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Abstract: Landslides are a major geological hazard worldwide. Landslide susceptibility assessments
are useful to mitigate human casualties, loss of property, and damage to natural resources, ecosystems,
and infrastructures. This study aims to evaluate landslide susceptibility using a novel hybrid
intelligence approach with the rotation forest-based credal decision tree (RF-CDT) classifier. First,
152 landslide locations and 15 landslide conditioning factors were collected from the study area.
Then, these conditioning factors were assigned values using an entropy method and subsequently
optimized using correlation attribute evaluation (CAE). Finally, the performance of the proposed
hybrid model was validated using the receiver operating characteristic (ROC) curve and compared
with two well-known ensemble models, bagging (bag-CDT) and MultiBoostAB (MB-CDT). Results
show that the proposed RF-CDT model had better performance than the single CDT model and
hybrid bag-CDT and MB-CDT models. The findings in the present study overall confirm that a
combination of the meta model with a decision tree classifier could enhance the prediction power of
the single landslide model. The resulting susceptibility maps could be effective for enforcement of
land management regulations to reduce landslide hazards in the study area and other similar areas
in the world.
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1. Introduction

Landslides, one of the most frequent geological hazards in China, cause thousands of millions of
dollars in damage, dozens of casualties, and many geological environment problems every year [1–5].
In order to reduce the losses caused by landslides, predicting the areas where landslides are most likely
to occur has become more important [3,6]. Landslide susceptibility research is an important approach
to predicting the spatial distribution of landslides, which can be regarded as the spatial probability of
landslide occurrence, according to a series of geoenvironmental conditions [7].

A landslide is a pattern of transforming the Earth’s surface under the influence of human
activities [8–10]. Landslide is complex movement under the action of multiple factors, such as
altitude, slope angle, rainfall, lithology, land use, and so on [11–13]. In recent years, more researchers
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have coupled geographic information systems (GISs) and assessment methods to study landslide
susceptibility mapping, which has been confirmed to be effective [14–16].

As there are no universal methods in landslide susceptibility mapping, various approaches have
been used to study landslide susceptibility, such as statistical models of entropy [17–21], evidential
belief function [22,23], frequency ratio [24–26], weight of evidence [19,27], certainty factors [28–30],
logistic regression models [31–33], and generalized additive models [34,35].

In addition to the above traditional statistical methods, various machine learning techniques have
been introduced for landslide susceptibility mapping, such as artificial neural networks [24,36–39],
support vector machines [34,40–42], naïve Bayes trees [43–45], alternating decision trees [46–48],
rotation forests [32,49,50], kernel logistic regression [51,52], adaptive neuro-fuzzy inference
systems [34,53,54], logistic model trees [49,52], and classification and regression trees [55–57]. However,
the best method for landslide susceptibility mapping is still under discussion [58].

This paper takes Linyou County (China) as the study area and uses a novel, intelligent
hybrid approach—a rotation-forest-based [59] credal decision tree classifier (RF-CDT) [60]—for
landslide susceptibility mapping. In addition, two well-known ensemble models, bagging [61] and
MultiBoostAB [62], were used as benchmark methods for comparison purposes. The results were
validated by the area under the receiver operating characteristic (ROC) curve and statistical analysis.
These landslide susceptibility maps were obtained in Linyou County and can be used for landslide
mitigation and land use planning.

2. Study Area

Linyou County is located in the northeast of Baoji City in Shaanxi Province, China. It lies between
longitudes of 107◦19′–108◦2′E and latitudes of 34◦33′–34◦58′N (Figure 1). Linyou County belongs to
the temperate semihumid–humid monsoon climate zone. The climate is characterized by insufficient
heat, droughty spring, cool summer, wet autumn, and cold winter. The average temperature is 9.1 ◦C.
The annual average rainfall is 680 mm, mostly concentrated from July to September, accounting for
more than 50% of the annual rainfall [63].

Topographically, the elevation increases from southeast to northwest, with average, highest,
and lowest elevations of 1271, 1661, and 724 m, respectively. Slope angles of Linyou County range
from 0 to 64.67◦. Most of the slope angles are in the range of 10–20◦ (42.375%), followed by 20–30◦

(27.160%), 0–10◦ (22.910%), 30–40◦ (6.829%), 40–50◦ (0.700%), 50–60◦ (0.026%), and >60◦ (0.001%).
Soil types are mainly Calcaric Cambisol (82.702%) and Eutric Cambisol (12.653%).

