
Published online 29 April 2017 Nucleic Acids Research, 2017, Vol. 45, No. 10 5639–5652
doi: 10.1093/nar/gkx327

Global miRNA expression analysis identifies novel
key regulators of plasma cell differentiation and
malignant plasma cell
Alboukadel Kassambara1,2, Michel Jourdan2, Angélique Bruyer1,2, Nicolas Robert1,
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ABSTRACT

MicroRNAs (miRNAs) are small noncoding RNAs that
attenuate expression of their mRNA targets. Here,
we developed a new method and an R package, to
easily infer candidate miRNA–mRNA target interac-
tions that could be functional during a given bio-
logical process. Using this method, we described,
for the first time, a comprehensive integrated anal-
ysis of miRNAs and mRNAs during human normal
plasma cell differentiation (PCD). Our results reveal
63 miRNAs with significant temporal changes in their
expression during normal PCD. We derived a high-
confidence network of 295 target relationships com-
prising 47 miRNAs and 141 targets. These relation-
ships include new examples of miRNAs that appear
to coordinately regulate multiple members of criti-
cal pathways associated with PCD. Consistent with
this, we have experimentally validated a role for the
miRNA-30b/c/d-mediated regulation of key PCD fac-
tors (IRF4, PRDM1, ELL2 and ARID3A). Furthermore,
we found that 24 PCD stage-specific miRNAs are
aberrantly overexpressed in multiple myeloma (MM)
tumor plasma cells compared to their normal coun-
terpart, suggesting that MM cells frequently acquired
expression changes in miRNAs already undergoing
dynamic expression modulation during normal PCD.
Altogether, our analysis identifies candidate novel
key miRNAs regulating networks of significance for
normal PCD and malignant plasma cell biology.

INTRODUCTION

Plasma cells are highly specialized cells representing the end
stage of B cell differentiation. They play an important role

in humoral immunity by synthesizing and secreting anti-
bodies protecting the host against infections (1). Activa-
tion of B cells leads to their differentiation into a transi-
tional preplasmablast (prePB), a highly proliferating cell
population (2). These preplasmablasts further differenti-
ate into plasmablasts (PBs), which can develop into qui-
escent long-lived plasma cells after migrating to survival
niches in the bone marrow (3,4). On the transcriptional
level, the differentiation of B cells into plasma cells is as-
sociated with substantial and coordinated changes in the
gene expression profile (4), which fall into two main cate-
gories: the loss of B cell-associated transcripts and the ac-
quisition of plasma cell gene expression program. These
changes are tightly guided by two sets of stage-specific tran-
scription factors (TFs) that repress each other: i) B cell
TFs (PAX5, BCL6 and BACH2) maintaining the B cell
fate and ii) plasma cell TFs (IRF4, BLIMP1 and XBP1)
that are required to extinguish the B cell genes and activate
the antibody-secreting cell (ASC) program (4,5). Plasma
cell differentiation (PCD) is initiated by the transcription
factor IRF4, which activates PRDM1 (encoding BLIMP1)
(6). BLIMP-1 coordinates PCD by inducing plasma cell-
specific genes including XBP-1 and silencing the B cell gene-
expression program in plasma cells (5,7). It induces the tran-
scription of immunoglobulin genes, which is substantially
increased from plasmablast to plasma cell stages (4). Fur-
thermore, BLIMP1 regulates the expression switch from the
membrane-bound form of the immunoglobulin to its se-
creted form by activating the transcription-elongation fac-
tor ELL2, which results in the secretion of large amounts of
immunoglobulins (4,7).

To achieve this elevated antibody production, the endo-
plasmic reticulum (ER) of ASCs undergoes expansion in
a process that requires continuous ER stress and activa-
tion of the unfolded protein response (UPR), resulting in
adjustment of protein synthesis, enhancement of the ER
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folding capacity, increased degradation of misfolded pro-
teins and enhanced ER biogenesis (8–10). The transcrip-
tion factor XBP-1, a downstream of BLIMP1 activated by
the UPR (11), plays a central role in regulating the UPR
gene-expression program (12), and as a consequence, is es-
sential for the secretion of immunoglobulins by plasma cells
(12,13).

Although the role of the complex network of transcrip-
tion factors involved in PCD has been investigated, mech-
anisms regulating key PCD transcription networks remain
poorly known. MicroRNAs (miRNAs) are single-stranded
non-coding RNAs of about 18–24 nucleotides that regu-
late gene expression by binding complementary sites in tar-
get messenger RNAs (mRNAs), typically resulting in the
degradation of target mRNAs or the inhibition of protein
translation (14). Recent studies have shown that miRNAs
participate in various biological functions including differ-
entiation and cell fate decision (15,16), immune system, tu-
morigenesis and cell death (17). Furthermore, there is an
increasing recognition of the role of miRNAs in multiple
myeloma, a plasma cell (PC) malignancy characterized by
an accumulation of malignant PCs within the bone marrow
(18–25). Research groups have started to address the role
of miRNAs in PCD (26). However, little is known about
miRNA expression during human PCD as well as about
the full extent to which individual miRNAs regulate fun-
damental processes during PCD. A complete delineation of
miRNA and their target expression during normal PCD is
essential to understand the role of miRNAs in plasma cell
malignancies.

We analyzed the expression profile of miRNAs and mR-
NAs during human PCD to infer miRNA–target relation-
ships, as well as in multiple myeloma tumor plasma cells. We
developed a method and an R package (miRTarget, https://
github.com/kassambara/miRTarget), that uses miRNA and
mRNA expression profiles across PCD cell subpopulations
to infer candidate miRNA–target interactions that could
be active and functional in PCD. We inferred miRNA–
target relationships from sequence-based prediction, exper-
imentally validated target interactions curated from the lit-
erature, published data from miRNA perturbation exper-
iments and inverse expression relationships between miR-
NAs and their target mRNAs.

