the
oil recovery factor. The geological and developmental
parameters have some effects on the recovery factor. The
geological parameters include the porosity, permeability,
heterogeneity, and so forth, while the developmental
parameters consist of the injection−production ratio, produc-
tion rate, water cut, well spacing, recovery rate, and so forth.1

The recovery factor is affected by multiple parameters,2−4

which increase the difficulty of accurately predicting the
recovery factor of water-driven oil reservoirs.
Over the past several decades, many relevant research works

have been carried out to solve the problem of predicting the
recovery factor. Mutua et al. (2002) established an empirical
prediction model to forecast the recovery factor based on the

laboratory data. 100 samples from sandstone and carbonate
database were analyzed by using the empirical prediction
model. The results showed that the correlation coefficient is
more than 0.95. Adrian et al. (2013) also adopted the empirical
formula to predict the oil recovery factor and conducted a
robustness test to improve the practicability of the formula.
The empirical formulas were applied on Niger Delta green oil
reservoirs to predict the recovery factor. The results showed
that the predicted recovery factor of the empirical formula
agreed with those of numerical simulations. Lima et al. (2012)
carried out a numerical simulation method to predict the oil
reservoir recovery factor and confirmed the influencing
parameters of the water-flooding reservoir by using transient
three-dimensional numerical simulations. The simulation
results revealed that the recovery factor had a positive
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correlation with the mass of injected water. The water injection
and oil production increased when the rate of water injection
was 0.10 ∼ 0.25 kg/s, and the oil recovery factor increased by
16.7% at the same time. Dutta et al. (2014) pointed out the
disadvantages of the traditional decline curve for forecasting
the oil recovery factor in complex reservoirs and proposed a
new method combining the power law, stretched exponential
index decline model, and the Duong model to predict the
production and recovery factors. The results confirmed that
the new model was better than a single method at predicting
the recovery factor. Suparit (2018) used the desirability model
to assess the impact of related factors on the recovery factor.
To relate to the index of recovery factor, the factors were
divided and combined into a single parameter. The relevant
results became an empirical method to predict recovery with a
good consistency between the single parameters and the
recovery factor. Ma et al. (2018) proposed a nonlinear
extension of Arps decline model (NEA) prediction method.
The NEA method used one-step linear recursion to cope with
the nonlinear relationship between the input parameters and
production data. Case studies evaluating the efficiency of the
NEA model with the production data in China and India were
conducted, and their results showed that the uncertainty of the
nonlinear NEA model is 4.22% compared with the results of
numerical simulations, indicating that it was suitable to
accurately forecast the oil production. Lim et al. (2014)
proposed an overall production data analysis workflow for the
ultimate recovery factor forecast and obtained a probabilistic
type curve which is generated from the uncertain oil and gas
production data. The falling envelope forecast was applied in a
probabilistic production decline area. The results showed that
the application of the probability concept in DCA could
effectively enhance the reliability of prediction. Dong et al.
(2015) comprehensively evaluated the effects of reservoir
parameters, fluid parameters, and operation parameters on the
dynamics of SAGD recovery and determined the degree of
effect factors by using the grey correlation method based on
typical thick offshore oil reservoirs. A static multiparameter

nonlinear prediction formula of recovery factor, rate, and
cumulative gas−oil ratio was put forward, and the prediction
results of this formula showed less than 10% deviation in
comparison with numerical simulations. The research results
showed that this correlation prediction formula could be used
to quickly obtain the oil field recovery factor. To decrease the
disadvantages of uncertain accuracy, cumbersome operations,
and expensive manpower and time, Dzurman et al. (2013)
adopted the artificial neural network (ANN) to predict the
recovery factor based on the production performance and
evaluation. Based on the application of this method to
Canadian oil sand reservoirs, the predicted results demon-
strated that the error of the predicted model compared with
the real recovery factor was less than 10%. Chen et al. (2019)
applied ANN to predict the recovery factor and determine the
main factors affecting the recovery factor based on the
reservoir properties, development parameters, and historical
recovery data collected from 1381 actual oil fields. 90% of
these oil fields was randomly selected as the training set, and
the remaining 10% oil fields was used to test the performance
of ANN. The results indicated that the error between the
predicted value of ANN and the actual recovery factor was
about 10%. Recently, El-Amin et al. (2021) established a
stochastic regression model of gradient boosting (SGB) to
predict the recovery factor based on the gradient boosting
(GB) regression, which is one of the practical machine learning
(ML) methods. The different timescale data were selected to
train the machine learning models. The numerical results
confirmed the superiority of the SGB model in predicting the
oil recovery factor.5,7−10,12−15