3. Materials and Methods

3.1. Data Preparation

A landslide inventory map contains the previous locations of landslides [64]. In the current
study, interpretations of multitemporal Google Earth data and historical records of landslides were
used to prepare the primary landslide inventory map; furthermore, field surveys by handheld Global
Positioning System (GPS) devices were carried out to verify landslide locations. Finally, a total of
152 landslides were mapped (Figure 1) and digitalized using ArcGIS software (Esri, Redlands, CA,
USA) [65], including 113 slides and 39 falls [66], and were randomly divided into two parts (70/30) for
the building and validation of models.

The selection of conditioning factors is the foundation of landslide susceptibility assessment,
and it has a direct impact on the evaluation results. However, there is no clear agreement with
the precise cause of landslides due to their complex nature and development. Based on previous
studies [67–69] and the geoenvironmental characteristics of the study area, 15 conditioning factors
were selected: attitude, slope angle, slope aspect, plan curvature, profile curvature, sediment transport
index (STI), stream power index (SPI), topographic wetness index (TWI), distance to rivers, distance to
roads, normalized difference vegetation index (NDVI), soil, land use, lithology, and rainfall.
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Figure 1. Study area.

Altitude, which greatly influences topographic attributes and controls differences in vegetation
distribution, is one of the most commonly used factors in landslide susceptibility studies [70–72].
The altitude map (Figure 2a) was achieved from ASTER GDEM data with a resolution of 30 m collected
from the National Aeronautics and Space Administration (NASA) [73]. In addition, DEM data were
used to generate slope angle (Figure 2b), slope aspect (Figure 2c), plan curvature (Figure 2d), profile
curvature (Figure 2e), STI (Figure 2f), SPI (Figure 2g), and TWI (Figure 2h) by GIS software [74,75].
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Distances to rivers, which can influence the hydrologic processes of a slope, were obtained by
buffering the river network from the topographic maps at the 1:50,000 scale (Figure 2i). Meanwhile,
distances to roads were constructed by the same method from the road distribution maps (Figure 2j).
This can be regarded as the impact of human activities on landslides, which causes a loss of toe support
and changes the landform. NDVI is an index that shows the vegetation growth state and coverage.
It can affect the stability of landslides through the reinforcement of plant roots and the permeability of
surface soil (Figure 2k) [76–78].

The physical and mechanical properties of soil vary with soil type. They also influence the
infiltration of surface water and the flow of ground water [79,80]. The soil types in the study area
were classified into six classes (Figure 2l). Land use, an important conditioning factor in landslide
susceptibility assessment, has been employed in many studies [81,82], and was classified into six types
for this study (Figure 2m). Lithology is also a frequently used factor in landslide susceptibility analysis,
because different rock strata have different physical and mechanical properties [67,83]. The lithology
map was achieved from the geological maps at a scale of 250,000 and reclassified into 13 classes (Table 1,
Figure 2n). Rainfall, widely considered as a controlling factor in landslide occurrence, can reduce the
strength of rock and soil mass and increase slope weight [84–86]. The data were obtained from the
Shaanxi Provincial Meteorological Bureau [87], and the maximum and minimum annual rainfall were
650 and 329 mm, respectively, in 2015 (Figure 2o).

Table 1. Lithology of the study area.

Name Lithology Geological Age

Group A Loess Quaternary
Group B Gravel, fine sandstone, argillaceous silt Quaternary

Group C Brown-red calcareous clay rock interbedded with sandy
clay rock, sandstone, and glutenite Neogene

Group D Sandstone interbedded with mudstone; mudstone and
siltstone interbedded with sandstone Cretaceous

Group E Powder-fine sandstone, mudstone interbedded with tuff
and marlstone Cretaceous

Group F Sandstone interbedded with conglomerate Cretaceous
Group G Conglomerate interbedded with glutenite and sandstone Cretaceous

Group H Feldspathic sandstone, mudstone, siltstone, coarse
sandstone, fine conglomerate Jurassic

Group I Interbedded sandstone and mudstone, coarse sandstone,
sandstone, coal seam Jurassic

