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Abstract

Sudden infant death syndrome (SIDS) involves failure of arousal to potentially life threaten-

ing events, including hypoxia, during sleep. While neuronal dysfunction and abnormalities in

neurotransmitter systems within the medulla oblongata have been implicated, the specific

pathways associated with autonomic and cardiorespiratory failure are unknown. The neuro-

peptide substance P (SP) and its tachykinin neurokinin-1 receptor (NK1R) have been

shown to play an integral role in the modulation of homeostatic function in the medulla,

including regulation of respiratory rhythm generation, integration of cardiovascular control,

and modulation of the baroreceptor reflex and mediation of the chemoreceptor reflex in

response to hypoxia. Abnormalities in SP neurotransmission may therefore result in auto-

nomic dysfunction during sleep and contribute to SIDS deaths. [125I] Bolton Hunter SP auto-

radiography was used to map the distribution and density of the SP, NK1R to 13 specific

nuclei intimately related to cardiorespiratory function and autonomic control in the human

infant medulla of 55 SIDS and 21 control (non-SIDS) infants. Compared to controls, SIDS

cases exhibited a differential, abnormal developmental profile of the SP/NK1R system in the

medulla. Furthermore the study revealed significantly decreased NK1R binding within key

medullary nuclei in SIDS cases, principally in the nucleus tractus solitarii (NTS) and all three

subdivisions of the inferior portion of the olivo-cerebellar complex; the principal inferior oli-

vary complex (PIO), medial accessory olive (MAO) and dorsal accessory olive (DAO).

Altered NK1R binding was significantly influenced by prematurity and male sex, which may

explain the increased risk of SIDS in premature and male infants. Abnormal NK1R binding

in these medullary nuclei may contribute to the defective interaction of critical medullary

mechanisms with cerebellar sites, resulting in an inability of a SIDS infant to illicit appropriate

respiratory and motor responses to life threatening challenges during sleep. These observa-

tions support the concept that abnormalities in a multi-neurotransmitter network within key
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nuclei of the medullary homeostatic system may underlie the pathogenesis of a subset of

SIDS cases.

Introduction

SIDS is a devastating and unexpected event in which a seemingly healthy infant dies in the first

year of life during a sleep period, with no warning or prior indication of any adverse pathology

to cause alarm [1]. While the precise cause of death in SIDS has not been identified multiple

neuropathologic studies have provided evidence that a certain subset of SIDS infants are not

entirely ’normal’ prior to death [2–5]. Instead these infants possess some form of underlying

vulnerability exposing them to an increased risk for sudden death [1, 5, 6]. It is thought that

SIDS or a certain subset of SIDS is caused by some form of underlying neural or systematic

abnormality in medullary homeostatic control that impairs critical responses to life-threaten-

ing challenges such as hypoxia during a sleep period [1]. This failure is thought to result from

abnormalities in a multi-neurotransmitter network of neural pathways in the medulla oblon-

gata that control respiration, chemosensitivity, autonomic function and arousal. Indeed abnor-

malities in various brainstem neurochemicals including catecholaminergic, nicotinic,

muscarinic, cholinergic, glutamatergic and neuropeptide systems have been reported [7–11].

Abnormalities in the medullary serotonergic (5-Hydroxytryptamine [5-HT]) system have

been the most significantly and consistently observed in the brainstem of SIDS infants, how-

ever it remains unclear whether these abnormalities are the primary event in SIDS or an epi-

phenomenon, with the underlying pathogenesis of these specific abnormalities still

undetermined. Furthermore, it is unlikely that dysfunction in only one neurotransmitter sys-

tem exists given that the actions of neurochemicals are determined by the concurrent modula-

tion and interaction with one another and any deficiencies in one will be immediately

compensated by the action of others [12, 13].

The neuropeptide SP has been shown to play an integral role in the modulation of homeo-

static function in the medulla, in conjunction with other neurochemicals such as 5-HT, includ-

ing regulation of respiratory rhythm generation [14–16], integration of cardiovascular control

[17], modulation of the baroreceptor reflex [18] and mediation of the chemoreceptor reflex in

response to hypoxia [19, 20]. Abnormalities in SP neurotransmission may play, therefore, a

role in homeostatic dysfunction in conjunction with other neurotransmitter network deficits

in SIDS. Previous studies analyzing SP and NK1R in the brainstem in SIDS have however been

inconsistent and inconclusive. Therefore the present study used [125I] Bolton Hunter sub-

stance P ([125I] BH-SP) autoradiography to map the distribution and binding density of the

SP, NK1R to 13 specific nuclei intimately related to cardiorespiratory function and autonomic

control within the medulla of SIDS cases compared to non-SIDS controls. The medullary

nuclei selected for analysis have previously been implicated in the pathogenesis of SIDS with

abnormalities in other neurotransmitter systems identified[21–24]. For the first time this

study provides evidence for a significant abnormality in SP neurotransmission within key

medullary nuclei in SIDS and further supports a role for abnormalities in a multi-neurotrans-

mitter network thought to underlie the pathogenesis of a subset of SIDS infants.