To sum up, the commonly used methods to predict the oil
recovery factor can be summarized as follows:

1 Core experiment method. It is mainly used to simulate
the development process of an oil reservoir by laboratory
physical simulation experiments, and the experimental
results are highly reliable. However, the experimental
results cannot reflect the vertical and horizontal reservoir
heterogeneity due to the limitations of real cores.

Figure 1. Technology flowchart and research approach to establish the new model predicting the recovery factor for water-driven oil reservoirs.
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2 Analogy method. The recovery factor can be acquired by
this method through comparing the geological and
operational parameters of newly discovered reservoirs
with those of old reservoirs.16,17 However, its application
capacity is limited, and the accuracy is also not high.

3 Decline curve method. It can be used to predict the
production performance and recovery factor in the
statistical stage of decline for production.6,11 The
disadvantages are that the operational measures have
some effects on the recovery factor, and the predicted
accuracy of the recovery factor is relatively low.

4 Numerical simulation method. This method is generally
used to simulate the flow of underground oil and water
and predict the production performance and recovery
factor. Although the heterogeneity of the reservoir can
be described, it is difficult to confirm the main
influencing parameters of the recovery factor.

5 Empirical formula method. It was proposed by the
American Petroleum Institute (API) Recovery Efficiency
Subcommittee in 1967.18 Based on the principle of
mathematical statistics, the recovery factor is obtained
by using the multiple regression equation according to
the main factors affecting recovery.19 However, the
accuracy of predicted results has strong uncertainty, such
as the errors between the calculated recovery factors by
the empirical formula, considering the porosity, water
saturation, initial pressure, viscosity, and permeability,
and those of numerical results is about 10−60%.

6 Artificial neural network method. It can be used to
analyze the relationship between the recovery factor and
various influencing parameters and to predict the
production performance and recovery factor.20,21 How-
ever, as a huge amount of data is strictly required, the
application of this method is limited.

To accurately predict the recovery factor of a water-flooding
oil reservoir, in this paper, the main parameters affecting the
recovery factor were comprehensively evaluated through three
types of methods, including the analytic hierarchy process
(AHP), grey correlation method, and entropy method, as
shown in Figure 1. Then, a new integrated hierarchy−
correlation model was proposed to predict the recovery factor
by using multivariate regression based on the main influencing
parameters. Meanwhile, the new model was compared with the
actual real-time numerical simulations.

2. DESCRIPTION OF THE RESERVOIR AND THE
NUMERICAL MODEL

The sedimentary characteristics of an oil reservoir are in
accordance with the braided river delta of A block in China.
The reservoir is a typical layered lithological structure, and the
sedimentary types consist of an underwater channel. The
majority of the rock components is clastic sandstone and the
remaining is detrital feldspar sandstone. The oil reservoir has
strong water sensitivity, acid sensitivity, alkali sensitivity, salt
sensitivity, and weak velocity sensitivity based on the indoor
sensitivity analysis experiments. The depth of the oil reservoir
ranges from −2500 to −3140 m, and the average thickness is
5.7 m. The ranges of permeability are 10−50 mD and 50−500
mD, and the average permeability is 139.6 mD. The porosity of
the oil reservoir is from 15 to 35%, and the average porosity is
26%. The initial pressure of formation is 26.38 MPa. The
viscosity of surface crude oil is 7.5 mPa·s, which is typical for

light oil. The total area of A block is 0.35 km2 and that of the
geological reserve is 214.8 × 104 t.
For the oil−water relative permeability, the initial water

saturation is 34%, and the residual oil saturation is 21.5%. The
two-phase co-permeability zone is relatively wide, as shown in
Figure 2. For the oil−gas relative permeability, the maximum
gas saturation is 50.4%.