Group J Interbedded sandstone and mudstone, marlstone,
conglomerate, sandstone, siltstone, shale, oil shale Triassic

Group K Sandstone interbedded with mudstone, siltstone, and
coal seam Permian

Group L Conglomerate, siliceous dolomite, shale, shale
interbedded with sandstone Ordovician

Group M Upper: argillaceous dolomite Middle: fine-grained
dolomite Bottom: spatulate dolomite, oolitic dolomite Cambrian
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Figure 2. Thematic maps of the study area: (a) altitude; (b) slope angle; (c) slope aspect; (d) plan
curvature; (e) profile curvature; (f) sediment transport index (STI); (g) stream power index (SPI);
(h) topographic wetness index (TWI); (i) distance to rivers; (j) distance to roads; (k) normalized
difference vegetation index (NDVI); (l) soil; (m) land use; (n) lithology; (o) rainfall.

3.2. Index of Entropy (IoE)

The entropy of a landslide refers to the extent to which various conditioning factors influence
its development [20]. The equations used to calculate the information coefficient Wj representing the
weight values for the various conditioning factors [17,18] are as follows:

Pi j =
Percentage o f landslide
Percentage o f domain

(1)

(Pij) =
Pij

Sj

∑
j=1

Pij

(2)

Hjmax = log2 Sj, Sj is the number of classes (3)
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Hj = −
Sj

∑
i=1

(Pij) log2(Pij), j = 1, 2, . . . , n (4)

Ij =
Hjmax − Hj

Hjmax
(5)

Wj = Ij × Pij (6)

where Hj and Hjmax are the entropy values, Ij is the information coefficient, and Wj is the resulting
weight value for the factors as a whole [21].

3.3. Credal Decision Tree

The credal decision tree (CDT) was proposed by Abellán and Moral in 2003 to address classification
problems with credal sets [60]. During the construction process of a CDT, to avoid generating a
too-complicated decision tree, a novel criterion was introduced: stop when the total uncertainty
increases due to branching of the decision tree [88]. Based on Dempster’s and Shafer’s theory [89,90],
an improved method was created to quantitatively measure the total uncertainty of credal sets.
The function used in total uncertainty measurement can be briefly expressed as Equation (7):

TU(ξ) = IG(ξ) + GG(ξ) (7)

where ξ is a credal set on frame X, TU represents the value of total uncertainty, IG is a general function
of nonspecificity on the corresponding credal set, and GG is a general function of randomness for a
credal set. Abellán and Moral acquired sequences of conclusions and achievements related to total
uncertainty measurement [91,92], and the calculation procedure of TU and properties of this measure
are described systematically in relevant references.

The imprecise Dirichlet model [93] was employed to compute the probability intervals of a
variable. Suppose that Z is a variable whose values are represented by zj, and the corresponding
probability distribution p(zj) satisfies Equation (8) [94]:

p(zj) ∈
[ nzj

N + s
,

nzj + s
N + s

]
(8)

where nzj is the number of occurrences of the event where Z = zj, N is the sample size, and S is a
hyperparameter whose value is usually 1 or 2, according to Walley [93].

3.4. Rotation Forest

Generally, it is considered that classifier ensembles can improve the performance of a single
classifier [59]. As a novel technique to construct classifier ensembles, the rotation forest (RF) model
has been widely used in landslide susceptibility mapping with the aim of acquiring better prediction
accuracy [95–97]. Suppose that X is the original training data, and X can be written as an N × n matrix
(N is the number of training samples, and n is the number of features). The corresponding class label set
and feature set can be denoted as Y and F, respectively. Assume that L is the total number of decision
tree classifiers in the RF algorithm, and the ith decision tree is Di (i = 1, 2, . . . , L). In the RF algorithm,
F is first randomly split into k subsets. We can then obtain Fij (the jth feature subset for the ith decision
tree) and Xij (the training data for features in Fij). Based on the bootstrap approach, a nonempty subset
X′ij is generated, whose size is 75% of the original training data. In the next step, an M × 1 (M = n/k)
coefficient vector is obtained by using linear transformation on X′ij, and the coefficient vector can
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be expressed as
{

a1
ij, . . . , aM1

ij

}
. Subsequently, a sparse rotation matrix Ri can be created, shown as

Equation (9):

Ri =


a(1)i1 , . . . , a(M1)

i1 {0} . . . {0}
{0} a(2)i2 , . . . , a(M2)

i2 . . . {0}
...