Materials and methods

Clinical database

Fresh frozen human infant medullae of 76 infants were sourced from the Office of the Chief

Medical examiner in San Diego over the period of 2004 to 2015. The study protocol was
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approved by the committee on clinical investigation at the Children’s Hospital Boston, MA,

USA. The cohort comprised of 41 male and 35 female infants. All cases had a post mortem

interval (PMI) less than 30 hours. Deaths were classified as SIDS (n = 55), acutely ill controls

(n = 15), chronically ill controls (n = 4) and hypoxic controls (n = 2). SIDS cases were classified

according to the San Diego definition [25]. Acute control cases were defined as infants who

died acutely and in whom a definitive cause of death was established, chronic controls were

defined as an infant under 1 year of age with a history of chronic or repetitive hypoxemia asso-

ciated with underlying cardiac, pulmonary, or neurological disorder and hypoxic controls

were diagnosed according to definitive pathological findings at autopsy. Brainstems did not

demonstrate pathologic changes and were all histologically normal.

Assessment of [125I] BH-SP binding to NK1R in human infant medulla

Fig 1 displays Autoradiographic grey scale images of [125I] BH-SP binding to NK1R in trans-

verse sections of the caudal and rostral human infant medulla. 13 nuclei in total of the human

infant medulla in each specimen were targeted for analysis at both the caudal and rostral med-

ullary levels. The caudal-mid medulla constituted the level of the nucleus of Roller (Plate X),

and the rostral medulla (Plate XII) according to the atlas of Olszewski [26]. Nuclei included

the raphe obscurus (ROb), midline raphe (RMid), nucleus of the solitary tract (NTS), dorsal

motor nucleus of the vagus (DMX), hypoglossal nucleus (HG), intermediate reticular zone

(IRZ), gigantocellularis nucleus (GC), paragigantocellularis lateralis nucleus (PGCL), dorsal

accessory olive (DAO), principle inferior olive (PIO), medial accessory olive (MAO), subtri-

geminal nucleus (SUB) and arcuate nucleus (Arc) at the above defined levels of the brainstem

according to the atlas of Olszewski and Baxter (1954). The raphe nuclei were classified accord-

ing to Tork and Hornung (1990).

Determination of SP receptor specific binding density was performed using 0.15nM [125I]

Bolton Hunter labeled Lys3 substance P autoradiography and expressed as the specific activity

of tissue-bound ligand based on a previously reported protocol [27]. Unfixed brainstems were

stored frozen at -80˚C and subsequently sectioned at 20μm on a Leitz cryostat and thaw

mounted onto super frost plus, glass microscope slides (Thermo Fisher Scientific). Receptor

Fig 1. Autoradiographic grey scale images of 125I Bolton Hunter SP binding to NK1R receptors in transverse sections

of the caudal and rostral human infant medulla. Red boundary contour delineates the 13 target nuclei.

https://doi.org/10.1371/journal.pone.0184958.g001
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binding density expressed as the specific activity of tissue-bound ligand was analyzed. SP spe-

cific binding density was performed using 0.15nM [125I]- BH-SP autoradiography. Sections

were pre-incubated in 50nM TrisHCl (pH 7.4), 0.02% bovine serum albumin for 15 minutes at

room temperature, and then incubated in the same buffer containing 0.1nM [125I] BH-SP

(NEX190, Perkin-Elmer Inc., Wellesley MA, USA), 3nM MnCl2, Chymostatin 2ug/ml, Leu-

peptin 4μg/ml and Bacitracin 40μg/ml for 60 minutes at room temperature. Nonspecific bind-

ing was determined in the presence of 5μm SP added to the incubation solution. Sections were

then washed 1x 2 minutes at room temperature in 50nM Tris-HCl (pH 7.4), 6x1 minute in ice

cold 50nM Tris-HCl (pH 7.4) and finally 1x 2 minutes at room temperature in distilled H20 +

0.02% BSA. Sections were then dried in warm air before being placed in cassettes and exposed

to 125I-sensitive film (Kodak BMR) for 10 days along with a set of 125I standards (Amersham)

for conversion of optical density of silver grains to fmol/mg tissue.