Figure 2. Relative permeability curves for the oil−water system.

Figure 3. Relative permeability curves for the oil−gas system.

Figure 4. Reservoir numerical simulation model of a water-flooding
reservoir.
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To investigate the influences of various parameters on oil
production and recovery factor for water-flooding reservoirs,
the reservoir numerical model is established according to the
range of parameters (Figure 3). The size of the reservoir
numerical model in X, Yi, and Z dimensions is 210, 190, and 50
m, respectively. As shown in Figure 4, an oil well and a water
well are located at the two sides of the model domain. Some
other parameters are shown in Table 1.

3. NUMERICAL SIMULATION OF RECOVERY FACTOR
PREDICTION

The orthogonal design experiment is generally used in studies
with multiparameters and multilevels, and it can reflect the
essential discipline and contradictions in a large number of
schemes with a limited number of representative schemes.22−24

In the orthogonal design experiment, the geological and
developmental parameters are selected as influencing factors,
and the values of parameters are called levels.25 The
orthogonal design can be carried out after the number of
factors and levels are determined (Figures 5 and 6).
The parameters affecting the oil recovery factor include

geological factors (permeability, viscosity, porosity, fluidity,
etc.) and developmental factors (well spacing, injection−
production ratio, well pattern, etc.).4,26,27 In this study, 50 sets
of an orthogonal experiment table L50 (511) with 11 factors
(including 1 blank column) and 5 levels are intentionally
designed according to the principle of orthogonal design.
These influencing factors contain six geological factors, such as
the reservoir thickness (H), porosity (ϕ), permeability (K), oil
saturation (So), viscosity (μo), and permeability contrast (kmax/
kmin), and four developmental factors, for example, the
injection−production ratio (IPR), production rate (qo),

pressure coefficient (αp), and water cut ( fw). The details
about the various factors and level data of the orthogonal
design experiment are displayed in Table 2.
Based on the 50 experimental sets, 85% of water cut is

selected as a stopping criterion in these reservoir numerical
experiments. Subsequently, the recovery factors can be
correspondingly obtained as shown in Table 9. Afterward,
the AHP, grey correlation method, and entropy weight method
are combined to comprehensively determine the weight of
each parameter. On the basis of these results, the prediction
models of the recovery factor can be established.

4. RESULTS AND DISCUSSION
4.1. Analytic Hierarchy Process. The AHP is a decision

analysis approach to qualitatively and quantitatively solve
complex multiobjective problems. Through this method,
decision makers can judge whether each measurement target
can achieve the relative importance of the standards based on
experience. The weight of each parameter can be reasonably
acquired, and the rank of each parameter can be calculated
based on the weight. It is effective to solve the problem of

Table 1. Basic Parameters of the Reservoir Numerical
Simulation Model

parameter value

reservoir depth (m) 2700
NTG 0.2
porosity (%) 26
permeability (x direction) (mD) 139.6
permeability contrast 1

Figure 5. Analytic hierarchy diagram of influencing parameters of the recovery factor.

Figure 6. Weight of each of the influencing parameters calculated by
different methods.
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quantitative description.28,29 The entire implementing proce-
dure includes four steps:

1 The hierarchical structure model for each parameter is
established based on the objective of decision-making
and the considered parameters.

2 The two factors are compared with each other from the
second layer based on the consensus matrix method
proposed by Saaty and the relationship among the
parameters at different levels. Then, a judgment matrix
will be formed. The importance of each parameter is
confirmed by the judgment standard of nine levels, as
shown in Table 3. The term aij represents the
importance and quantized value of factors i and j. aijand
aji also have a relationship in the judgment matrix, as
shown in eq 1.