...
...

...

{0} {0} . . . a(k)ik , . . . , a(Mk)
ik

. (9)

In this way, the new training dataset for Di can be calculated as Equation (4), and all the single
decision tree classifiers will be trained in a parallel manner [98].

Transformed training set = XRa
i (10)

where Ra
i is the new sparse rotation matrix formed by rearranging the columns of Ri according to the

original feature set.

3.5. Bagging

Bagging is an abbreviation for “bootstrap aggregating”, which is a technique to raise the accuracy
of machine learning algorithms [61]. The main idea of bagging is that it generates an ensemble
classifier composed of multiple base classifiers that are constructed with various bootstrapped training
sets [99]. Bagging not only contributes to decreasing the classification variance but also can improve
the generalization capability of the ensemble classifier [61]. It has been proved that the combining rule
of base classifiers may have a notable effect on bagging performance [100]. Currently, the majority
vote combining rule has been adopted extensively in bagging. The ultimate classification result can be
obtained by the formula demonstrated in Equation (11):

C∗(x) = argmax
y∈Y

t

∑
i=1

1(Ci(x) = y) (11)

where 1(Ci(x) = y) is the indicator function.

3.6. MultiBoostAB

MultiBoostAB is the Waikato Environment for Knowledge Analysis (WEKA) version of
MultiBoosting [62]. In essence, MultiBoosting is a combination of AdaBoost and wagging, a variant
of bagging [101]. AdaBoost and bagging are two widely used techniques in the field of ensemble
learning [96,99,102]. It was demonstrated that AdaBoost could remarkably decrease the bias and
variance of classifiers, while bagging only had an attenuation effect on variance [103]. However, it has
been proved that bagging has better performance in error reduction [61]. Compared with bagging,
wagging determines random instance weights with the continuous Poisson distribution. Suppose that
i is the number of subcommittees, Ii is a variable to limit the iterations of the ith subcommittee, and T
represents the number of iterations. Values of Ii can be calculated by Equation (12):

n = bTc
Ii = di× T/ne (i = 1, 2, · · · , n−1)

Ii = T (i = n, n+1, · · · , ∞)

(12)

In the process of iteration, the weighted errors on training sets can be figured out by Equation (13).
βt depends on the corresponding value of error, and the final classification function is shown as
Equation (14) [101]:

εt =

∑
xj∈S′ :Ct(xj) 6=yj

weight(xj)

m
(13)
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C∗(x) = argmax
y∈Y

∑
t:Ct(x)=y

log
1
βt

(14)

where εt refers to the weighted error, m is the number of examples in the training sequence, and Ct(xj)
is the classification result of the tth base classifier.

4. Results and Analysis

4.1. Selection of Landslide Conditioning Factors

In the present study, the index of entropy model was used to reduce the unevenness among the
factors and thereby provide a realistic status of their impact on landslide susceptibility (Table 2) [104].
The results of each class of the conditioning factors were then extracted as inputs to calculate the
importance of conditioning factors and modeling landslide susceptibility. The result of the importance
of conditioning factors by correlation attribute evaluation (CAE) [105] is shown in Table 3. It shows
that all the conditioning factors contribute to the landslide susceptibility model. NDVI, with an
average merit (AM) of 0.273, has the highest AM of all the conditioning factors, followed by distance to
roads (AM = 0.242), land use (AM = 0.191), distance to rivers (AM = 0.127), rainfall (AM = 0.092), STI
(AM = 0.091), SPI (AM = 0.090), profile curvature (AM = 0.072), plan curvature (AM = 0.060), lithology
(AM = 0.055), TWI (AM = 0.048), soil (AM = 0.044), slope aspect (AM = 0.025), slope angle (AM = 0.015),
and altitude (AM = 0.014). All 15 conditioning factors were applied to create the landslide susceptibility
maps in the study area in virtue of their positive contributions to the models.

Table 2. Correlation between landslides and conditioning factors using the index of entropy
(IoE) method.

