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Construction of a novel mRNAsi-related risk model for predicting
prognosis and immunotherapy response in osteosarcoma
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Background: Targeting cancer stem cells (CSC) may represent a future therapeutic direction for
osteosarcoma (OS), which mainly relies on the identification of CSC markers. This study aimed to classify
OS based on messenger ribonucleic acid (mRNA) stemness indices (nRNAsi) and construct a mRNAsi-
related risk model to predict the prognosis of OS.

Methods: The one-class logistic regression (OCLR) algorithm was applied to the RNA- sequencing (seq)
data of human embryonic stem cells (hESC) and induced pluripotent stem cell (iPSC) lines to calculate
mRNAsi. Weighted gene co-expression network analysis (WGCNA) was performed on data obtained
from the TARGET database to screen the mRNAsi-related genes. Univariate Cox regression analysis was
implemented to screen mRNAsi-related genes with prognostic significance for consensus clustering of OS.
The least absolute shrinkage and selection operator (LASSO) and COX regression analysis were conducted
to construct a risk model based on mRNAsi-related genes.

Results: Six gene modules were identified in the TARGET database. The yellow module showed the
strongest negative correlation with mRNAsi and the strongest significant positive correlation with the
immune score and stromal score. OS was divided into three molecular subtypes with significant survival
differences based on 73 mRNAsi-related genes with prognostic value for OS. The survival rate was ranked
as C3 < C1 < C2 from low to high. The levels of immune components in C2 was significantly higher than
those in C1 and C3. HSD11B2, GBP1, RNF130, APBBIIP, and NPC2 in the yellow module were used as
variables for building the mRNAsi-related risk model. The survival rate of the high-risk group (as defined by
this model) was significantly higher than that of the low-risk group, and it had significant survival prediction
ability in 28 types of cancer. In addition, the mRNAsi-related risk model was superior to the Tumor Immune
Dysfunction and Exclusion (TIDE) model in predicting the prognosis and immunotherapy response in all
three immunotherapy cohorts.

Conclusions: This study classified OS and constructed a mRNAsi-related risk model based on mRNAsi-
related genes, which provides a potential tool for more accurate risk stratification of OS and prediction of

immunotherapy response.
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Introduction

Osteosarcoma (OS) is a primary bone malignancy in which
malignant mesenchymal cells differentiate into osteoblasts
to produce malignant osteoid matrix (1), and is the fifth
most common primary malignancy in adolescence (2).
OS is most common in the metaphysis of the long bone
and originates from the intramedullary cavity, and is
accompanied by changes in bone texture and structural
integrity. It is characterized by the up-regulation of
osteoclast activity, resulting in increased bone resorption
and repair and compensatory deposition of osteoid
extracellular matrix by reactive osteoblasts (3). With
complete surgical resection and multidrug chemotherapy,
about 70% of patients with OS can become long-term
survivors (4). The prognosis of patients with primary
metastasis or recurrent disease is poor, and the 5-year
survival rate has dropped sharply to 20% (4,5). The sum of
observed side effects, coupled with many drug resistance
phenomena, indicates the limitations of this treatment
strategy and the need to develop new treatments (6).

The theory of tumor stem cells posits that tumors are
maintained by stem cells, and the incomplete eradication
of tumor stem cells is the cause of tumor drug resistance
and recurrence (7). Targeting cancer stem cells (CSCs)
may represent the future treatment direction of OS (8).
osteosarcoma CSCs have been identified as the main cause
of recurrence and metastasis (9,10). The development of
therapeutic strategies targeting tumor stem cells mainly
depends on the identification of cell surface markers (11).
Several CSC surface markers have been identified, such as
cellular myelocytomatosis oncogene (c-Myc) (12), cluster
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of differentiation (CD)133 (13), aldehyde dehydrogenase
(ALDH) 1A (14), and so on. Clinically, the use of
identified CSC markers is very limited. Also, stem cells
from different tissues are not identical; for example, the
differences in location, self-renewal, and differentiation
are usually reflected in specific combinations of phenotypic
markers (15). Most marker-labeled heterogencous stem
cell populations indicate that their characterization and
isolation must be based on a combination of markers
using multiple surface markers, and extracellular as well as
intracellular markers (16). The expression profile analysis of
stem cells is a method to identify the combination of CSC
markers. mRNAsi is a cancer stem cell index that describes
the degree of similarity between tumors and stem cells
and can be considered as a quantification of cancer stem
cells (17). Previous studies reported that messenger
ribonucleic acid (mRNA) stemness indices (mRNAsi)-
related genes signature could effectively predicted prognosis
for breast cancer (18), Colon Adenocarcinoma (19) and
Gastric Cancer (20). However, it hadn’t reported in OS.

In this study, expression profiles of stem cell human
embryonic stem cells (hESC) and induced pluripotent
stem cell (iPSC) lines were used to calculate messenger
ribonucleic acid (mRNA) stemness indices (mRNAsi)
defining stem cell properties via the one-class logistic
regression (OCLR) machine-learning algorithm. Patients
with OS were classified based on mRNAsi-related genes
and a mRNAsi-related gene signature was developed, which
provides some new evidence for targeted CSC therapy.
We present the following article in accordance with the
TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-6011/rc).