3 The weight vector of the matrix is calculated to check
the consistency.

4 The combined weight vector of the lowest layer to the
target layer is calculated to check the consistency.

=a
a
1

ij
ji (1)

The influencing parameters, influencing parameter types,
and various influencing factors are selected as the target layer,
criterion layer, and scheme layer, respectively. The diagram of

Table 2. Influencing Parameters of the Recovery Factor and Levels

parameter H (m) Φ (%) K (mD) So (%) IPR qo (m
3/d) αp μo (mPa·s) kmax/kmin fw (%)

1 6 20 79.6 43.5 0.8 10 0.9 4 1 75
2 8 23 109.6 46.5 0.9 15 0.95 8 2 80
3 10 26 139.6 49.5 1 20 1 12 3 85
4 12 29 169.6 52.5 1.1 25 1.05 16 4 90
5 14 32 199.6 55.5 1.2 30 1.1 20 5 95

Table 3. Meaning of the Judgment Matrix Scale

meaning scale number (aij)

factors i and j are equally important 1
factor i is slightly more important than factor j 3
factor i is stronger than factor j 5
factor i is very stronger than factor j 7
factor i is more extremely important than factor j 9
the intermediate value to reflect the importance 2,4,6,8

Table 4. T−C Judgment Matrix of Influencing Parameters
of the Recovery Factor

T−C C1 C2

C1 1 2
C2 1/2 1

Table 5. C1−S Judgment Matrix of Geological Parameters
of the Recovery Factor

C1−S S1 S2 S3 S4 S5 S6

S1 1 0.25 0.33 0.5 0.5 0.5
S2 4 1 2 3 0.5 3
S3 3 0.5 1 2 0.5 0.5
S4 2 0.3 0.5 1 1 0.33
S5 2 2 2 1 1 2
S6 2 0.33 2 3 0.5 1

Table 6. C2−S Judgment Matrix of Developing Parameters
of the Recovery Factor

C2−S S7 S8 S9 S10

S7 1 0.5 0.25 0.33
S8 2 1 0.33 0.2
S9 4 3 1 2
S10 3 5 0.5 1

Table 7. Weight of the Influencing Parameters of the
Recovery Factor with Various Methods

influencing
factors

AHP
weight

grey correlation
weight

entropy
weight

comprehensive
weight

H 0.0463 0.0917 0.1967 0.0846
Φ 0.1406 0.1055 0.1575 0.2365
K 0.1677 0.1183 0.1841 0.3698
So 0.0688 0.1180 0.0659 0.0541
IPR 0.0302 0.1061 0.2529 0.0820
qo 0.0403 0.0752 0.0288 0.0088
Αp 0.1385 0.1162 0.0465 0.0759
Μo 0.1117 0.0942 0.0072 0.0077
kmax/kmin 0.1477 0.0928 0.0536 0.0744
fw 0.1110 0.0820 0.0068 0.0062

Figure 7. Oil recovery factor results of linear correlation.

Figure 8. Oil recovery factor results of nonlinear correlation.
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three-level hierarchy on the basis of the principle of analytic
hierarchy is shown in Figure 5.
The target layer, criterion layer, and scheme layer are

denoted as T, C, and S, respectively. As underground reserves
play a pivotal role in the recovery factor, the geological factors
should be slightly more important than the developmental
factors. However, although the developmental program has
been extremely consistent with production requirements, it
cannot contribute to a significant impact on recovery due to
less well in the basic physical parameters. The criterion-layer
judgment matrix is displayed in Table 4.
The judgment matrix of the scheme layer for geological and

developmental parameters is C1−S and C2−S, respectively, as
shown in Tables 5 and 6. The geological parameters
influencing the recovery factor include S1 to S6 and the
developmental parameters are S7 to S10. Based on the
judgment matrix of the scheme layer, the weight of each factor
can be calculated by using the AHP.
Based on the judgment matrix of the scheme layer, the