Conditioning
Factor Classes Percentage

of Domain
Percentage of

Landslides
(Pij) Ij Wj

Altitude (m) 724–800 0.103 0.000 0.000 0.203 0.168

800–900 0.779 1.887 0.292
900–1000 2.705 0.000 0.000
1000–1100 7.581 6.604 0.105
1100–1200 14.306 21.698 0.183
1200–1300 24.928 27.358 0.132
1300–1400 30.262 21.698 0.086
1400–1500 17.504 19.811 0.136
1500–1600 1.733 0.943 0.066
1600–1661 0.099 0.000 0.000

Slope angle (◦) 0–10 22.910 23.585 0.244 0.229 0.162
10–20 42.375 41.509 0.232
20–30 27.160 26.415 0.230
30–40 6.829 8.491 0.294
40–50 0.700 0.000 0.000

50–64.67 0.027 0.000 0.000
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Table 2. Cont.

Conditioning
Factor Classes Percentage

of Domain
Percentage of

Landslides
(Pij) Ij Wj

Slope aspect Flat 0.028 0.000 0.000 0.095 0.085
North 11.352 6.604 0.072

Northeast 13.563 10.377 0.094
East 14.844 16.038 0.133

Southeast 11.877 22.642 0.235
South 10.414 14.151 0.168

Southwest 12.378 15.094 0.151
West 13.614 7.547 0.068

Northwest 11.928 7.547 0.078
Plan curvature Concave 45.118 34.906 0.240 0.020 0.021

Plan 8.877 11.321 0.396
Convex 46.005 53.774 0.363

Profile curvature Concave 45.281 48.113 0.361 0.002 0.002
Plan 7.095 6.604 0.316

Convex 47.624 45.283 0.323
STI <10 76.576 82.075 0.324 0.345 0.228

10–20 17.018 12.264 0.218
20–30 3.726 5.660 0.459
30–40 1.317 0.000 0.000
>40 1.363 0.000 0.000

SPI <10 56.676 59.434 0.223 0.054 0.051
10–20 19.037 23.585 0.263
20–30 7.932 2.830 0.076
30–40 4.124 5.660 0.291
>40 12.230 8.491 0.147

TWI <2 56.140 62.264 0.332 0.160 0.107
2–3 35.052 31.132 0.266
3–4 6.804 5.660 0.249
4–5 1.845 0.943 0.153
>5 0.159 0.000 0.000

Distance to
rivers (m) <200 26.385 28.302 0.219 0.018 0.017

200–400 22.387 28.302 0.258
400–600 17.492 19.811 0.231
600–800 12.379 9.434 0.156

>800 21.357 14.151 0.135
Distance to
roads (m) <500 16.524 27.358 0.299 0.036 0.040

500–1000 14.614 20.755 0.257
1000–1500 12.738 9.434 0.134
1500–2000 10.994 11.321 0.186

>2000 45.130 31.132 0.125
NDVI −0.02–0.23 7.755 16.981 0.288 0.216 0.328

0.23–0.32 10.093 28.302 0.369
0.32–0.38 18.757 41.509 0.291
0.38–0.44 34.724 11.321 0.043
0.44–0.58 28.672 1.887 0.009

Soil Fimic Anthrosol 0.328 0.000 0.000 0.436 0.325
Calcaric

Cambisol 82.702 79.245 0.214

Eutric Cambisol 12.653 14.151 0.250
Gleyic Cambisol 2.750 6.604 0.536
Calcaric Regosol 0.377 0.000 0.000
Eutric Regosol 1.190 0.000 0.000
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Table 2. Cont.

Conditioning
Factor Classes Percentage

of Domain
Percentage of

Landslides
(Pij) Ij Wj

Land use Farmland 34.928 65.094 0.282 0.477 0.525
Forestland 16.617 0.943 0.009
Grassland 48.185 33.019 0.104

Water 0.008 0.000 0.000
Residential areas 0.236 0.943 0.605

Bareland 0.025 0.000 0.000
Lithology A 65.720 52.830 0.043 0.239 0.343

B 0.021 0.000 0.000
C 5.811 5.660 0.052
D 0.251 0.943 0.201
E 3.165 9.434 0.160
F 7.254 7.547 0.056
G 2.576 12.264 0.255
H 0.965 2.830 0.157
I 0.245 0.000 0.000
J 8.257 6.604 0.043
K 3.074 1.887 0.033
L 2.336 0.000 0.000
M 0.326 0.000 0.000

Rainfall
(mm/yr) <400 2.041 0.000 0.000 0.210 0.161

400–500 7.117 6.604 0.303
500–600 74.158 74.528 0.328

>600 16.684 18.868 0.369

Table 3. Importance of conditioning factors based on correlation attribute evaluation (CAE).