Film autoradiograms were generated according to standard laboratory procedure for devel-

opment of light-sensitive film. Digital autoradiogram images of SP specific receptor binding in

target nuclei of the human infant medulla were generated as TIFF files from the autoradiogra-

phy film using MCID Imaging system (Imaging Research, Ontario, Canada). Autoradiograms

were generated in grey scale prior to using MCID software to calibrate the images to 125I radio-

active standards for normalization. Quantitative densitometry analysis of total and non-spe-

cific binding density was then measured in fmol/mg in the 14 specific nuclei of interest (all 14

nuclei were not available in all cases). Total receptor binding was determined in 2 sections (2

autoradiograms for each nucleus) and non-specific receptor binding in 1 section for each

nucleus analyzed. Specific receptor binding density was determined by subtracting nonspecific

binding from total binding.

Statistical analysis

Statistical analysis of covariance (ANCOVA) was performed to model the difference between

NK1R binding at each nuclei and various combinations of diagnosis, controlling for parame-

ters including postnatal age (PNA), postconceptional age (PCA), sex, prematurity status and

post mortem interval (PMI). T-tests were used to compare PCA between SIDS cases and con-

trols. Differences were considered significant at p< 0.05.

Results

Clinicopathological data

Table 1 summarizes the Clinicopathological data of the study cohort. There were a total of 19

premature cases in the cohort ranging from 26 to 69.29 PCA weeks with a median GA of 29.51

Table 1. Clinicopathological data.

SIDS (n = 55) Acute (n = 15) Combined controls* (n = 21)

Age mean

PCA (±SD) weeks 52.11 (7.88) 42.45 (10.27) 44.98 (11.73)

GA (±SD) weeks 37.17 (4.82) 35.4 (5.3) 36 (4.72)

PNA (±SD) weeks 21.86 (34.28) 10.48 (11.78) 11.43 (12.2)

Term birth 43 13 18

Premature birth 12 2 3

PMI mean (±SD) hours 19 (5.73) 16.82 (7.4) 17.62 (6.64)

Male 33 8 12

Female 22 7 9

*acute, chronic and hypoxic controls

https://doi.org/10.1371/journal.pone.0184958.t001
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weeks. Non-premature cases ranged from 36.3 PCA weeks (term birth) to 76 PCA weeks.

Median PMI for the entire cohort was 19.15 hours, with a range of 0.5–30 hours. PMI had no

significant effect on NK1R binding in any of the nuclei analyzed in either SIDS cases or non-

SIDS controls and there were no significant differences in PMI between SIDS and controls

(p = 0.244). Similarly, no significant differences in NK1R binding were observed between

acute, chronic and hypoxic control groups, therefore it was appropriate to combine these

groups into a combined control cohort for subsequent analysis.

[125I] BH-SP binding to NK1R in human infant medulla in SIDS vs.

controls

Fig 2 shows the normative distribution and density of mean total NK1R binding in the human

infant medulla of non-SIDS controls. The highest density of NK1R binding (>2 fmol/mg) in

the medulla of the normal human infant (non-SIDS controls) was observed in the RMid nuclei

and PIO nuclei. High binding (>1 fmol/mg) was also present in the ROb, MAO and DAO,

while intermediate to low binding (<1 fmol/mg) was present in the HG, DMX, GC, IRZ, SUB,

PGCL and NTS. Very low to negligible binding (<0.5 fmol/mg) was present in the ARC (Fig

2) and was measureable in an insufficient number of cases to allow appropriate statistical anal-

ysis; therefore we excluded the ARC nuclei from further analysis in the study.