feature vector (u) can be acquired, and the feature vectors for
geological and developmental parameters are (0.0685, 0.2645,
0.1398 0.1121, 0.2448, 0.1701) and (0.0917, 0.1304, 0.4404,
0.3373), respectively.
4.2. Grey Correlation Method. The grey correlation

analysis is a comparative analysis method of multifactors, and
its theory is the same as the similarity of the geometric shapes
of the curves. The correlation has a positive relationship with
the consistent trend of two parameters.30,31 The grey
correlation method can be used to evaluate the correlation
degree between one parameter and the other parameter. Both
independent variables and dependent variables are chosen to
form the following matrix

′ ′ ′ =

′ ′ ··· ′

′ ′ ··· ′

′ ′ ··· ′

′ = ′ ′ ··· ′ = ···

i

k

jjjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzzz

X X X

x x x

x x x

x m x m x m

X x x x m i n

( , ..., )

(1) (1) (1)

(2) (2) (2)

( ) ( ) ( )

( (1), (2), , ( )) , 1, 2,

n

n

n

n

i i i i

1 2

1 2

1 2

1 2

T

∂ ∂ ∂ ∂

(2)

where m is the number of indicators, and n is the number of
evaluated objectives.
To avoid the impact of data units, the original matrix is

dimensionless after the referenced sequences and the
comparative sequences are selected.

=
′

∑ ′
= ||| = |||

=

x k
x k

x k
i n k m( )

( )

( )
0, 1, , ; 1, 2,i

i

m k
m

i
1

1

(3)

The absolute difference between the comparative sequence
and the referenced sequence of each parameter is calculated.

| − | = ||| = |||x k x k k m i n( ) ( ) ( 1, , ) 1,i0 (4)

The two-level maximum difference and the two-level
minimum difference are calculated according to eqs 5 and 6
in the absolute difference matrix.

Δ = | − |x k x kmax max ( ) ( )
i k

imax 0 (5)

Δ = | − |x k x kmin min ( ) ( )
i k

imin 0 (6)

Then, the correlation coefficient between each comparative
sequence and the corresponding element of the referenced
sequence can be calculated according to eq 7.

ς
ρ

ρ
=

Δ + ·Δ
| − | + ·Δ

= |||k
x k x k

k m( )
( ) ( )

( 1, )i
i

min max

0 max (7)

where ρ is the resolution coefficient (and generally 0.5).
The correlation degree can be obtained through calculating

the mean value of the correlation coefficient of each index in
the comparative sequence, which can reflect the influencing
degree of each parameter.

∑ ς=
=

r
m

k
1

( )i
k

m

i0
1 (8)

Based on the above principle, 10 kinds of influencing
parameters and the recovery factors are formed into a matrix.
The recovery factor is selected as the referenced sequence to
normalize the matrix. Meanwhile, the permeability contrast
and the water cut are the contrarian indicators. According to
eqs 2−8, the weight of each parameter can be calculated. The
weight of each influencing factor is shown in Table 7.

4.3. Entropy Weight Method. The entropy weight
method is an objective weighting method, which is related to
the dispersion degree of the data itself. The entropy weight of
each indicator can be calculated by using information entropy.
To obtain an objective indicator weight, the weight of each
indicator is adapted through the entropy weight. In general, the
smaller the entropy index, the greater the degree of variation of
the index value is. The more the amount of information, the
greater the weight is.32,33 This method merely requires to
establish a correlation among independent variables.
For n samples and m evaluation indicators, the following

matrix can be established

=

|||

|||

|||

i

k

jjjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzzz

X

x x x

x x x

x x x

m

m

n n nm

11 12 1

21 22 2

1 2

∂ ∂ ∂ ∂

(9)

where xij is the j index of sample i.
The samples are divided into two categories of maximum

and minimum values, and normalized processing is performed
before the comprehensive index is calculated. The processing
method of the index is shown in eqs 10 and 11.
Positive indicator