Our results reveal 63 miRNAs with significant tempo-
ral changes in their expression during normal PCD. We de-
rived a high-confidence network of 295 target relationships
comprising 47 miRNAs and 147 targets. These relation-
ships include new examples of miRNAs that are likely to
coordinately regulate multiple members of critical pathways
associated with PCD. We have experimentally validated a
role for the miRNA-mediated regulation of key PCD tran-
scription factors. Furthermore, our work demonstrates that
PCD stage-specific miRNAs are aberrantly overexpressed
in multiple myeloma cells (MMCs) compared to the nor-
mal counterparts, suggesting that MMCs frequently ac-
quired expression changes in miRNAs already undergoing
dynamic expression modulation during normal PCD.
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Figure 1. Computational workflow of data processing and analysis.
miRNA and mRNA array data were pre-processed as described in the Sup-
plementary Data. A filtering step was included to select only actively ex-
pressed features. Differential expression analysis was performed using the
‘limma’ R package to identify significant differentially expressed miRNAs
during plasma cell differentiation. Predicted and validated miRNA targets
were collected from miRecords and miRTarbase databases. Co-expression
analysis and identification of potential targets were performed directly on
the paired miRNA–mRNA data. For a given miRNA, we kept only tar-
geted genes that are differentially expressed during plasma cell differentia-
tion and which expression is negatively correlated to the miRNA. Func-
tional and pathway analysis of miRNA–targeted genes were performed
using the clusterProfiler R package (35) and the MSigDB (34) gene set
collections.

MATERIALS AND METHODS

Cell populations and miRNA/mRNA expression profiling

Preplasmablasts (prePBs), plasmablasts (PBs), and plasma
cells (PCs) were generated using a 3-step in vitro model
starting from peripheral blood memory B cells (MBCs)
as reported (2,27). We performed three experiments start-
ing from purified memory B cells of three different healthy
donors. miRNA and mRNA expression profiling were ob-
tained using Affymetrix microarrays as described in the
Supplementary Data. To identify miRNAs associated with
multiple myeloma (MM), we have analyzed publicly avail-
able miRNA expression data of purified normal bone mar-
row plasma cells (BMPCs) from healthy donors (n = 3),
purified MMCs from newly diagnosed multiple myeloma
patients (n = 62) and of human myeloma cell lines (HM-
CLs, n = 20) representative of the molecular heterogene-
ity of the patients (28) (ArrayExpress accession number: E-
MTAB-1363) (25). We compared MMCs and HMCLs to
the healthy counterpart BMPCs by using the limma R pack-
age (adjusted P-value ≤ 0.05).

Microarray data analysis

The workflow of data processing and analysis is outlined
in Figure 1. All statistical analyses and data visualization
were performed with the R/Bioconductor statistic software
packages as described in the Supplementary Data. The
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miRNA expression data were normalized with Affymetrix
miRNA QC tool using the default settings. Affymetrix
U133P2 mRNA expression data were preprocessed using
RMA algorithm (29). To decrease the number of uninfor-
mative features, we used a filtering step: features, for which
the mean expression, in at least one subgroup, did not reach
a signal intensity of 6 in a log2 scale, were removed (Sup-
plementary Figure S2). Differential expression analysis of
miRNA and mRNA data sets were performed using the
limma R/Bioconductor package (30) (see Supplementary
Data). We were interested in identifying expression changes
during each plasma cell differentiation transition. There-
fore, we performed the differential expression analysis be-
tween two consecutives cell subpopulations, as reported in
previous studies (2,27,31).

Inferring putative miRNA targets using the miRTarget R
package

We developed the miRTarget R package to automatize and
facilitate the procedure of inferring and validating miRNA–
mRNA regulatory relationships. miRTarget includes a
procedure to easily identify the predicted and validated
mRNA targets given one or more miRNAs as input (https:
//github.com/kassambara/miRTarget). This is performed
based on the union of two popular databases, miRTarBase
(a database of experimentally validated miRNA targets,
http://mirtarbase.mbc.nctu.edu.tw/, release 6.0) (32) and
miRecords (http://c1.accurascience.com/miRecords/, ver-
sion: 27 April 2013) (33). The miRecords database includes
validated miRNA targets and also an integrated sequence-
based miRNA target prediction resource from 11 popular
miRNA target prediction programs (diana, microinspec-
tor, miranda, mirtarget2, mitarget, nbmirtar, pictar, pita,
rna22, rnahybrid, targetscan). We retained only experimen-
tally validated target genes (in either miRecords and/or
miRTarbase databases) as well as those genes predicted by
at least 5 of 11 available miRNA target prediction pro-
grams (in the miRecords database). The optimal number
of target prediction programs can be adjusted in the miR-
Target package and the rationale of choosing 5 programs
is illustrated in the Supplementary Figure S1. Of the po-
tential miRNA–target genes, only differentially expressed
genes between studied cell subpopulations are kept for fur-
ther analyses (limma R package, adjusted P-value for mul-
tiple testing correction ≤ 5%, fold change ≥ 2). To obtain
a high-confidence list of candidate miRNA–target interac-
tions, miRTarget package provides a convenient R function
to perform correlation analysis between the expression val-
ues of each miRNA and the expression values of its dereg-
ulated target genes. Negative correlation between a given
miRNA and a predicted target mRNA could be the first
indicator of a potential direct interaction.

Canonical pathway enrichment analysis

Canonical pathway enrichment analysis were performed us-
ing the Molecular Signatures Database (MSigDB, v5) (34)
gene set collections and the clusterProfiler R/Bioconductor
package (35) as described in the Supplementary Data.

Quantitative RT-PCR for miRNA/mRNA expression valida-
tion

miRNA and mRNA expressions were measured by quan-
titative RT-PCR as described in the Supplementary Data.
The miRNA expression was normalized to endogenous
RNU6B levels using the ��Ct method. The mRNA expres-
sion was normalized to beta-2 microglobulin expression. All
measurements were performed in triplicates following man-
ufacturer’s protocol. The primer references are in the Sup-
plementary Table S1.

