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Abstract: In recent years, there has been an increase in studies regarding nanofiltration-based processes
for removing antibiotics and other pharmaceutical compounds from water and wastewater. In this
work, a 2k factorial design with five control factors (antibiotic molecular weight and concentration,
nanofiltration (NF) membrane, feed flow rate, and transmembrane pressure) was employed to
optimize the NF performance on the treatment of antibiotic-containing wastewater. The resulting
multiple linear regression model was used to predict the antibiotic rejections and permeate fluxes.
Additional experiments, using the same membranes and the same antibiotics, but under different
conditions of transmembrane pressure, feed flow rate, and antibiotic concentration regarding the 2k

factorial design were carried out to validate the model developed. The model was also evaluated as a
tertiary treatment of urban wastewater for removing sulfamethoxazole and norfloxacin. Considering
all the conditions investigated, the tightest membrane (NF97) showed higher antibiotics rejection
(>97%) and lower permeate fluxes. On the contrary, the loose NF270 membrane presented lower
rejections to sulfamethoxazole, the smallest antibiotic, varying from 65% to 97%, and permeate fluxes
that were about three-fold higher than the NF97 membrane. The good agreement between predicted
and experimental values (R2 > 0.97) makes the model developed in the present work a tool to predict
the NF performance when treating antibiotic-containing wastewater.

Keywords: nanofiltration; antibiotic in wastewater; norfloxacin; sulfamethoxazole; experimental
design; factorial design

1. Introduction

Antibiotics are a class of pharmaceutical compounds with a huge input into the environment,
a fact that is associated with their high consumption. In 2015, the consumption of antibiotics worldwide
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was estimated at 42 billion defined daily doses (DDDs) and, if consumption patterns do not change,
an increase of 200% is projected for 2030 [1].

In fact, a great concern regarding antibiotics is that after administration, it is only partially
absorbed by the patient, being the rest excreted in the urine or feces [2], reaching the urban sewage
network and then the urban wastewater treatment plants (UWWTPs). In turn, these have conventional
treatment processes, which are inefficient in removing antibiotics and other micropollutants [2–4];
thus, the discharged wastewater ends up contaminating the different ecosystems [5]. For this reason,
UWWTPs are considered as one of the main sources of antibiotic release into the environment [6],
discharging them in concentrations ranging from ng L−1 to µg L−1 [7–10]. Likewise, wastewater
from the pharmaceutical industry is another important source of contamination, generally containing
pharmaceuticals concentration in the range of mg L−1 [11,12], but that may reach a magnitude of
g L−1 [13]. In a survey on the occurrence of antibiotics in wastewater treatment plants, Wang et al. [14]
reported sulfamethoxazole (SMX), clarithromycin, amoxicillin, ciprofloxacin, ofloxacin, and norfloxacin
(NOR) as the six antibiotics found in higher concentrations. In another study, performed by Montagner
et al. [15], 708 samples of drinking, surface, and ground water and wastewater from São Paulo State
(Brazil) were analyzed, and the results showed that amoxicillin, trimethoprim, cephalexin, ciprofloxacin,
SMX, NOR, and ampicillin were the drugs detected with higher frequency.

The key point of the environmental discharge of antibiotics is that the increasing exposure of
microorganisms outside of human bodies contributes toward the recruitment and spread of antibiotic
resistance genes among human pathogens [16], hampering the treatment of diseases caused by these
pathogens. Therefore, the investigation of other technologies for removing antibiotics from wastewater
is crucial. In this respect, membrane processes, such as nanofiltration (NF) and reverse osmosis
(RO), are promising technologies to address this matter, increasing the safety of wastewater treatment
plants. Thus, considering the different mechanisms acting in the separation, e.g., adsorption, steric
hindrance, and electrostatic effects [17], and also the fact that the membranes have a molecular weight
cut-off (MWCO) in the same range as the molecular weight (MW) of antibiotics [18], NF has gained
prominence in the treatment of antibiotics-containing wastewater.

The general idea about predicting NF performance by designing models is related to achieving
project advantages such as reducing the number of experiments for studies to scaling up NF operations,
minimizing the analytical characterization processes, which are often costly, and also optimizing
processes for producing reuse water. Models involving different approaches have been studied to
predict the rejection of trace organic compounds, including antibiotics, in NF operations.

Kim et al. [19] developed a membrane transport model to determine the diffusive and convective
contributions to solute transport and rejection. The authors studied the nanofiltration of disinfection
by-products (DBPs). The modeling was carried out according to a non-equilibrium thermodynamic
transport equation and was able to simulate the main mechanisms of solute transport, but was not
designed to predict the solute rejection coefficient.