′ =
− { ||| }

{ ||| } − { ||| }
x

x x x

x x x x

min , ,

max , min , ,ij
ij ij nj

j nj j nj1 1 (10)

Negative indicator

′ =
{ ||| } −

{ ||| } − { ||| }
x

x x x

x x x x

max , ,

max , min , ,ij
ij nj ij

j nj j nj1 1 (11)

Subsequently, the proportion of the i sample to the index
under the j index is evaluated as shown in eq 12

=
′

∑ ′=
p

x

xij
ij

i
n

ij1 (12)

The entropy value of sample j is given by
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∑= −
=

e k p pln( )j
i

n

ij ij
1 (13)

As the entropy value has a negative relationship with the
comprehensively estimated consequence, the issue is solved by
using the information entropy redundancy as follows

= −d e1j j (14)

The weight of each indicator can be obtained from eq 15.

=
∑ =

w
d

dj
j

j
m

j1 (15)

The influencing parameters are formed into a matrix
according to the results of 50 experimental sets and the
calculation principle of the entropy weight method. The weight
of each parameter is calculated by eqs 12−15 after the positive
and negative indicators are normalized. The weight of each
parameter is shown in Table 7.
4.4. Multiplicative Weighting Method. Although the

above three methods can determine the weight of each
influencing parameter, each method has its own advantages
and disadvantages. The weight of the AHP is determined by
expert scores, and the weights of the grey correlation method
are calculated by the trend between the independent variables
and the dependent variables. The entropy weight method just
relies on the information entropy of the independent variables.
To comprehensively take advantage of the advantages of each
method, the combined weight of each parameter can be
acquired by using the multiplicative weighting method. The
calculation formula of the multiplicative weighting method is
as follows

=
∑

=
=

w
w w w

w w w
i m1, 2, ...,i

i
m

AHP GR EW

1 AHP GR EW (16)

where wAHP is the weight calculated by the AHP method; wGR
is the weight calculated by the grey correlation method; and
wEW is the weight calculated by the entropy weight method.
4.5. Establishment of a Prediction Model for Oil

Recovery. Accounting for the advantage of considering the
influence of multiple parameters on the dependent variable,
multiple linear regression is used to predict oil recovery for
better fitting the actual situation of oil fields. Based on the
weights of the AHP, grey correlation method, and the entropy
method, the permeability, porosity, reservoir thickness,

injection−production ratio, pressure coefficient, permeability
contrast, and oil saturation can be regarded as independent
variables, while the recovery factor is selected as the dependent
variable. The prediction model of the recovery factor, as shown
as in eq 17, is obtained after the prediction formula of the
recovery factor is fitted by using the multiple linear regression
method in SPSS software. The results of linear correlation for
the recovery factor are shown in Figure 7. The linear
correlation coefficient is 0.903, and the average difference
between the linear correlation and numerical simulation is
about 0.5%.

ϕ α= + + + + −

− −

h k p
k
k

s

RF 0.1599 0.002 0.4375 0.0015 0.041IPR 0.0362

0.0001 0.0007max

min
o (17)

The results of nonlinear correlation for the recovery factor
are shown in Figure 8. It can be clearly seen that the method of
linear correlation achieves better results than that of nonlinear
correlation, for example, R2 = 0.789 in this case study. The
average difference between nonlinear correlation and numer-
ical simulation is about 12.3%. The nonlinear correlation used
to predict recovery is acquired as follows.

ϕ

α

′ = + + +

+ − −

− − *

h k

p
k
k

s h k

RF 0.0884 0.0044 0.4958 0.0016

0.0647IPR 0.0171 0.0001

0.0007 0.00002o

max

min

(18)

5. APPLICATION OF THE PREDICTION MODEL
In this section, the predicted model of recovery factor is
applied on 14 wells to further verify the performance. The
physical properties and developmental parameters of each well
are shown in Table 8. Based on the previous results, the linear
correlation model is adopted to calculate the recovery factor.
The recovery factor ranges from 20 to 52%, and the average
recovery factor is about 35%.