Cell culture

AMO1 and JJN3 were cultured in RPMI supplemented
with 10% fetal bovine serum (FBS). XG7 were cultured in
RPMI supplemented with 10% FBS and IL-6 (2 ng/ml). All
cell lines were grown in 37◦C humidified cell culture incuba-
tors with CO2 maintained at 5%.

miRNA transfection

Plasma cell myeloma derived cell lines AMO1 (with high
expression of miR-30b/d/e) and XG7 (with low expression
of miR-30b/d/e) were transfected with antisense oligonu-
cleotides anti-miR-30/b/d/e and precursor miRNAs pre-
miR-30b/d/e, respectively (see the Supplementary Data).
The JJN3 cell line were transfected with antisense oligonu-
cleotides anti-miR16 and anti-miR106b. The references of
the used oligonucleotides sequences are in Supplementary
Table S2. miRNA/mRNA levels were measured by quanti-
tative RT-QPCR as mentioned above.

Data access

miRNA expression data from this study are available on
GEO. mRNA expression data are available at ArrayEx-
press (http://www.ebi.ac.uk/arrayexpress/, E-MTAB-1771,
E-MEXP-2360 and E-MEXP-3034) (2,27).

RESULTS

miRNA expression profiling during human plasma cell differ-
entiation

miRNA expression was profiled for four in-vitro human
plasma cell differentiation subpopulations: memory B cells
(MBCs), preplasmablasts (prePB), plasmablasts (PBs) and
plasma cells (PCs). The outline of computational analysis
steps is depicted in Figure 1. A multi-step approach was
performed to identify significantly differentially expressed
(SDE) miRNAs. First, the data were preprocessed as out-
lined in the Method section. After pre-processing, a total
of 119 miRNAs was identified as transcriptionally active,
which we defined as a mean intensity > log2 (64) in at least
one cell subpopulation (Supplementary Figure S2).

The modulation of miRNA expression patterns during
plasma cell differentiation program were analyzed by gen-
erating several contrasts comparing two consecutive cell
populations using the limma R package (adjusted P-value
≤ 0.05, fold change ≥ 2). The resulting significant miR-
NAs between the different plasma cell differentiation (PCD)
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Figure 2. Differentially expressed miRNAs during plasma cell differentiation. Differentially expressed miRNAs were identified using the limma package
(adjusted P-value ≤ 0.05 and fold change ≥ 2). (A) List of differentially expressed miRNAs between two consecutive cell subpopulations. Upregulated
miRNAs are represented by red color, while downregulated miRNAs are represented by blue color. miRNAs are sorted according to the P-value in ascend-
ing order. (B) Principal component analysis grouping plasma cell differentiation cell subpopulations according the expression profile of the significantly
differentially expressed miRNAs. Labels represent cell subpopulations: MBC (memory B cell), prePB (preplasmablast), PB (plasmablast), PC (plasma cell).
(C) Heat maps representing the expression profile of the differentially expressed miRNA. Expression values were log2 transformed and standardized before
the analyses. Three miRNA clusters are detected by k-means.

transitions is shown in Figure 2, where major changes were
scored between memory B cells and preplasmablasts. A
total list of 63 unique miRNAs was identified as signifi-
cantly differentially expressed in one or more steps during
plasma cell differentiation (Figure 2 and Supplementary Ta-
ble S3). Fifty three miRNAs were significantly differentially
expressed during MBC to prePB transition (up: 22 miR-
NAs, down: 31 miRNAs); 27 miRNAs during prePB to PB
transition (up: 17 miRNAs, down: 10 miRNAs); 7 miRNAs
during PB to PC transition (up: 3 miRNAs, down: 4 miR-
NAs) (Figure 2A).

In unsupervised principal component analysis (PCA) of
the 63 miRNA expression levels, B cell to plasma cell sub-
populations were segregated according to their develop-
mental stage (Figure 2B). Further analyses, performed on
the 63 miRNAs, identified three main clusters (Supplemen-
tary Figure S3) detected by the K-means algorithm. Hierar-
chical clustering based on the expression profiles of signifi-
cantly regulated miRNAs is provided in Figure 2C showing

the expression profile of the three miRNA clusters. Clus-
ter 1 is expressed at greater level in MBCs compared to the
other cell subtypes. Of notes, members of the miR-30 family
(miR-30b/d/e) were among cluster 1 miRNAs, which ex-
pression decreased significantly during plasma cell differ-
entiation. In agreement with this, it has been reported that
miR-30 family members regulate PRDM1, a key plasma cell
transcription factor (36). Cluster 2, mainly overexpressed
in prePBs; and cluster 3, overexpressed in PBs and PCs.
The analysis suggested a close relationship between PBs and
PCs, with heat maps showing a clear demarcation between
the prePBs and PBs/PCs.

Inferring miRNA targets by prediction and integrative anal-
ysis of miRNA and mRNA expression

We developed the miRTarget R package to facilitate the
procedure of inferring and validating miRNA–mRNA
regulatory relationships (https://github.com/kassambara/
miRTarget, see Materials and Methods). It uses the union of
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two popular databases, miRTarBase (32), a database of ex-
perimentally validated miRNA targets, and miRecords (33).

The miRecords database includes validated miRNA tar-
gets and also an integrated sequence-based miRNA target
prediction resource from 11 popular miRNA target predic-
tion programs. We retained only experimentally-validated
target genes and/or those genes predicted by at least 5 of
11 available miRNA target prediction programs. A total list
of 11 972 unique microRNA–target interactions were iden-
tified for the 63 miRNAs, involving 4802 unique genes. In
order to reduce false positive, we combined our miRNA and
mRNA expression data sets. Of the 4802 potential miRNA–
targeted genes, 1933 were differentially expressed between
the four B cell to plasma cell populations (adjusted P-value
≤ 5%, fold change ≥ 2). To obtain a high-confidence list of
candidate miRNA–target interactions, we performed Pear-
son’s correlation analysis between the mean expression val-
ues of each miRNA and the mean expression values of
its deregulated target genes using miRTarget R package
developed by our group (https://github.com/kassambara/
miRTarget). Negative correlation between a given miRNA
and a predicted target mRNA could be the first indicator
of a potential direct interaction. Finally, the combination of
target prediction, differential expression (adjusted P-value
≤ 5%, fold change ≥ 2) and correlation filters (r < –0.6,
Supplementary Figure S4) yielded 1596 negative miRNAs–
mRNAs interactions involving 51 unique miRNAs and 948
unique mRNAs (Supplementary Table S4). At least 316
of the 1596 putative target interactions have experimental
support in other cell types (comprising 272 unique genes
and 35 miRNAs) according to miRecords and miRTarbase
databases (Supplementary Table S4).