Kong et al. [20] applied the Donnan steric pore model (DSPM) to evaluate the nanofiltration of
solutions containing neutral disinfection by-products. The authors determined that the experimental
rejection ratios for all the DBPs were much lower than the values predicted by the model. The DSPM is
related to steric hindrance, and adsorption may have an important role on the rejection parameters.
Therefore, it is important to have a combination between steric hindrance and other solute–membrane
interactions. By a modified hydrodynamic model, the authors were able to evaluate the role of MW
and solubility on the rejection of DBPs and concluded that further work should be carried out to really
incorporate the solubility parameter into this predicting model.

A Donnan steric pore model with dielectric exclusion (DSPM-DE), incorporated with temperature
functions, was evaluated by Xu et al. [21] on the treatment of 14 pharmaceuticals and personal care
products (PPCP) by NF under different temperatures (5 to 25 ◦C). The authors were able to determine
the feed temperature influence on the PCPP rejection. The model developed obtained, in some
cases, over-predicted values, which was attributed to the limitation of evaluations based on steric
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hindrance effect, not considering the interaction between the micropollutants and membrane, as
adsorption phenomena.

A quantitative structure–activity relationship (QSAR) model was used for predicting the rejection
of contaminants of emerging concern by NF. The work resulted in a general QSAR equation by
using principal component analysis, partial least square regression, and multiple linear regressions.
An experimental database with 106 rejection cases of contaminants of emerging concern by NF
membranes as result of eight experiments was used to produce the QSAR model. After that, rejection
predictions were determined for external experimental databases by using the QSAR model. Real
rejections were compared to predicted ones, and acceptable determination coefficients (R2) were found
(0.75 and 0.84) [22]. These developments were relative to synthetic solutions [19–22]. On the other
side, Flyborg et al. [23] developed a Partial Least Squares Projection of Latent Structures (PLS) model
for predicting the rejection of pharmaceutical residuals by NF using a real treated urban wastewater
as feed solution. The study was carried out with the compounds found on the treated wastewater,
as atenolol, azithromycin, erythromycin, diazepam, SMX, and trimethoprim, among others. The model
proved to be able to predict rejection, and most of the compounds were within the 95% prediction
interval, but the model coefficients need to be determined for each individual UWWTP or wastewater
reuse facility.

In the present study, the NF performance was investigated in terms of membrane characteristics,
operating conditions (feed flow rate and transmembrane pressure), antibiotic concentration, antibiotic
molecular weight, and physicochemical characteristics, aiming the prediction of antibiotics rejection
and permeate fluxes. Experimental and modeling research is carried out in the following situations:
(1) treatment of wastewater containing two of the most used antibiotics with a concentration range
found in pharmaceutical industries, and (2) treatment of an urban wastewater, collected after secondary
treatment and incubated with the studied antibiotics, sulfamethoxazole (SMX) and norfloxacin (NOR).

2. Theory

The multiple linear regression (MLR) method is a statistical tool that uses explanatory variables,
known as independent variables or control factors, to predict the outcome of a response (dependent)
variable through a regression equation or model, assessing the strength of the relationship between the
independent variable (control factor) and response variable. When the MLR analysis performed on a
set of sample data results in regression coefficients (b0, b1, b2, . . . , bn), those represent the effect that
independent variables have on the dependent one. These coefficients are estimated by the ordinary
least squares method: one for each independent variable. Thus, for a dependent variable, y, and m
independent variables, x1, x2, . . . , xm, the MLR model is given as

y = b0 + b1x1 + b2x2 + · · ·+ bnxm + en (1)

where b0 is the y-axis intercept or linear coefficient. It is also necessary to check the significance of each
independent variable through the p-value. Using a significance level of 5%, a p-value less than 0.05
implies that there is a significant effect of the factor on the response variable with a 95% confidence
interval [24]. The goodness of fit of an MLR model can be measured by calculating the determination
coefficient (R2), which is defined as the square of the correlation between the observed values of the
response variable, i.e., experimental results, and the values predicted by the model, and it gives the
proportion of the variability of the response variable (y-values) for the control factors (x-values) [24].

The adjusted R2 (R2
adj) is a modified version of R2 that considers the number of independent

variables and the sample size. A large difference between R2 and R2
adj implies an excessive number of

independent variables in the model [23].
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3. Materials and Methods

Experiments were carried out with two flat sheet commercial membranes: (1) NF270, a polyamide
membrane from DOW–Filmtec (Edina, MN, USA), with a MWCO of approximately 400 Da [25];
and (2) NF97, a polyamide membrane from Alfa Laval (Nakskov, Denmark), with a MWCO of
approximately 200 Da [26]. These membranes were chosen because they have MWCO covering the
MW range (200–500 Da) of most antibiotics reported in the literature [18].