Fig 3 shows consistent significant absolute reductions in NK1R binding (fmol/mg) in SIDS

cases compared to controls using an ANCOVA model adjusting for PCA. Compared to acute

Fig 2. Normative distribution and density of mean total NK1R binding (fmol/mg) in the human infant medulla of non-SIDS

controls.

https://doi.org/10.1371/journal.pone.0184958.g002
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controls, NK1R binding was significantly reduced in SIDS cases in the NTS (p = 0.04), DAO

(p = 0.01) and MAO (p = 0.03) (Fig 3A) and significantly reduced in the DAO (p = 0.01) and

MAO (p = 0.03) with borderline significance in the PIO (p = 0.09) when compared to all con-

trols combined (acute, chronic and hypoxic) (Fig 3B). Fig 3 also shows autoradiograms dis-

playing NK1R binding in the NTS and component nuclei of the IO within the medulla in a

SIDS versus control case, with absolute reductions in NK1R binding consistently observed in

SIDS cases within these nuclei (Fig 3C and 3D).

Analysis of [125I] BH-SP binding to NK1R adjusted for age and

prematurity status

Fig 4 shows analysis of binding by PCA across diagnoses in select medullary nuclei and reveals

a clear trend for binding to decrease with age in all nuclei displayed in non-SIDS controls,

although a statistically significant reduction in binding was observed only in the ROb (acute

controls p = 0.009, combined controls p = 0.04). In contrast, no consistent age-related pattern

in binding was observed in SIDS cases, with a trend for binding to increase with age observed

in several nuclei including the DMX, HG, NTS and SUB, while significant age-related reduc-
tions in NK1R binding were observed in the DAO (p =<0.001) and MAO (p = 0.02) (Fig 4).

Notably, a significant age vs. diagnosis interaction was observed in the HG (p = 0.03) and

DMX (p =<0.001), where binding decreased with age in acute controls but not in SIDS cases

(Fig 4).

Fig 3. Consistent significant absolute reductions in NK1R binding (fmol/mg) in SIDS cases compared to non-SIDS controls.

a. NK1R binding SIDS vs. acute controls. Compared to acute controls, NK1R binding was significantly reduced in SIDS cases in the

NTS (p = 0.04), DAO (p = 0.01) and MAO (p = 0.03), b. NK1R binding in SIDS vs. combined controls. NK1R binding was significantly

reduced in SIDS cases in the DAO (p = 0.01) and MAO (p = 0.03) with borderline significance in the PIO (p = 0.09) when compared to

all controls combined (acute, chronic and hypoxic).c. Autoradiograms displaying NK1R binding (fmol/mg) in the NTS nuclei. Absolute

reductions in NK1R binding were consistently observed in SIDS cases. d. Autoradiograms displaying NK1R binding (fmol/mg) in

component nuclei of the IO. NK1R binding was consistently reduced in SIDS cases. *p = <0.05, **p = <0.01.

https://doi.org/10.1371/journal.pone.0184958.g003
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To determine the influence of prematurity status on observations, the density of NK1R sites

in premature infants (defined as infants with gestational age<36 weeks) was compared to

term infants (gestational age� 36 weeks). Although only n = 3 premature infants (n = 2 acute

controls, n = 1 hypoxic) Fig 5 shows the effect of prematurity on NK1R binding in key medul-

lary nuclei analyzed. A striking trend for increased binding (>50% higher in every nucleus

analyzed) observed in premature control infants compared to term control infants, with signif-

icant increases present in the HG (p = 0.02), ROb (p = 0.006), GC (p = 0.008), IRZ (p = 0.01)

and PGCL (p = 0.007) (Fig 5A). In contrast, no significant differences in NK1R binding were

observed between premature and term SIDS infants in any of the nuclei analyzed (Fig 5A).

Moreover, NK1R binding was observed to be significantly lower in premature SIDS infants in

the ROb (p = 0.04), GC (p = 0.001), IRZ (p =<0.001), PGCL (p =<0.001), RMid (p = 0.04)

and DAO (p = 0.003) compared to premature control infants (Fig 5B).

Analysis of [125I] BH-SP binding to NK1R adjusted by sex

Analysis of binding by sex revealed an overall trend for higher binding in male compared to

female infants in both acute and combined control cohorts. In acute controls, significantly

higher binding was observed in males in the ROb (p = 0.02) and DAO (p = 0.02), and

Fig 4. NK1R binding by PCA across diagnoses in multiple medullary nuclei.

https://doi.org/10.1371/journal.pone.0184958.g004
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borderline significance in PGCL (p = 0.09) and GC (p = 0.07). In combined controls, NK1R

binding was significantly higher in males in the DAO (p = 0.02), with borderline significance

in ROb (p = 0.06) and GC (p = 0.09). In contrast, no differences in NK1R binding were

observed between male and female SIDS cases in any of the nuclei analyzed. Furthermore,

compared to controls a trend for NK1R binding in male SIDS cases to be reduced across all

nuclei analyzed was observed, with Fig 6 showing significant reductions in all three IO compo-

nent nuclei (DAO p =<0.001, MAO p = 0.03, PIO p = 0.04) in male SIDS cases when com-

pared to male combined controls. In contrast there were no significant differences in binding

observed between female SIDS and female acute or combined controls.