Next, we ranked the miRNAs based on the number of
inversely correlated mRNA targets (Figure 3A). The first
15 miRNAs with most negatively correlated events includes
miR-16, miR-30e, miR-30d, miR-30b, let-7c, let-7b, miR-
26a, miR-342-3p, miR-29C, let-7g and miR-140-3p belong-
ing to miRNA cluster 1; miR-106b and miR-15b in clus-
ter 2; and miR-148a and miR-34a belonging to cluster 3
(Figure 3A). Figure 3B shows the mean expression of these
top 15 associated miRNAs. Among the identified miR-
NAs highly associated to target gene expression, several
have been related to plasma cell differentiation in litera-
ture, e.g. members of miR-30 family, miR-34a and miR-
148a (26,36). Interestingly, our prediction reveals that these
miRNAs target key genes coding for transcription factors
controlling B cell or plasma cell identities. The miR-30 fam-
ily overexpressed in MBCs, targets two well-known plasma
cell transcription factors, IRF4 and PRDM1 mRNAs. The
interaction between miR-30 family and PRDM1 has pre-
viously been studied and is functionally relevant in PCD
context (36). The miR-148a and miR-34a, overexpressed in
PCs, target BACH2 and FOXP1 B cell transcription fac-
tors as previously reported (26). The other miRNA–mRNA
relationships represent unappreciated functional miRNA–
target relationships with a potential role in plasma cell dif-
ferentiation (Supplementary Table S4).

Functional analysis of dynamically regulated miRNAs

To better understand which and how biological func-
tions are affected by the differentially expressed miR-
NAs during PCD, we performed functional annotations
using the clusterProfiler R package (35) and MSigDB
(34) canonical pathway gene set collections. We inferred
the functions of deregulated miRNAs from their target
genes. miRNAs that were more abundantly expressed in
MBCs and down-regulated during PCD (cluster 1 miR-
NAs) are predicted to interact with genes coding for pro-
teins involved cell cycle (CCND2, CCNE1/2, CDC25A,
CDK6, CHEK1, E2F3, HDAC2 and RB1), MYC activa-
tion pathway (BCAT1, CAD, CCND2, CDC25A, E2F3,
EIF4E, HMGA1, MTDH, POLR3D, SHMT1 and TAF12),
E2F pathway (CCNE1/2, CDC25A, E2F3/6/7, MYBL2,
RB1, RRM2 and TFDP1), membrane trafficking (AP2M1,
AP4E1, ARCN1, CLTC, COPZ1, CPD, DNAJC6, IGF2R,
MYO6, TPD52, TXNDC5, VPS25 and YIPF6), Golgi as-
sociated vesicle budding and biogenesis (AP4E1, CLTC,
CPD, DNAJC6, IGF2R, TPD52, TXNDC5 and YIPF6),
amino sugar and nucleotide sugar metabolism (GALE,
GFPT1, GNPNAT1, NANP, PGM1, UGDH and UGP2)
(Figure 3C and Supplementary Table S5). This observa-
tion suggests a potential link between the miRNA down-
regulation during the MBC to prePB transition and an
advantage in cell proliferation, organelle biogenesis and
metabolism. Conversely, the majority of miRNAs that were
up-regulated at prePB stage (cluster 2) appeared to interact
with genes assigned to the functional categories of TGF-
� signaling pathway (Figure 3D and Supplementary Table
S5). miR-106b, the miRNA with the highest number of in-
versely correlated target mRNAs, appeared to interact with
transcripts from TGF-� signaling pathway. These genes in-
cluded BAMBI, BMPR2, CCNT2, ITCH, TGFBR2, SKI
and SMAD7. miRNAs from cluster 2, including miR-106b,
are downregulated during prePB to PB transition leading,
possibly, to the activation of TGF-� signaling pathway,
which is known to be involved in cell differentiation (37).
Finally, cluster 3 miRNAs, up-regulated in plasma cell sub-
populations appeared to interact with transcripts from mi-
totic G1-G1/S phases (CCND2, CKS1B, DYRK1A, E2F3,
MCM7, MYBL2, MYC, RRM2 and SKP1) (Figure 3E and
Supplementary Table S5). These interactions could be re-
sponsible for the low proliferation state characterizing nor-
mal plasma cells.

Network of miRNAs regulating genes with critical role in
plasma cell differentiation

The temporal dynamic in the levels of miRNA expression
at different PCD stages raised the hypothesis that miR-
NAs may control gene expression of key proteins regulat-
ing PCD. Therefore, we extracted the 1596 miRNA–mRNA
pairs with strong negative correlation coefficient (r < –0.6),
comprising 51 unique miRNAs and 948 unique mRNAs.
We next investigated the extent of our current knowledge
about the 948 miRNA–targeted genes in plasma cell differ-
entiation by assessing PubMed abstracts and annotations
using two key words (i) gene name + B cell differentiation
and (ii) gene name + plasma cell differentiation. A cita-
tion index is computed for each gene as the average num-

https://github.com/kassambara/miRTarget
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Figure 3. Inferring miRNA targets and identification of the canonical pathways enriched in the targets. The combination of miRNA target prediction
databases, differential expression and correlation filters have been used to identify miRNA targets. This analysis yielded 1596 negative miRNAs–mRNAs
interactions involving 51 unique miRNAs and 948 unique mRNAs. The clusterProfiler R/Bioconductor package and MSigDB gene set collections are
used for functional annotation. For each list, the top seven enriched pathways is shown (adjusted P-value ≤ 0.05). (A) Number of inversely correlated
mRNAs per miRNAs. (B) Expression profiles of the top 15 miRNAs that show the highest association with gene expression of their target sets. The log2
ratio compares the expression from preplasmablast (prePB), plasmablast (PB), plasma cell (PC) to memory B cell (MBC). (C) Pathways enriched in genes
targeted by miRNAs cluster 1. (D) Pathways enriched in genes targeted by miRNAs cluster 2. (E) Pathways enriched in miRNA cluster 3.