Permeation experiments were performed in a Lab Unit M20 plate and frame filtration unit
from Alfa Laval (Nakskov, Denmark), with a membrane surface area of 3.6 × 10−2 m2, which was
thoroughly described in a previous work [27]. Firstly, the membranes were carefully cleaned with
sodium hydroxide at pH 9.0 and 30 ◦C to remove residual chemicals. Secondly, they were compacted
through the recirculation of distilled/deionized water (conductivity ≤ 2 µS cm−1), pressurized at 20 bar
for 3 h. Then, they were characterized in terms of pure water permeability (LPW), as described by da
Trindade et al. [28], at transmembrane pressures (∆P) of 8 to 20 bar, keeping the temperature at 25 ◦C
by an ultra-thermostatic bath. They were also characterized in terms of salt rejection (sodium chloride,
sodium sulfate, and magnesium sulfate), at a ∆P of 10 bar, feed flow rate (QF) of 480 L h−1, and feed
solution of 2000 mg L−1. The apparent rejection coefficient (R) was defined as:

R (%) =
CF−CP

CF
× 100 (2)

where CF is the solute concentration in the feed, and CP is the solute concentration in the permeate.
The permeate mass flux (J), in kg h−1 m−2, was calculated using Equation (3), where ∆M is the mass of
permeate (kg), A is the effective membrane area (m2), and ∆t (h) is the permeation time.

J =
∆M
A ∆t

(3)

Feed solutions with 5 and 25 mg L−1 of NOR and SMX, similar to concentrations found in
wastewater from the pharmaceutical industry [12], were prepared in distilled/deionized water
(conductivity less than 2 µS cm−1). These mass concentrations correspond to the molar concentrations
of 15.7 and 78.3 mM for NOR, and 19.8 and 98.8 mM for SMX, respectively. The osmotic pressure of
the feed solutions, which was calculated trough the Van’t Hoff equation [29,30], was neglected since it
varied from 0.38 to 4.80 mbar. The pH of the antibiotic feed solutions was not altered, remaining at
their natural pH when dissolved in distilled/deionized water: pH approximately 5.5 for SMX and 6.0
for NOR solutions. Both the antibiotics, with 99% purity, were purchased on a compounding pharmacy.
Table 1 displays the physicochemical characteristics of the antibiotics studied.

Table 1. Physicochemical characteristics of norfloxacin (NOR) and sulfamethoxazole (SMX).

Physicochemical Characteristic NOR SMX

Molecular formula 1 C16H18FN3O3 C10H11N3O3S
Molecular weight 1 (Da) 319.33 253.28

Structural formula 1
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The permeation experiments were conducted in full recirculation mode (where the retentate and
the permeate streams are recirculated to the feed tank) to study the variation in the permeate fluxes and
the apparent rejection coefficients. They were performed using 6 L of feed solution, evaluating each
antibiotic separately, at a stabilization time of 30 min, after which permeate and feed samples were
collected for chemical analysis. The antibiotics adsorption on the membranes was not investigated in
this study, because it has already been reported in the literature that there was no adsorption of SMX
(feed concentration of 0.5 mg L−1) in NF270 and other polyamide membranes [17], and a negligible
adsorption of NOR, where only 5.8 µg L−1 was adsorbed on the membrane after 12 h of testing [18].

Experiments were carried out in duplicate as a 25 factorial design, resulting in 64 experimental
runs, to study the effects of control factors (antibiotic MW and concentration, MWCO of NF membrane,
feed flow rate, and transmembrane pressure) on the response variables: permeate flux and antibiotic
rejection (negatively skewed distribution). Factorial design experiments allow evaluating different
factors simultaneously, their interactions concerning the response variables, the determination of the
confidence level of the results, and the prediction of results through mathematical modeling [24].
The values of the control factors were adjusted first to the same scale, –1 and + 1 (Table 2), and the
design of experiments was defined according to Yates’ algorithm by the software Minitab 17 (Table S1).

Table 2. Factors and levels investigated during the 25 factorial design. MW: molecular weight, MWCO:
molecular weight cut-off.

Factor Level (−1) Level (+1)

A, Antibiotic MW (Da) 253 319
B, Feed flow rate (L h−1) 480 1 850 2

C, Concentration (mg L−1) 5 25
D, Membrane MWCO (Da) 200 400

E, Transmembrane pressure (bar) 6 16
1 and 2 the respective tangential feed velocities are 0.76 and 1.34 m s−1.