The small number of control cases precluded investigation of the potential interaction

between prematurity and sex on NK1R binding, however such analysis in SIDS cases revealed

a trend for higher binding in several nuclei in premature male SIDS cases compared to term

male SIDS cases although a statistically significant increase was only observed in the HG

(p = 0.005). In contrast, no trend for increased binding and no statistically significant differ-

ences in binding were observed in premature female SIDS infants and to term female SIDS

infants in any of the nuclei analyzed. Comparison of binding in premature male and prema-

ture female SIDS cases also revealed no significant differences.

Fig 5. a. Significant effect of prematurity on NK1R binding in key medullary nuclei in term and premature non-SIDS

controls vs. no effect in term compared to premature SIDS cases. b. Signficaint differences in NK1R binding in

premature SIDS cases compared to premature controls in key medullary nuclei. *p = <0.05, **p = <0.01.

https://doi.org/10.1371/journal.pone.0184958.g005
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Discussion

SP and the NK1R have been shown to play an integral role in the modulation of homeostatic

function in the medulla, including regulation of respiratory rhythm generation [14–16], inte-

gration of cardiovascular control [17], modulation of the baroreceptor reflex [18] and media-

tion of the chemoreceptor reflex in response to hypoxia [19, 20, 28]. In this study, we observed

abnormalities related to development and sex in NK1R binding within multiple nuclei of the

medullary homeostatic network in SIDS cases incuding absolute reductions in binding in the

NTS and and all sub-divisions of IO nuclei (PIO, MAO, DAO). The NTS houses the primary

relay station for brainstem transmission of important respiratory and cardiovascular reflexes

and is enriched with a high density of SP containing axon terminals [29, 30]. Evidence from

animal studies indicates a functional role for SP in the NTS as a central integrator of cardiovas-

cular control [17], modulator of baroreceptor reflex sensitivity [18] and a primary excitatory

mediator of the chemoreceptor reflex in response to hypoxia [19, 20]. In rodent models, activa-

tion of NK1R by SP in the NTS stimulates respiration, while loss of NK1R reduces the respira-

tory response, severely impairing the chemoreceptor reflex and selective lesion of NK1R

expressing neurons in the NTS blunts cardiovascular reflexes [31, 32]. These observations sup-

port the idea that the abnormal expression of NK1R in the medulla, as observed in this study,

may result in dysfunction of critical cardiorespiratory reflexes in response to harmful stimuli

such as hypoxia.

In contrast to the NTS, the IO nuclei are generally not considered to play role in the regula-

tion and coordination of homeostatic function. Rather the IO is a pre-cerebellar relay network

providing the climbing fibers to Purkinje cells in the cerebellar cortex and a central site for the

integration of motor and sensory information [33, 34] [35]. Previous studies have associated

neurotransmitter deficits [22, 23], significantly reduced neuron density [36] and substantial

reactive gliosis [37] within the IO with a subset of SIDS deaths and the IO, through its projec-

tions to the cerebellum, has been identified to influence upper airway and respiratory muscle

regulation and blood pressure control in response to hypotensive challenge by coordinating

and synchronizing somatomotor, respiratory and autonomic actions [38, 39]. In addition,

afferent input to the cerebellum via the IO or climbing purkinje fibers from the olivary nuclei

have been implicated in the failure of cerebellar mechanisms to produce adequate somatomo-

tor response (i.e. head lift/tilt, respiratory muscle activity) to overcome cardiorespiratory chal-

lenges during sleep in SIDS [40]. The density and distribution of SP positive immunoreactivity

Fig 6. Marked sex effect on NK1R binding observed in the IO nuclei in male SIDS cases. *p = <0.05,

***p<0.001.

https://doi.org/10.1371/journal.pone.0184958.g006
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within the IO has indicate a modulatory role for the neuropeptide in olivary neuron output

and activity [41]. Taking the above observations together, we suggest that the significantly

abnormal expression of NK1R in both the IO and NTS in SIDS cases may contribute to an

inability of a SIDS infant to execute appropriate motor responses in order to respond to life

threatening challenges during sleep, which may underlie the pathogenesis of SIDS in conjunc-

tion with other neurotransmitter abnormalities within the same or associated medullary

nuclei.