ber of citations obtained using the two key words. Genes
with a mean citation index ≥1 are kept as genes with func-
tional relevance in PCD. This literature-based filter yielded
295 miRNA–mRNAs pairs corresponding to a network of
47 miRNAs and 141 target mRNAs (Supplementary Table
S6). Figure 4 shows targets mRNAs with at least three ci-
tations, as well as, the number of miRNAs per target mR-
NAs. Our analysis reveals miRNAs interacting with critical
genes, highly cited as involved in plasma cell differentiation,
such as MYC, PRDM1, CD69, IRF4, CASP3, BCL2L1,
MYB, BACH2, BIM1 and PTEN, with a citation index
ranging from 20 to 300 (Figure 4A and Supplementary Ta-
ble S6). Other miRNA targeted genes with a strong func-
tional role in PCD included KRAS, FOXP1, IGF1R, KLF4,
CDK6, CCND2, IGF1, TNFAIP3, SMAD3/7, BMPR2,

RB1, IGF2R and ARNT (citation index: 3–19) (Figure 4A
and Supplementary Table S6). We identified also several
genes, less studied in normal plasma cell differentiation con-
text, but with a potential importance in plasma cell biology,
including PCAF, EED, NFAT5, HDAC2, DNMT3B, SKP1,
CKS1B, PIK3R1 and RAB23 (citation: < 3) (Supplemen-
tary Table S6).

Many of these genes are potentially targeted by more
than 2 miRNAs (Figure 4B and C): 8 miRNAs for CCND2
and CDK6; 6 miRNAs for BMPR2; 5 miRNAs for CASP3,
4 miRNAs for IGF2R, IRF1 and PTEN; and 3 miRNAs
for BACH2, BCL11A, BIM, IRF4 and PRDM1 (Figure
4B and C). At least 57 out of the 295 putative target in-
teractions have experimental support in the literature, and
3 interactions have functional relevance in plasma cell dif-
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Figure 4. Network of miRNAs regulating critical genes in plasma cell differentiation. Using literature-based filtering, we identified 141 miRNA targets with
functional relevance in plasma cell differentiation. For better readability, we show only miRNA targeted mRNAs with at least 3 citations (39 miRNAs and
66 miRNA targets). (A) Distribution of the number of citations per gene. Some key genes with functional evidence in plasma cell differentiation are shown.
Color intensity indicates the number of citations (blue: low citations, red: high citations). (B) Genes are ordered according to the number miRNAs. (C)
Network of miRNA–target interactions. For better readability, Inferred network comprises miRNA targeted mRNAs with at least 3 citations (144 putative
target interactions between 39 miRNAs and 66 target mRNAs). Edge line type represents the status of the interaction for a given miRNA–mRNA pair.
Solid line types are miRNA - mRNA interactions with experimental support in the literature in other tissues. Dashed line types are predicted interactions.
miRNAs are colored by cluster relationships (cluster 1:yellow, cluster 2: blue, cluster 3: red).

ferentiation on the basis of earlier studies (Figure 4C and
Supplementary Table S6). Interactions with strong func-
tional evidence include pairs such as miR-148a:BACH2,
miR-34a:FOXP1 (26) and the interaction between miR-30
family and PRDM1 (36).

The network also showed several possible and less
studied target interactions with genes frequently stud-
ied in normal plasma cell differentiation, such as those
with MYC (miR-320b:MYC, miR-34a:MYC), CD69
(miR-106b:CD69, miR-130b:CD69), IRF4 (miR-30 fam-
ily:IRF4), CASP3 (miR-30e:CASP3, let-7 family:CASP3),

BCL2L1 (let-7c/g:BCL2L1), BACH2 (miR-15:BACH2,
miR-130b:BACH2, miR-135:BACH2) and BIM (miR-
18a:BIM, miR-19a:BIM and miR-20a:BIM) (Figure 4C
and Supplementary Table S6). Altogether, these data
highlight new potential roles of miRNAs during PCD.

miR-106b, miR-15b and miR-21 modulation of TGF-� sig-
naling, autophagy and EZH2 expression

Several miRNAs that have been widely studied in other
tissues were represented by many putative target interac-
tions in the inferred PCD miRNA–mRNA network, in-
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cluding miR-106b, miR-16, members of miR-30 family
and miR-15b (Figures 3A and 4C). We hypothesized that
miRNA dysregulation would be of particularly importance
in PCD when miRNAs coordinately regulate multiple com-
ponents of a pathway or a biological process critical for
plasma cell differentiation. miR-106b, miR-15b and miR-
21, from miRNA cluster 2, were represented with sev-
eral putative target relationships. At least five of these tar-
gets (TGFBR2, SMAD3, SMAD7, ITCH and BMPR2) en-
code known components of the transforming growth fac-
tor (TGF)-� signaling pathway (Figure 5A), which have
been demonstrated to play an important role in regulat-
ing B cell activation and differentiation (37). In this path-
way, TGF-� binds to the receptor TGFBR2, which re-
cruits and phosphorylates TGFBR1, leading to activation
of intracellular SMAD2 and SMAD3 by phosphorylation
(P). Phosphorylated SMAD2 and SMAD3 subsequently
bind to SMAD4 and translocate to the nucleus to initiate
target gene expression in cooperation with co-factors and
other transcription factors. Our analysis shows strong neg-
ative associations among miRNAs (miR-106b, miR-15b,
miR-21) and TGF-� pathway genes during PCD (Figure
5B and D). Additionally, we found a strong negative in-
teraction between miR-106b and several other genes en-
coding for protein involved in autophagy (ATG16L1 and
ULK1) and ZBTB4, a transcription repressor regulating
EZH2, which is know to be critical in B lymphocyte bi-
ology (38–40). Consistent with these findings, we exper-
imentally showed that the inhibition of miR-106b, using
antisense oligonucleotides, induced a significant upregu-
lation of 7/7 tested predicted targets––PCAF, ATG16L2,
ULK1, ZBTB4, TGFBR2, SMAD7 and BMPR2––in JJN3
myeloma cell line relative to experiments with control an-
tisense oligonucleotides (P ≤ 0.01, one-tailed t-test, n = 3,
mean ± S.E.M., Supplementary Figure S5).