The experimental results were analyzed using the MLR method, which was chosen because it is
possible to verify the coefficients of each control factor, representing its effect on the response variable
and its significance. In addition, by using MLR, it is possible to make predictions of the values of the
response variables for different values of the control factors. The coefficients of each control factor and
factors’ interaction, as well as their respective significance, were calculated using Minitab software 17.
The regression model was validated using measures of fitting quality and prediction of antibiotics
rejection and permeate fluxes. Two sets of additional experiments were carried out in duplicate (100
experimental runs) to test the fitting quality of the model developed: (1) 96 runs under the same
conditions used in 2k factorial design (Table 2), but at ∆P of 8, 10, and 12 bar; (2) 4 runs using the
same membranes, the same antibiotics but with the other variables at level (0), i.e., ∆P of 11 bar, feed
flow rate of 665 L h−1, and antibiotic concentration of 15 mg L−1. In the regression analysis, all factors
and interactions up to the third order were considered. The fourth and fifth-order interactions were
brought together at the error term.

Experiments were also conducted with a real urban wastewater to evaluate the effect of other
organic compounds on the treatment. The wastewater was collected from an UWWTP with activated
sludge in a city with 1,500,000 inhabitants in Southern Brazil. The wastewater was collected after the
secondary treatment, and approximately 10 mg L−1 of each antibiotic (NOR and SMX) was added to the
sample after collection. Then, the wastewater incubated with antibiotics was filtered through a 0.45 µm
membrane to remove coarse solids. The NF experiments were conducted in concentration mode, being
the retentate continuously recirculated to the feed tank, whilst the permeate was separately collected.
These experiments were performed at a feed flow rate of 480 L h−1 and ∆P of 6 bar, until approximately
70% of water recovery was achieved. The characteristics of the secondary treated wastewater are
presented in Table 3.
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Table 3. Characteristics of the secondary treated wastewater used in nanofiltration (NF) experiments.

Parameter NF Feed Wastewater 1

pH 6.01 ± 0.11
Conductivity (µS cm−1) 428 ± 14.1

Total solids (mg L−1) 539 ± 139
Total suspended solids (mg L−1) 3.90 ± 0.60

Dissolved organic carbon – DOC (mg L−1) 8.50 ± 0.40
Chemical oxygen demand – COD (mg O2 L−1) 184 ± 192

NOR (mg L−1) 9.40 ± 3.00
SMX (mg L−1) 9.10 ± 1.40

1 Secondary treated wastewater collected + addition of 10 mg L−1 NOR and SMX + addition of HCl 1:1 until pH 6.0
+ filtration through a 0.45 µm membrane.

The pH and conductivity were measured using a Tek PHS-3B pH meter (Sao Paulo, SP, Brazil)
and an AKSO 8306 conductivity meter (São Leopoldo, RS, Brazil), respectively. Dissolved organic
carbon (DOC) was analyzed with a TOC-LCPH Shimadzu carbon analyzer (Kyoto, Japan) after sample
filtration through a 0.45 µm membrane. Chemical oxygen demand (COD), total solids (TS), and total
suspended solids (TSS) analyzes were performed according to the APHA Standard Methods [33].
An ultrahigh performance-liquid chromatography system from Thermo Fisher Scientific (Germering,
Germany), equipped with a Supelco Drug Discovery C-18 column (with diameter, length, and pore
size of 4.6 mm, 100 mm and 3 µm, respectively) and an UV–vis detector system, was used to determine
the antibiotic concentrations in the feed and permeate samples. The detection wavelength was set
at 277 nm for NOR and 280 nm for SMX. The detailed protocol of the chromatographic analyzes is
reported in a previous study [34].

4. Results and Discussion

4.1. Membrane Characterisation

NF97 and NF270 membranes showed water permeability of 3.10 and 8.77 kg h−1 m−2 bar−1,
respectively. For the NF97 membrane, the apparent rejection coefficients to sodium chloride, magnesium
sulfate, and sodium sulfate are 89.9%, 94.9%, and 98.2%, respectively, and for the NF270 membrane,
they are 46.2%, 83.9%, and 97.2%, respectively, being these values in line with the results found in
the literature [35,36]. NF270 presented a water permeability that was about 2.8 times higher than the
one of NF97, but lower salts rejection, particularly for sodium chloride, the monovalent salt. In fact,
according to the literature, NF97 and NF270 are tight (MWCO ≤200 Da or sodium rejection ≥90%) [37]
and loose [38] NF membranes, respectively.