Landslide Conditioning Factor Average Merit (AM) Standard Deviation (SD)

NDVI 0.273 ±0.019
Distance to roads 0.242 ±0.014

Land use 0.191 ±0.020
Distance to rivers 0.127 ±0.019

Rainfall 0.092 ±0.017
STI 0.091 ±0.026
SPI 0.090 ±0.032

Profile curvature 0.072 ±0.017
Plan curvature 0.060 ±0.023

Lithology 0.055 ±0.015
TWI 0.048 ±0.021
Soil 0.044 ±0.016

Slope aspect 0.025 ±0.017
Slope angle 0.015 ±0.015

Altitude 0.014 ±0.010

4.2. Generation of Landslide Susceptibility Maps

After the training and validation processes of landslide models, landslide susceptibility maps
were obtained in the following two steps. First, the probability of landslide occurrence (PLO) for
each pixel was generated using the probability distribution functions of the CDT and RF-CDT models.
In the second step, PLOs were reclassified by mathematical methods, such as standard deviation,
equal interval, natural break, geometric interval, and quantile. In this study, the quantile method
was exploited to divide the PLOs into five categories: very low, low, moderate, high, and very high.
The quantile method is a standard classification method in ArcGIS software that provides a more
comprehensive analysis for both linear and nonlinear models in practical problems and makes a useful
supplement for general regression models [106,107]. Therefore, the landslide susceptibility mappings
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(LSMs) in this research were classified by the quantile method. Figures 3 and 4 present the results of
LSMs for the CDT and RF-CDT models, respectively.Entropy 2019, 21, 106 13 of 22 
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To further demonstrate the feasibility of the RF-CDT model in the landslide susceptibility
study, two ensemble models, consisting of the CDT model as well as bagging and MultiBoostAB,
were introduced to the benchmark models. The establishment, training, validation, and assessment
processes of the benchmark models were the same as with the RF-CDT model, and landslide
susceptibility maps generated by the benchmark models are shown in Figures 5 and 6. Area percentages
of landslide susceptibility classes of all models are shown in Figure 7.
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4.3. Model Validation and Comparison

In landslide susceptibility modeling, it is essential to validate and compare the quality of results.
Validation of the results is regarded as one of the most important aspects of landslide susceptibility
research, and the assessment results will not show scientific significance without validation [34,108].
In this paper, the prediction ability of the four models was evaluated using the receiver operating
characteristic (ROC) curve [109,110]. The ROC curves and the parameters of the ROC curves using the
training dataset are shown in Figure 7 and Table 4, respectively. Similarly, the ROC curves and the
parameters of the ROC curves using the validation dataset are shown in Figures 8 and 9 and Table 5,
respectively. In the training dataset, the RF-CDT model has the highest area under the ROC curve
(AUC) value (0.813), followed by the bag-CDT model (0.809), the MB-CDT model (0.788), and the CDT
model (0.779). The model with the highest AUC value for the validation dataset was RF-CDT (0.759),
followed by bag-CDT (0.740), MB-CDT (0.729), and CDT (0.663). It can be concluded that the RF-CDT
model had the best performance in both training and validation processes. All the evaluation results
were obtained under a confidence interval (CI) at 95%.
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Table 4. Parameters of ROC curves using training dataset. AUC: area under the receiver operating
characteristic curve; SE: standard error; CI: confidence interval.

Model AUC SE 95% CI

CDT 0.779 0.0328 0.717 to 0.833
RF-CDT 0.813 0.0300 0.754 to 0.863
Bag-CDT 0.809 0.0302 0.750 to 0.860
MB-CDT 0.788 0.0320 0.727 to 0.841

Table 5. Parameters of ROC curves using validation dataset.