miR-16 targets cooperatively regulate cell cycle progression

The miR-16, belonging to miRNA cluster 1, had multiple
inferred target interactions in the PCD network, and four
of these genes, CCND2, CCNE1, CDK6 and CDC25A, en-
code critical components of G1/S phase cell cycle progres-
sion (Figure 5E). In this pathway, CCND2 in association
with CDK6, CCNE1 and CDK2 cooperate to phospho-
rylate RB. This phosphorylation prevents RB binding to
E2F leading to the activation of E2F-mediated transcrip-
tion and driving cells from G1 into S phase. CDC25A is a
phosphatase that activates CDK2 by removing two phos-
phate groups. We observed a very strong inverse correla-
tion between miR-16 expression (Figure 5C) and CCND2,
CCNE1, CDK6 and CDC25A expression during PCD (Fig-
ure 5F). We found that the inhibition of miR-16, using an-
tisense oligonucleotides, induced a significant upregulation
of 4/4 tested predicted targets - CCND2, CCNE1, CDK6
and CDC25A––in JJN3 myeloma cell line relative to exper-
iments with control antisense oligonucleotides (P ≤ 0.01,
one-tailed t-test, n = 3, mean ± S.E.M., Supplementary Fig-
ure S5). Additionally, our analysis reveals potential interac-
tion between miR-16 and HSP90B1 (also known as gp96
or gp94), a major endoplasmic reticulum chaperone medi-
ating unfolded protein response (UPR), a process known to

play a critical role in B cell development and plasma cell
differentiation (41–43). Taken together, our data suggest a
functional role of miR-16 as a possible master regulator of
cell cycle during MBC to prePB transition, as well as, a po-
tential regulator of UPR.

miR-30 family and coordination of plasma cell differentiation

Members of the miR-30 family, in miRNA cluster 1, had
multiple inferred targets that have been described to play
a critical role in coordinating of plasma cell differentia-
tion, including IRF4, PRDM1, ELL2, ARID3A and GLCE
(Figure 6A). In this pathway, IRF4 activates PRDM1,
which encodes BLIMP-1, an essential transcription fac-
tor for plasma cell generation. BLIMP-1 silences B-cell
specific genes, induces the transcription of immunoglobu-
lin genes and activates the transcription elongation factor
ELL2, which drives Ig secretory-specific mRNA produc-
tion and the unfolded protein (7,44). ARID3A, also known
as Bright in mouse, is a member of the ARID (A+T-rich
interaction domain) family of proteins, which is required
for both hematopoietic stem cell and B-cell lineage devel-
opment (45,46). The glucuronyl C5-epimerase (GLCE) con-
trols heparan sulfate conformation which is crucial for re-
cruitment of factors that control plasma cell survival (47).
We observed strong anti-correlation of miR-30 family ex-
pression (Figure 6B) and the inferred target genes (Figure
6C). One earlier study provided evidences for direct inter-
action between miR-30 family and PRDM1 (36). We ex-
perimentally tested the putative target interaction between
members of miR-30 family and IRF4, PRDM1, ELL2,
ARID3A and GLCE in two plasma cell myeloma derived
cell lines (AMO1 and XG7). As illustrated in Supplemen-
tary Figure S6, the expression values of miR30 family mem-
bers are variable in primary multiple myeloma (MM) sam-
ples from patients. To validate the identified targets of miR-
30 family, we selected two cell lines, AMO1 and XG7, with
respectively high and low miR30 expression. Therefore, we
inhibited miR-30b/d/e in AMO1 and overexpressed them
in XG7. Inhibition of miR-30b/d/e using antisense oligonu-
cleotides (Figure 6D) resulted to a significant upregula-
tion of IRF4, PRDM1, ELL2, ARID3A and GLCE in
AMO1 cell line relative to experiments with control an-
tisense oligonucleotides (P ≤ 0.0001, one-tailed t-test, n
= 4, mean ± S.E.M., Figure 6e). Overexpression of miR-
30b/d/e using precursor miRNAs (Figure 6F), caused at
least 60% reduction of IRF4, PRDM1, ELL2, ARID3A and
GLCE expression in XG7, relative to experiments with con-
trol precursor miRNA (Figure 6G). Taken together, these
data strongly suggest that miR-30 family controls plasma
cell differentiation by targeting several crucial genes encod-
ing proteins required in plasma cell generation.

PCD miRNAs associated with multiple myeloma

We have just described the potential crucial role of miR-
NAs in coordinating normal PCD. We hypothesized that
the deregulation of miRNA regulatory networks can be in-
volved in tumorigenesis. Not surprisingly, multiple pieces
of evidence from integrating miRNA and mRNA expres-
sion profiles point out miRNAs playing a role in multi-
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Figure 5. miRNA regulation of TGF-� pathway components, autophagy, ZBTB4/EZH2 axis and cell cycle. Several miRNAs were represented by many
putative target interactions in the inferred plasma cell differentiation miRNA–mRNA network. miR-106b, miR-15b and miR-21, from miRNA cluster 2
(blue color), were represented with several putative target relationships encoding known components of the transforming growth factor (TGF)-� signaling
pathway, autophagy and the ZBTB4/EZH2 axis. miR-16, from miRNA cluster 1 (yellow color) targets G1/S transition genes and HSP90B1. The figure
shows the pathways as well as the expression profile of the different miRNAs and target mRNAs. Expression values are standardized before plotting.
(A) Association between miR-106b, miR-15b, miR-21 and predicted target mRNAs: TGF-� pathway (TGFBR2, SMAD3, SMAD7, ITCH and BMPR2),
autophagy (ATG16L1 and ULK1) and ZBTB4. (B) Expression profile of miR-106b, miR15b and miR-21 during plasma cell differentiation. (C) Expression
profile of miR-16 during plasma cell differentiation. (D) Expression profile of miR-106b, miR15b and miR-21 target mRNAs. (E) Association between
miR-16 and target mRNAs: G1/S transition genes (CCND2, CCNE1, CDK6 and CDC25A) and HSP90B1. (F) Expression profile of miR-16 target
mRNAs.