4.2. Effect of Control Factors on Permeate Flux

Table 4 displays the solutions’ permeabilities (LPS), given by the slope of the straight line of
permeate flux versus ∆P, as a function of antibiotic MW and concentration and feed flow rate for both
membranes: NF97 (200 Da MWCO) and NF270 (400 Da MWCO). For both membranes and considering
all conditions evaluated, the LPS values were always very close to the LPW. Nevertheless, the NF97
membrane showed mean LPS values slightly higher at the highest feed flow rate and with the lowest
concentration of antibiotic, in which the effect of the feed concentration was more pronounced for SMX,
especially for the lowest feed flow rate.

For the NF270 membrane, the mean LPS values of both antibiotic solutions were independent of
the feed flow rate, but they showed a slight decrease with increasing feed concentration, in which
the LPS–LPW difference was more marked for NOR-containing solutions. This behavior is possibly
associated with the relationship between the antibiotic MW and the membrane MWCO. As it can be
seen in Table 4, the NF97 membrane, which has the smallest MWCO (200 Da), presented lower LPS

when treating solutions containing SMX, which in turn has the smallest MW (approximately 253 Da).
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On the other hand, the NF270 membrane, which has the highest MWCO (400 Da), presented lower
LPS when treating NOR-containing solutions, which has the largest MW (approximately 319 Da).
These results indicate that the membranes are more prone to the incidence of phenomena such as
concentration polarization and fouling by solutes with MW very close to the membranes’ MWCO.

Table 4. Effects of the MW and concentration of the antibiotic and of the feed flow rate on the
permeability of NF97 and NF270 membranes.

Antibiotic
MW
(Da)

Concentration
(mg L−1)

QF
(L h−1)

NF97 NF270

LPS
1 LPW − LPS (%) LPS

1 LPW − LPS (%)

NOR 319

5 480 2.99 ± 0.05 3.55 8.40 ± 0.10 4.22
5 850 3.04 ± 0.22 1.94 8.29 ± 0.23 5.47
25 480 2.90 ± 0.13 6.45 7.91 ± 0.15 9.81
25 850 3.01 ± 0.05 2.90 7.89 ± 0.13 10.0

SMX 253

5 480 3.01 ± 0.01 2.90 8.93 ± 0.01 −1.82
5 850 3.20 ± 0.02 −3.23 9.25 ± 0.04 −5.47
25 480 2.75 ± 0.08 11.3 8.58 ± 0.45 2.17
25 850 3.04 ± 1.94 1.94 8.49 ± 0.57 3.19

1 LPS in kg h−1 m−2 bar−1.

Table S2 shows the coefficient and the p-value for each factor and factors’ interaction on
permeate flux. From the analysis of experimental results, it is possible to observe that the greatest
coefficients on permeate flux, in decreasing order, were membrane MWCO (factor D), transmembrane
pressure (factor E), membrane MWCO–transmembrane pressure (DE), antibiotic MW–membrane
MWCO (AD), antibiotic MW (factor A), antibiotic concentration (factor C), antibiotic MW–membrane
MWCO–transmembrane pressure (ADE), antibiotic MW–transmembrane pressure (AE), antibiotic
MW–feed flow rate (AB), antibiotic concentration–membrane MWCO (CD), antibiotic MW–feed flow
rate–membrane MWCO (ABD), antibiotic concentration–transmembrane pressure (CE) and antibiotic
concentration–membrane MWCO–transmembrane pressure (CDE).

As expected, factors D (membrane MWCO) and E (transmembrane pressure), as well as the
interaction between these two factors (DE), have the greatest positive effects, as membranes having
higher MWCO and higher transmembrane pressures usually result in higher permeate fluxes. On the
other hand, antibiotic concentration (factor C) presents a negative effect (coefficient = –1.369) on the
permeate flux, p = 0.000. Increasing the antibiotic concentration, a decrease in the permeate flux is
observed, as there is a higher incidence of concentration polarization, which in more severe cases may
result in membrane fouling. Lower permeate fluxes associated with the increase on solute concentration
were already explained by the Spiegler–Kedem–Kachalsky (SKK) model, which states that the fluxes
of solute and solvent are directly related to the chemical potential differences between the two sides of
the membrane [39]. Other studies [7,34,40], using NF membranes treating pharmaceutics-containing
wastewater, have also reported this behavior.