Model AUC SE 95% CI

CDT 0.663 0.0547 0.557 to 0.758
RF-CDT 0.759 0.0504 0.658 to 0.842
Bag-CDT 0.740 0.0515 0.638 to 0.826
MB-CDT 0.729 0.0537 0.626 to 0.816

5. Discussion

Landslides have caused much financial loss and have threatened the safety of humans all over
the world [111]. Various approaches have been used to study landslide susceptibility, and the research
methods have evolved from simple statistical models to machine learning models. In order to achieve
precise evaluation results, the use of new models in landslide susceptibility research has become more
important. In this study, we chose the credal decision tree (CDT) as the basic model and combined it
with rotation forest (RF), bagging (bag), and MultiBoostAB (MB) models to build ensemble models.

As there are no standards for selecting landslide conditioning factors [112], how to determine the
conditioning factors has become a very important issue. In order to deal with it reasonably, the selection
of conditioning factors in this paper was based on the geoenvironmental characteristics of the study
area, the mechanism of landslide occurrence, and similar landslide susceptibility studies.

According to the importance analysis by the CAE model, it can be concluded that the NDVI,
a commonly used conditioning factor that indicates the state of plant growth in the study area, is the
most important landslide conditioning factor. According to its definition, the interval of NDVI value
is [−1, 1] and the higher the value, the better the vegetation growth. The study area lies in hilly and
valley regions of the Weibei dry plateau, one of the key areas of soil and water loss of Shaanxi Province,
and rainfall is mainly concentrated from July to September. Therefore, under the joint action of uneven
distribution of rainfall and serious soil erosion, the vegetation growth of the study area is relatively
low, and the NDVI interval is [−0.09, 0.39]. In addition, many studies have indicated that plants play a
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positive role in landslide occurrence because their root systems can increase soil strength and reduce
water infiltration [113–115].

In the case of land use, the average merit is 0.191. It is well known that land use has a close
relationship with human activities and may affect soil and water loss, precipitation infiltration,
and surface structure [116]. It can be seen in Figure 2m that farmland is the main type of land
use. As the study area is located in the Weibei dry plateau, the infiltration of agricultural water will
increase slope mass and reduce soil strength, which makes landslides occur more easily. It can be seen
in Figures 4–7 that most landslides occur in low-altitude areas with nearby linear conditioning factors,
such as distance to roads and rivers. Correspondingly, we can find that landslides decrease as we
move away from roads and rivers. These results can also be found in similar studies [117,118].

According to the parameters of ROC curves of the training and validation datasets, the RF-CDT
model reflected the spatial distribution of landslides perfectly, while the CDT model had the lowest
accuracy rate. The rotation forest model is a powerful new machine learning method that has
been widely used in many fields and performed admirably in previous landslide susceptibility
studies [32,49,119]. The bag-CDT model performed worse than the RF-CDT model, and its AUC
values of training and validation datasets were 0.809 and 0.740, respectively. The MB-CDT model
ranked third, with training and validation dataset AUC values of 0.788 and 0.729, respectively.

In a nutshell, the ensemble models in this paper expressed more promising results compared to
single evaluation models in current studies [96,120,121]. Based on the CDT model combined with the
RF, bag, and MB models, landslide susceptibility in Linyou County was studied. As mentioned above,
the RF-CDT model performed best in this research compared to other models. This raised a question as
to why AUC values increased rapidly with the CDT model combined with the RF model. Perhaps the
answer to this question can be explained as “slightly underperformed,” which means that there should
be a threshold for positive synergy among models [122,123]. In this paper, the RF model had the best
cooperation with the CDT model. However, limits in different models have different interconnection
rules that may be difficult to determine, especially when facing a series of factors with various ranges.

6. Conclusions

The present study allowed us to reach the following conclusions:
(1) The importance of conditioning factors was quantitatively defined by CAE. All 15 conditioning

factors were applied to create the landslide susceptibility maps, and NDVI had the highest importance
of all the conditioning factors.

(2) The proposed hybrid RF-CDT model, with AUC values of 0.813 and 0.759, achieved good
results in the training and validation phases compared to the single CDT model.

(3) The performance of the proposed hybrid RF-CDT model was also compared with the hybrid
bag-CDT and MB-CDT models, and the results of AUC, SE, and CI at 95% also indicate that the
RF-CDT model is a promising method.

As a final remark, it is worth noting that the present study indicates that machine learning
ensemble frameworks are promising techniques, and the obtained susceptibility maps may be
employed to manage land use planning and landslide risk mitigation.
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