6. CONCLUSIONS
In this paper, we propose a novel integrated hierarchy−
correlation model, which includes the AHP, grey relation,
entropy weight, and empirical correlations, to investigate
water-flooding oil reservoir performances. Key remarks from
this study are summarized as follows in items 1−4.

Table 8. Value of Geological and Developmental Parameters of All Production Wells

well name H (m) φ (%) K (mD) So (%) Αp IPR kmax/kmin RF (%)

A 3.20 22 100.00 68.13 0.83 0.86 56.00 36
B 3.95 21 26.97 55.20 0.80 0.96 120.60 26
C 2.05 21 78.41 56.56 1.05 0.55 233.20 29
D 1.40 19 16.90 55.91 0.95 0.13 33.50 20
E 3.73 19 22.90 56.57 0.89 1.51 178.50 26
F 16.40 21 57.70 54.40 0.95 3.77 50.10 45
G 5.40 19 7.80 60.10 1.08 1.02 41.60 22
H 7.40 27 167.70 53.50 0.89 0.91 9.70 51
I 4.26 24 159.30 61.60 0.91 0.89 13.10 47
J 4.87 27 170.00 51.43 0.84 0.60 30.60 50
K 1.56 17 6.98 53.44 0.85 0.66 2.30 21
L 5.06 19 52.85 60.99 1.05 0.21 16.80 26
M 7.00 23 157.49 63.72 1.03 0.39 11.40 44
N 5.80 21 196.84 41.67 1.02 0.80 17.50 52
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(1) Primary controlling factors of oil recovery are analyzed
based on the AHP, grey correlation method, and entropy
weight method. Among them, permeability shows the
most obvious influence on the recovery factor for the
AHP and grey correlation method. By contrast, for the
entropy weight method, the influences of injection and
production are the most significant. Based on the
analysis of the multiplicative weighting method, seven
factors, for example, permeability, porosity, reservoir

thickness, injection−production ratio, pressure coeffi-
cient, permeability contrast, and oil saturation, are found
to have significant influences on the recovery factor
prediction.

(2) Based on the multiplicative weighting method and
sensitivity analysis, the seven influencing factors have
been determined to be the combined static−dynamic
indicator for predicting the recovery factor of the water-
flooding reservoir. The oil recovery prediction model is

Table 9. Orthogonal Design Scheme of the Reservoir Numerical Simulation

parameter H (m) φ (%) K (mD) So (%) IPR qo (m
3/d) αp μo (mPa·s) kmax/kmin fw (%) RF (%)