4.3. Effect of Control Factors on Rejection

Table 5 displays the rejections as a function of the MW and concentration of the antibiotic and
of the feed flow rate for both membranes: NF97 (200 Da MWCO) and NF270 (400 Da MWCO).
For both NF membranes, the rejection was practically independent of feed flow rate, transmembrane
pressure, and antibiotic concentration. However, the membranes presented different rejections
regarding the antibiotic MW. While the tightest membrane (NF97) presented similar rejections for both
antibiotics, NOR and SMX, the membrane with the larger MWCO (NF270) presented low rejection to
SMX (approximately 65%) and high rejections to NOR (approximately 95%). Similarly to what was
previously reported for the permeate flux, the relationship between the solute MW and the membrane
MWCO has also an important role on the solute rejection. The NF97 membrane has a MWCO (200 Da)
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that is lower than the MW of both antibiotics, SMX (MW approximately 253 Da) and NOR (MW
approximately 319 Da), pointing out the steric hindrance as the main mechanism acting in the rejection
of both antibiotics. On the other hand, the NF270 membrane has an MWCO of 400 Da, which, in turn,
is higher than the MW of both antibiotics. Therefore, considering only the steric hindrance, very low
rejections for SMX would be expected by using the NF270 membrane, unlike the moderate rejections
observed, indicating thus the occurrence of other mechanisms, such as the Donnan exclusion effect.
These membranes present surface charges, usually negatives, which interact with the charges from
the solute; thus, they are associated with the size of the solute, and these electrostatic interactions can
increase or decrease the rejection [41]. Solute and membranes with equal charges repel each other,
increasing rejection, while opposite charges attract each other, promoting the adsorption of the solute
on the membrane, favoring its transport and reducing the rejection [34].

Table 5. Effects of the MW and concentration of the antibiotic and of the feed flow rate on the rejection
for NF97 and NF270 membranes.

Antibiotic
MW
(Da)

Concentration
(mg L−1)

QF
(L h−1)

R (%)

NF97 NF270

NOR 319

5 480 99.6 ± 0.3 95.6 ± 1.0
5 850 99.0 ± 0.4 95.2 ± 0.4
25 480 98.7 ± 0.3 96.8 ± 0.8
25 850 89.2 ± 3.0 95.0 ± 0.7

SMX 253

5 480 98.4 ± 0.1 65.3 ± 1.0
5 850 98.4 ± 0.1 65.4 ± 2.0
25 480 98.4 ± 0.1 63.3 ± 3.0
25 850 98.6 ± 0.1 69.1 ± 1.1

As reported in previous studies [34,38], polyamide membranes such as those used in this work
have amphoteric characteristics and an isoelectric point in the pH range between 3.5 and 4.0, such that,
in the pH range of the studied solutions (pH 5.5–6.0), they present negative surface charge. Therefore,
the rejection of 65% of SMX obtained with NF270 membrane can then be attributed to the Donnan
exclusion effect, once the SMX presents pKa of 1.67 and 6.16 and the SMX solutions had pH of
approximately 5.5, implying that 18% of the SMX species were in the anionic form and 82% were
in the neutral form (Figure 1a), while the membrane surface was negatively charged. The different
protonated states of SMX depending on pH are displayed in Figure 2a. In fact, as already pointed
out, the steric hindrance effect was not expected on the filtration of SMX solutions with the NF270
membrane, considering that this membrane presents a porous radius of about 0.42 nm [38] and the
SMX Stokes radius is 0.39 nm (see Table 1). SMX presents also a higher diffusion coefficient.

As the surface of the NF270 membrane was negatively charged, the NOR solutions had a pH
of approximately 6.0 and NOR presents pKa values of 5.58 and 8.68, while the NOR species were
approximately 72.5% in the neutral form (zwitterion), approximately 27.4% in the cationic form, and
0.1% in the anionic form (Figure 1b). The different protonated states of NOR depending on pH are
shown in Figure 2b. Thus, a strong attraction between the cationic species of NOR and the negatively
charged functional groups from the membrane surface may occur. Therefore, the high rejection of
NOR achieved with the NF270 membrane could be attributed to the steric hindrance effect and also to
the adsorption of NOR on the membrane, as reported in the literature [34]. Furthermore, the NOR
Stokes radius is 0.47 nm (see Table 1).

Considering the hydrophobicity characteristics of both antibiotics (see Table 1), SMX presenting
a log KOW value of 0.89 has low affinity with the active polymeric layer of the membrane. NOR,
with a smaller log KOW (−1.03), is more hydrophilic than SMX, presenting a higher affinity with the
membranes, resulting in electrostatic attraction/repulsion forces depending on pH.
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Figure 1. Speciation of SMX (a) and NOR (b) as a function of pH, prediction calculated data from
Chemicalize software [31].
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Figure 2. The different protonated states of SMX (a) and NOR (b) depending on pH: (i) neutral,
(ii) zwitterionic, (iii) cationic, and (iv) anionic.