A striking feature of the abnormalities in NK1R expression in SIDS cases observed in this

study is their association with prematurity and male sex both of which are recognized risk fac-

tors for SIDS. In controls, premature infants had significantly higher binding than in term

infants and binding was observed to decrease with age across all nuclei. This pattern is consis-

tent with the developmental expression of NK1R, with animal studies reporting peak NK1R

density at birth, which decreased over the course of development to reach adult levels of

expression [27, 42]. In contrast, no significant differences in binding were observed between

premature and term SIDS infants and no consistent age-related reduction in NK1R expression

was observed with development. Indeed, a paradoxical trend for binding to increase with age

was observed in the HG and DMX in SIDS cases with a significant age versus diagnosis inter-

action observed in these nuclei. Moreover, NK1R binding in premature SIDS infants was sig-

nificantly lower than in premature controls infants in the ROB, GC and PGCL, which are

recognized as key autonomic and respiratory control nuclei within the medullary homeostatic

network. Significant alterations in NK1R binding within the PGCL nuclei is of particular inter-

est, given the PGCL is the proposed location of the putative human homologue of the Prebot-

zinger complex (PBC). Depletion of SP within the PBC has been shown in animal studies to

offset ventilatory rhythm generation in neonates [43] and lesioning of NK1R expressing neu-

rons within the PBC results in profoundly abnormal respiratory patterns [14, 44]. Animal

models have shown that juveniles are more sensitive to SP and its modulation of respiratory

activity is more important during the early postnatal period particularly when the juvenile is

challenged by hypoxia [45, 46]. This indicates that reduced NK1R expression in SIDS infants

and premature SIDS infants in particular places them at increased risk of respiratory failure

and this observation may at least partially explain the increased risk of SIDS associated with

prematurity. Moreover, these observations indicate that the pathogenesis of altered NK1R

expression in SIDS originates during gestation and further supports the idea that SIDS is a

developmental disorder with a prenatal etiology.

In addition to prematurity, male sex was significantly associated with reduced NK1R bind-

ing in SIDS cases. In control infants, binding in male infants was observed to be significantly

higher than in females, in contrast no such difference was observed between male and female

SIDS cases. Moreover, binding in male but not female SIDS cases was observed to be signifi-

cantly lower compared to male and female controls respectively. These observations indicate

that NK1R binding is reduced in male but not female SIDS infants and that the reductions in

binding observed in the SIDS cohort as whole are driven, along with prematurity, by male

infants. Notably, males have been shown to normally have a reduced ventilatory response to

hypoxia and a longer post hypoxic recovery compared to females in experimental models [47,

48]. Taken together, these observations suggest that premature male infants are a population

that is at an elevated risk of SIDS.

Limitations

A potential limitation to this study is the relatively small sample size of control cases for each

diagnoses and in particular the small cohort of premature control cases (n = 2 acute, n = 1
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hypoxic) available for analysis. Infant control cases are especially difficult to obtain due to the

rarity of deaths in the age group (<12 months) from causes of death other than SIDS. However

despite the small sample size, we found highly significant differences (>50% higher in every

nucleus analyzed) in NK1R binding in premature compared to term combined controls, com-

pared to no significant differences observed in premature compared to term SIDS cases. An-

other potential limitation is that in some instances we observed trends for differences between

SIDS and control cases that were not statistically significant due to a lack of statistical power.

Future analysis to clarify the effect of prematurity and trends observed in NK1R binding

requires a larger dataset of controls.

Conclusion

In summary this study has identified a subset of SIDS infants with a significant developmental

abnormality of the SP/NK1R system, with altered NK1R binding in multiple nuclei intimately

related to cardiorespiratory function and autonomic control within the medulla oblongata.

Our observations were influenced by prematurity and male sex, which may further explain the

increased risk of SIDS in premature and male infants. Collectively these observations suggest

that abnormal SP neurotransmission within the medulla could result in dysfunction of critical

cardiorespiratory reflexes in response to harmful stimuli such as hypoxia and may contribute

to an inability of an infant to execute appropriate motor responses to life threatening chal-

lenges during sleep. Furthermore our observations support the concept that abnormalities in a

multi-neurotransmitter network underlie the pathogenesis of a subset of SIDS infants and that

SIDS is a complex developmental disorder with a prenatal etiology.
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