1 6 0.2 79.6 52.5 0.8 10 0.9 8 60 90 33.5
2 6 0.23 109.6 49.5 1.2 25 1.1 4 240 95 36.5
3 6 0.26 139.6 46.5 1.1 15 1 20 1 80 45.5
4 6 0.29 199.6 55.5 1 20 0.95 16 180 85 58.5
5 6 0.32 169.6 43.5 0.9 30 1.05 12 120 75 44.5
6 8 0.2 109.6 55.5 1.1 30 1.1 20 180 75 39.1
7 8 0.23 139.6 43.5 1 10 1 16 120 90 42.6
8 8 0.26 199.6 52.5 0.9 25 0.95 12 60 95 56.8
9 8 0.29 169.6 49.5 0.8 15 1.05 8 240 80 50.4
10 8 0.32 79.6 46.5 1.2 20 0.9 4 1 85 49.6
11 10 0.2 139.6 49.5 0.9 20 1.05 4 1 90 40.4
12 10 0.23 199.6 46.5 0.8 30 0.9 20 240 95 43.7
13 10 0.26 169.6 55.5 1.2 10 1.1 16 180 80 41.3
14 10 0.29 79.6 43.5 1.1 25 1 12 120 85 35.8
15 10 0.32 109.6 52.5 1 15 0.95 8 60 75 43.2
16 12 0.2 199.6 43.5 1.2 15 1.05 20 240 85 52.6
17 12 0.23 169.6 52.5 1.1 20 0.9 16 180 75 48.2
18 12 0.26 79.6 49.5 1 30 1.1 12 120 90 36.2
19 12 0.29 109.6 46.5 0.9 10 1 8 60 95 40.3
20 12 0.32 139.6 55.5 0.8 25 0.95 4 1 80 51.9
21 14 0.2 169.6 46.5 1 25 1.1 8 120 85 49.1
22 14 0.23 79.6 55.5 0.9 15 1 4 60 75 37.1
23 14 0.26 109.6 43.5 0.8 20 0.95 20 240 90 41.5
24 14 0.29 139.6 52.5 1.2 30 1.05 16 1 95 48.8
25 14 0.32 199.6 49.5 1.1 10 0.9 12 180 80 58.2
26 6 0.2 109.6 43.5 0.9 25 0.9 16 1 80 36.5
27 6 0.23 139.6 52.5 0.8 15 1.1 12 180 85 46.5
28 6 0.26 199.6 49.5 1.2 20 1 8 120 75 57.5
29 6 0.29 169.6 46.5 1.1 30 0.95 4 60 90 53.6
30 6 0.32 79.6 55.5 1 10 1.05 20 240 95 38.5
31 8 0.2 139.6 46.5 1.2 10 0.95 12 240 75 45.5
32 8 0.23 199.6 55.5 1.1 25 1.05 8 1 90 56.5
33 8 0.26 169.6 43.5 1 15 0.9 4 180 95 50.5
34 8 0.29 79.6 52.5 0.9 20 1.1 20 120 80 35.5
35 8 0.32 109.6 49.5 0.8 30 1 16 60 85 43.5
36 10 0.2 199.6 52.5 1 30 1 4 240 80 53.5
37 10 0.23 169.6 49.5 0.9 10 0.95 20 1 85 49.5
38 10 0.26 79.6 46.5 0.8 25 1.05 16 180 75 38.5
39 10 0.29 109.6 55.5 1.2 20 0.9 12 120 90 44.5
40 10 0.32 139.6 43.5 1.1 15 1.1 8 60 95 57.5
41 12 0.2 169.6 55.5 0.8 15 1 12 1 95 48.5
42 12 0.23 79.6 43.5 1.2 30 0.95 8 180 80 44.5
43 12 0.26 109.6 52.5 1.1 10 1.05 4 120 85 42.5
44 12 0.29 139.6 49.5 1 25 0.9 20 60 75 46.5
45 12 0.32 199.6 46.5 0.9 20 1.1 16 240 90 59.5
46 14 0.2 79.6 49.5 1.1 15 0.95 16 120 95 34.2
47 14 0.23 109.6 46.5 1 20 1.05 12 60 80 43.3
48 14 0.26 139.6 55.5 0.9 30 0.9 8 240 85 43.7
49 14 0.29 199.6 43.5 0.8 10 1.1 4 1 75 57.9
50 14 0.32 169.6 52.5 1.2 25 1 20 180 90 50.5
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obtained through multiple regression fitting methods
with high fitting accuracy, especially for the linear fitting
method.

(3) The recovery factor of the water-flooding oil reservoir
calculated by numerical simulation ranges from 33.5 to
59.5%, and the linear and nonlinear correlation
coefficients are 0.903 and 0.789, respectively. The
uncertainty of the calculated result between linear
correlation and numerical simulation is about 0.5%,
which is smaller than that of nonlinear correlation, for
example, 12.3%.

(4) The proposed model has been validated by means of
actual data for a fault block in the well A area. In
comparison with the actual recovery factor of each well,
the calculated results from the model are demonstrated
to be quite accurate, with deviations less than 10%. This
finding verifies the model and indicates its great
potential for applications in the actual oil field recovery
factor with satisfactory speed and acceptable accuracy.
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