Another characteristic to be considered is the polarizability. Between the two antibiotics, SMX
has the lowest values of polarizability and Stokes radius (see Table 1). Polarizability is the ability of a
molecule (or atom) to have its electron cloud distorted by an external electric field, changing its original
configuration. Thus, this distortion causes the molecule (or atom), originally non-polar, to acquire
a dipolar moment, that is, polarizability is the ability of a molecule (or atom) to form instantaneous
dipoles [23,42]. The greater the polarizability, the greater the polar character of the species, increasing
the forces of interactions with other species. Longer and more elongated molecules have their electron
clouds more easily distorted; that is, they are more polarizable. Conversely, small, compact, and
symmetrical molecules are less polarizable, resulting in weaker electron dispersion forces. SMX is less
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polarizable than NOR, so the electrostatic interactions with the membrane during filtration are smaller,
and a minor rejection is also expected.

Table S3 shows the coefficients and significance of the factors and interactions on rejection.
Considering the values of coefficients, they may be arranged in decreasing order of importance:
D—membrane MWCO (−9.103), A—antibiotic MW (7.838), AD—antibiotic MW, and membrane
MWCO interaction (7.683), AE—antibiotic MW and transmembrane pressure interaction (−0.680),
and ADE—antibiotic MW, membrane MWCO, and transmembrane pressure interaction (−0.671),
in which the first three are the most important ones. The membrane MWCO (factor D) has a strong
negative effect (coefficient = −9.103) on rejection, when it passes from the minimum level (MWCO
of 200 Da) to the maximum level (MWCO of 400 Da); that is, as the membrane MWCO increases,
rejection decreases, as shown in Table 5. The antibiotic MW (factor A) and the interaction antibiotic
MW—membrane MWCO (AD) have also strong effects (coefficients = 7.838 and 7.683, respectively) on
rejection, in which this behavior is related to the membrane MWCO and to the antibiotic MW and
its physicochemical properties, as discussed above. Conversely, the transmembrane pressure (factor
E) has no significant influence (p = 0.220) on the rejection, but when associated with factor A and
with the second-order interaction AD, resulting in the second-order interaction AE (−0.680) and in the
third-order interaction ADE (−0.671), respectively, it gains greater relevance.

4.4. Modeling for Predictions of Permeate Flux and Antibiotic Rejection

Based on the results obtained in the 25 factorial design, the regression equations for the response
variables, rejection (Equation (4)), and permeate flux (Equation (5)) were achieved, considering only
the factors and interactions as statistically significant. Besides, both response variables (rejection and
permeate flux) were calculated using the coded values for the factors reported in Table 2—that is, with
values between the levels – 1 and + 1. The non-significant factors (p > 0.05) were removed. Thus,
the significant factors investigated for rejection were A (antibiotic MW) and D (membrane MWCO),
as well as the interactions AD, AE, and ADE. Coefficients were defined by the ordinary least squares.
Then, for rejection, the following relationship was obtained:

Rejection = 89.449 + 7.838A− 9.103D + 7.683AD− 0.680AE− 0.671ADE (4)

For the permeate flux, except for factor B, all other main factors were significant, as well as the
interactions AB, AD, AE, CD, CE, DE, ABD, ADE, and CDE, yielding the following relationship:

Permeate f lux = 62.784− 2.064A− 1.369C + 30.120D + 25.364E− 0.888AB
−2.148AD− 0.968AE− 0.876CD− 0.647CE + 11.707DE
−0.798ABD− 1.116ADE− 0.630CDE

(5)

Based on the experimental results of the factorial design, an internal validation of the model was
performed, as reported in other work [22]. Figures 3a and 4a show the scatter diagram of the permeate
flux and rejection to the antibiotics by plotting experimental versus predicted values. For both response
variables, the coefficients of determination (R2) and adjusted determination (R2

adj) were greater than
0.98, showing that the model has a good agreement with experimental results obtained for NF97 and
NF270 membranes treating solutions containing antibiotics with MW from 253 to 319 Da, namely SMX
and NOR. Besides, low values for relative error are reported for both response variables, permeate flux
and rejection, with average values of 3.41 ± 1.22% and 1.59 ± 0.86%, respectively (Figures 3b and 4b).
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Figure 3. Scatter diagram for the permeate flux model. (a) Plot of predicted permeate fluxes vs.
experimental permeate fluxes; (b) Plot of relative error as a function of predicted permeate flux.
Permeate fluxes are given in kg h−1 m−2.
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Figure 4. Scatter diagram for the rejection model. (a) Plot of predicted rejections vs. experimental
rejections; (b) Plot of relative error as a function of predicted rejection.