ple myeloma pathophysiology (MM), a plasma cell ma-
lignancy characterized by a clonal accumulation of malig-
nant plasma cells within the bone marrow (18–25). Con-
sequently, we next cross-referenced the list of our 63 dif-
ferentially expressed miRNAs, during normal plasma cell
differentiation (PCD), with different lists of deregulated
miRNAs during MM pathogenesis, obtained from pre-
vious studies (18–25). Notably, 24 of those 63 miRNAs
were reported to be differentially expressed (in at least two
different studies) between normal and malignant plasma
cells and/or overexpressed in high-risk MM patients (Sup-
plementary Table S7). Among these miRNAs, 11 were in
miRNA cluster 1 expressed at a higher level in MBCs (let-
7b/c/i, miR-16, miR-221, miR-222, miR-26a, miR-28-3p,
miR-29b and miR-30b/d); 10 in cluster 2 highly expressed
in prePBs (miR-106b, miR-155, miR-15b, miR-18a, miR-

19a, miR-20a, miR-21, miR-23a, miR-27a and miR-625);
and three in miRNA cluster 3 (miR-148a, miR-181a and
miR-34a) (Supplementary Table S7). Furthermore, 10 of
these miRNAs have been reported to be overexpressed in
high-risk MM patients, including (let-7c/i, miR-106b, miR-
148a, miR-16, miR-18a, miR-19a, miR-20a, miR-21 and
miR-29b) (20). One miRNA (miR-155) was described to
be associated with t (4,14) cytogenetic group; one (miR-
21) with t (11,14) and 11 miRNAs with del13q, including
miR-16 and miR-34a (21,22) (Supplementary Table S7).
Additionally, using publicly available miRNA expression
data (ArrayExpress accession number: E-MTAB-1363), we
found that 31 out of the 63 PCD miRNAs were signifi-
cantly differentially expressed in primary multiple myeloma
tumor plasma cells and/or in myeloma cell lines compared
to the normal bone marrow plasma cells (Supplementary



5648 Nucleic Acids Research, 2017, Vol. 45, No. 10

Figure 6. miR-30 family in coordinating plasma cell differentiation and experimental validation. Four biological replicates are performed for experimental
validation. The means and the standard error of the mean are displayed in the bar plots. (A) Association between miR-30 family members and predicted
target genes with critical role in plasma cell differentiation, including IRF4, PRDM1, ELL2, ARID3A and GLCE. (B) Expression profile of miR-30
family members during plasma cell differentiation. (C) Expression profile of miR-30 target mRNAs. Expression values are standardized before plotting.
(D) Inhibition of miR-30b/d/e in AMO1 cell line. Relative expression of miR-30b/d/e 48 h after transfection with antisense oligonucleotides anti-miR-
30b/d/e and anti-miR-control in AMO1 cells. (E) Effects of miR-30b/d/e inhibition on the expression level of target mRNAs. (F) Overexpression of
miR-30b/d/e in XG7 cell line. Expression of miR-30b/d/e 48 after transfection with precursor miRNAs pre-miR-30b/d/e and pre-miR-control in XG7
cells. (G) Effects of miR-30b/d/e overexpression on the expression level of target mRNAs.

Table S8). These miRNAs include members of miR-30 fam-
ily, miR-16 and miR-106b. These results demonstrate that
plasma cell differentiation stage-specific miRNAs deregula-
tion could play a role in myelomagenesis and MM patho-
physiology.

DISCUSSION

miRNAs are known to be involved in many key cellular
processes and different diseases. In this study, we used a
powerful bioinformatics pipelines to analyze the temporal
dynamic of miRNAs expression as well as to infer prob-
able active and functional miRNA–target interactions in
human plasma cell differentiation (PCD). We identified 63
significantly differentially expressed miRNAs (Figure 2A)
associated with three main dynamic profiles: early expres-
sion at MBCs step followed by repression (miRNAs cluster
1), delayed up-regulation at prePBs step followed by down-
regulation (miRNAs cluster 2) and delayed up-regulation
from PBs to PCs steps (miRNAs cluster 3) (Figure 2C).

It is well established that identification of miRNA targets
is crucial for deciphering the exact role of individual miR-
NAs or groups of related miRNAs in a given cell. In recent
years, several algorithms have been developed for predict-
ing miRNA targets based on sequence complementarity of
the miRNA and the mRNAs (48). However, there is no sin-
gle algorithm that can efficiently predict all targets with a
minimal number of false positives (48). A straightforward
approach to refine target gene predictions could be correla-
tion analysis between miRNAs and mRNA expression pro-
files in combination with sequence-based target prediction.
For this, we developed an R package, named miRTarget, to
easily build a highly confident list of miRNA–mRNA target
interaction from integrating correlation analysis and target
predictions with miRecords and miRtarbase.

Using this approach, we identified 1596 negative
miRNAs–mRNAs target interactions involving 51 unique
miRNAs and 948 unique mRNAs (Supplementary Table
S4). Interestingly, at least 316 of the 1596 putative target
interactions (comprising 272 unique genes and 35 miR-
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NAs) have experimental support in the literature according
to miRecords and miRTarbase databases (Supplementary
Table S4). Pathway analysis revealed that these miRNA
target genes are mainly involved in cell cycle, MYC acti-
vation pathway, membrane trafficking, golgi associated
vesicle biogenesis and budding, and signaling by TGF-beta.
Overall, our approach provides valuable information for
identification of potent miRNA target genes as well as the
elucidation of dynamic gene expression changes and the
underlying related biological processes.

We next searched to extract, from the 1596 miRNA–
mRNA target interactions, the network of miRNAs regu-
lating critical genes associated with plasma cell differentia-
tion, critical genes being defined as genes that have at least
1 citation index associated with PCD. We have inferred a
PCD network of 295 miRNA – mRNA target interactions,
comprising 47 miRNAs and 141 target mRNAs. These can-
didate interactions show strong evidence of regulatory ac-
tivity in earlier studies in other tissues. Furthermore, several
miRNA families that have been widely studied in the liter-
ature, were represented by many target interaction during
PCD, and there is functional evidence for at least 57 inter-
actions from earlier experimental studies in the literature.