4.5. External Model Validation

The model to predict permeate flux and rejection was tested with 100 additional experimental
runs, that is, experiments that were not part of the model construction being considered as an external
validation. Figures 5a and 6a show a good fit between the experimental results and the predicted
values for both response variables, permeate flux (R2 > 0.99) and rejection (R2 > 0.97), respectively.
Furthermore, low relative errors were achieved for both response variables (Figures 5b and 6b).
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Figure 5. Scatter diagram for permeate flux data external to the model. (a) Plot of predicted permeate
fluxes vs. experimental permeate fluxes; (b) Plot of relative error as a function of predicted permeate
flux. Permeate fluxes are given in kg h−1 m−2.
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Figure 6. Scatter diagram for rejection data external to the model. (a) Plot of predicted rejections vs.
experimental rejections; (b) Plot of relative error as a function of predicted rejection.

4.6. Effect of the Wastewater Background Matrix on the NF Performance

Table 6 shows the NF performance, regarding NOR and SMX rejection and permeate flux,
as tertiary treatment of a real urban wastewater, in which the experimental results are compared with
the data predicted by the model developed with synthetic solutions (Equations (4) and (5)).

The tightest membrane (NF97) presented very close rejection values, predicted and experimental
ones, for both antibiotics (SMX and NOR). On the contrary, this membrane presented predicted values
for permeate flux lower than the experimental ones. The loose membrane (NF270) also showed very
close predicted and experimental NOR rejections, as well as lower predicted values for permeate
flux than the values of the experimental results. On the other hand, NF270 presented a substantially
greater rejection of SMX in the experimental results using the real wastewater, with values about
50% greater than those predicted by the model (Table 6). These results show that rejection and
permeate flux were influenced by the wastewater background matrix, once it contains organic and
inorganic compounds (Table 3), in which the loose membrane (NF270) is the most affected, especially
regarding the rejection of the antibiotic (SMX) with lower MW. As reported in the literature [43,44],
pharmaceutical compounds (e.g., antibiotics) can interact with the functional groups present on organic
matter forming macromolecular complexes. In turn, these increase the effect of steric hindrance and
the adsorption of pharmaceutical compounds on the membrane surface or inside its pores caused by
the hydrophobicity of organic matter [10], increasing the rejection and reducing the permeate flux.
In addition, the higher rejection presented by NF270 treating the urban wastewater could be associated
with the inorganic background (wastewater conductivity approximately 430 µS cm−1), once it has
already been noticed [45] that the ion adsorption may narrow the NF membrane pores.

Table 6. NF as a tertiary treatment of urban wastewater: antibiotic rejection and permeate flux.

Antibiotic Membrane
Water

Recovery
(%)

Permeate Flux (kg h−1 m−2 bar−1) Rejection (%)

Experimental Predicted Experimental Predicted

NOR
NF97

65 12.7 19.27 98.08 98.72
70 12.5 19.27 98.64 98.72

NF270
65 38.5 55.88 97.06 97.22
70 38.2 55.88 96.47 97.22

SMX
NF97

65 12.66 19.22 97.80 98.39
70 12.45 19.22 98.01 98.39

NF270
65 38.52 56.72 96.26 63.47
70 38.14 56.76 97.01 63.47
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5. Conclusions

Nanofiltration was applied to the treatment of SMX- and NOR-containing wastewater, with tight
and loose NF membranes and different operational conditions. The tightest membrane (NF97)
presented, in all conditions investigated, the best results regarding antibiotics rejection (higher than
97%), but the lowest permeate fluxes. Conversely, the NF270 membrane showed lower rejections
(65–97%) to the smallest antibiotic (MW approximately 253 Da), in which the rejection was dependent
on aqueous matrix and permeate fluxes about three-fold higher than the ones achieved with the
NF97 membrane. These results confirmed that the characteristics of membrane and solute, operating
conditions, as well as the water background, play an important role in the nanofiltration of wastewater,
as was demonstrated with the synthetic solutions and with the real wastewater studied.

A multiple linear regression model was applied to predict the rejection and the permeate flux
for both membranes and for the SMX- and NOR-containing synthetic solutions and real wastewater.
A good agreement between the predicted and the experimental values was achieved, showing that this
model may be applied as a tool to the scaling up of processes for the treatment of wastewater with
low organic charge. Further experimental and theoretical deepening studies are important for the
treatment of urban wastewater and other more complex wastewater.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/10/7/156/s1,
Table S1: Full factorial design used in the NF permeation experiments, Table S2: Results of the coefficients of
factors in relation to permeate flux, with p < 0.05 in bold. A = antibiotic MW (Da); B = feed flow rate (L h−1);
C = antibiotic concentration (mg L−1); D = membrane MWCO (Da); E = transmembrane pressure (bar), Table S3:
Results of the coefficients of factors in relation to rejection, with p < 0.05 in bold. A = antibiotic MW (Da); B = feed
flow rate (L h−1); C = antibiotic concentration (mg L−1); D = membrane MWCO (Da); E = transmembrane pressure
(bar).
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