We acknowledge that miRNA and mRNA expression
negative associations can only be identified if the mRNA
is degraded after being targeted. Therefore, our approach
may miss some miRNA–target interactions that primar-
ily influence mRNA translation efficiency. Our PCD net-
work of candidate miRNA–target relationships also sacri-
fices sensitivity in favor of specificity by applying stringent
fold change-, correlation- and literature-based filters, and
it may also discard biologically relevant interactions. How-
ever, the released miRNAs and mRNAs expression data sets
allows rapid exploration and visualization of any miRNA–
mRNA association independent of any filters.

This study highlights at least four cases in which miRNA
families are predicted to coordinately target and regulate
multiple members of a PCD-related pathway. In the first
case, our method predicts that the miR-30 family directly
targets and regulates IRF4 and PRDM1, ELL2, ARID3A
and GLCE, four genes encoding proteins critical for PCD.
Although earlier studies have shown that members of the
miR-30 family directly target PRDM1 (36), IRF4, ELL2,
ARID3A and GLCE have not been reported as a functional
target of the miR-30 family. Our analysis suggests that the
inhibition of miR-30 family expression is a potent mecha-
nism for setting up the gene expression program required to
the differentiation of B cell to plasma cell.

In the second case, our analysis identified a strong
negative correlation between miR-16 and four cell cycle
genes (CCND2, CCNE1, CDK6 and CDC25A) as well as
HSP90B1, involved in unfolded protein response. miR-16
is present at a higher level in MBCs and downregulated
during MBCs to prePBs transition. Consistent with this
downregulation, prePB stage is characterized by an active
proliferation (2). Five studies experimentally support direct
miR-16 target interaction with CCND2, CCNE1, CDK6
and CDC25A (49–52) in other contexts. Taken together, our
data are consistent with earlier observations and support a
functional role of miR-16 as a possible master regulator of
cell cycle during MBC to prePB transition.

We also identified that three miRNAs (miR-106b, miR-
15b and miR-21), expressed at prePB stage, contribute to
inhibit five genes (TGFBR2, SMAD3, SMAD7, ITCH and
BMPR2) encoding components of the TGF-� signaling
pathways. Furthermore, several of these miRNA–mRNA
interactions have been validated in the literature: mem-
bers of miR-106 family:TGFBR2 (53), miR-106b:ITCH
(54), miR-106b:SMAD7 (55,56), miR-15b:SMAD3 (57),
miR-21:TGFBR2 (58,59), miR-21:BMPR2 (60) and miR-
21:SMAD7 (61). TGF-� signaling pathway is an impor-
tant regulator of B cell activation and differentiation (37).
There is evidence that TGF-� inhibits B cell proliferation
through the induction of the transcription factor ID3, in-
duction of the cyclin-dependent kinase inhibitor p21 (which
inhibits the progression of cell cycle through the G1 and
S phase) repression of the expression of c-MYC and ATM
(62,63). Early studies show also that TGF- � has inhibitory
function on antibody production (64) and induces apopto-
sis by inhibiting NF-�B activation (65). Altogether, these
data suggest that the overexpression of miR-106b, miR-
15b and miR-21, at prePB stage, modulates the TGF-�
pathway leading to cell proliferation and plasma cell dif-
ferentiation. Additionally, our analysis reveals interactions
between miR-106b and several other genes encoding for
protein involved in autophagy (ATG16L1 and ULK1) and
ZBTB4, a transcription repressor regulating EZH2, which
is known to be critical in B lymphocyte biology (38–40).
During lymphopoiesis, EZH2 is strongly expressed in pro-
liferating cells, such as human germinal center B cells, and
plasmablasts, suggesting an important role in cell cycle reg-
ulation and in lymphocyte division (38–40). Accordingly,
lower H3K27me3 levels have been reported in resting B cells
compared to activating B cells (66). These data highlight a
role of miR-106b and EZH2 deregulation in association to
cell cycle activation in prePBs.

We observed a very strong inverse correlation between
miR-106b and these genes (Figure 5). Furthermore, early
studies provide experimental support for the direct miR-
106b target interaction with ATG16L1 (67), ULK1 (68) and
ZBTB4 (69). As described in previous studies, autophagy
plays a key role in PC for sustainable immunoglobulin pro-
duction (70).

Furthermore, our work demonstrates that 24 PCD stage-
specific miRNAs are aberrantly overexpressed in multiple
myeloma cells (MMCs) compared to their normal coun-
terpart and/or are associated with high risk myeloma, sug-
gesting that MMCs frequently acquired expression changes
in miRNAs already undergoing dynamic expression mod-
ulation during normal PCD. Interestingly, these miRNAs
include miR-21, which is upregulated in myeloma plasma
cells compared to the normal counterparts (18,22). miR-21
plays a key role in tumor progression and is significantly
upregulated in several human cancers (71). Furthermore, it
has been recently shown that the Epstein–Barr virus (EBV)–
encoded EBNA2, which is needed for the transforming ca-
pacity of B cells in vitro, significantly increases miR-21 ex-
pression (72). Additionally, there is a strong evidence that
in vivo antagonism of miR-21 exerts anti-multiple myeloma
activity, providing the rationale for clinical development of
miR-21 inhibitors in this still incurable disease (73).
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In conclusions, we describe, for the first time, a compre-
hensive integrated analysis of miRNAs and mRNAs dur-
ing plasma cell differentiation. Of particular note, our anal-
ysis identified a high-confidence network of 295 miRNA
– mRNA target relationships comprising 47 miRNAs and
141 mRNA targets. These relationships include new exam-
ples of miRNAs (miR-30, miR-106b and miR-16) that ap-
pear to coordinately modulate multiple members of critical
pathways associated with PCD, including IRF4/PRDM1
axis, TGF-� signaling pathway, autophagy, ZBTB4/EZH2
axis and cell cycle. In addition, our work demonstrates that
PCD stage-specific miRNAs are aberrantly overexpressed
in multiple myeloma cells (MMCs) compared to the normal
counterparts. Altogether, our results demonstrate that miR-
NAs may be important in controlling PCD and malignant
plasma cell biology. Finally, this rich data set should prove
valuable for researchers exploring plasma cell biology.
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