Methods
Data download and collation

OS samples (n=84) of primary solid tumors with both
gene expression profiling and survival data were obtained
from the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET, https://ocg.cancer.
gov/programs/target) public database, and Ensembl ID
was converted into gene symbols. The GSE21257 and
GSE39058 datasets were selected by logging into the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo) database, and samples with both gene expression
profile and survival data were selected, with 53 and 41 OS
samples selected in the two datasets, respectively. We also
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downloaded RNA-sequencing (seq) data of the hESC and
iPSC lines from the Progenitor Cell Biology Consortium
(PCBC) synapse portal, including a total of 78 cases. The
study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013).

Calculation of the mRNA stemness indices (mRNAsi)

The average value was used to centralize each OS sample,
and through the ‘gelnet’ package in R, the OCLR machine
learning algorithm was applied to hESC and iPSC in the
PCBC data to calculate the weight vector of each gene.
iPSC and hESC are true stem cells, which have strong
differentiation and regeneration ability and can differentiate
into various cell types needed by various organs and tissues
of the human body. The correlation coefficients (p) of
gene expression and gene weight vector of each sample
in the TARGET database were calculated by Spearman
correlation analysis, and the mRNAsi for each sample was
obtained by linear transformation

Weighted gene co-expression network analysis (WGCNA)

WGCNA of the sample data in the TARGET dataset was
carried out by using the ‘WGCNA’ package in R. Firstly,
the Pearson correlation coefficient between paired genes
was calculated and a computational critical matrix was
constructed. Distinct values of soft thresholding power ()
were evaluated for the network topology analysis, in which
the minimum B, which accords with the distribution of
scale-free networks, was used to construct the co-expression
networks. The weighted adjacency matrix was transformed
into a topological overlap metric (TOM) matrix to measure
the network connectivity of genes. According to the average
linkage hierarchical clustering based on the difference
measurement of the TOM, genes with a similar co-
expression were divided into modules, and genes lacking
similar co-expression with other genes in the network were
assigned to the grey module. The key modules between the
modules and mRNAsi and the immune score were selected
by Pearson correlation analysis.

Mining of mRNAsi-related genes and identification of the
mRNAsi-related molecular subtypes

After selecting the key modules that were significantly
related to mRNAsi, we performed univariate Cox regression
analysis on the genes in the modules to screen the genes
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related to OS prognosis, and their transcriptional profiles in
TARGET were imported into the ‘ConsensusClusterPlus’
package for consensus clustering. The optimal number
of clusters was determined according to the cumulative
distribution function (CDF) and the relative change in the
area under the increase of the CDF.

Difference analysis and functional enrichment of mRNAsi-
related molecular subtypes

The differential expression of every two molecular subtypes
was analyzed in the ‘Limma’ package, and genes with
significant differences were evaluated by Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis using the ‘WebGestaltR’
package to determine the functional differences among
molecular subtypes at the molecular level. In addition,
the Hallmark pathway was downloaded and Gene Set
Enrichment Analysis (GSEA) was performed between
every two clusters to evaluate the significant differences
in function between every two molecular subtypes by
generating the normalized enrichment score (NES).

Analysis of the immune infiltration characteristics of OS

The stromal, immune, and ESTIMATE scores were
measured for each molecular subtype by importing the
RNA-seq data from OS into ‘ESTIMATE’ (21), which is
a tool that assesses stromal and immune cell infiltration
of major non-tumor components in tumor samples. The
Microenvironment Cell Populations-counter (MCP-
counter) method (22) quantified the abundance of eight
immune cell groups and two stromal cell groups in different
molecular subtypes according to transcriptome data. We
employed the ‘GSVA’ R package (23) to perform single
sample Gene Set Enrichment Analysis (ssGSEA) based on
29 immune-associated gene sets (24) and quantified immune
cell infiltration by calculating the ssGSEA score.

Prediction of the immunotherapy response and drug
sensitivity analysis

We obtained the information on 20 immune checkpoints
from the HisgAtlas database (25), which has collected 995
human immunosuppressive genes. According to the data
of the OS samples in TARGET, the expression levels of
20 immune checkpoints in each molecular subtype were
analyzed. Tumor Immune Dysfunction and Exclusion

Ann Transl Med 2023;11(2):61 | https://dx.doi.org/10.21037/atm-22-6011



Page 4 of 18

(TIDE) integrates the expression signatures of T-cell
dysfunction and exclusion signatures in tumors, as well as
that of three cell types reported to restrict T-cell infiltration
in tumors, including cancer-associated fibroblasts (CAFs),
myeloid-derived suppressor cells (MDSCs), and the M2
subtype of tumor-associated macrophages (TAMs) (26).
We calculated the TIDE scores using the TIDE algorithm.
Ridge regression was performed using the ‘pRRophetic’
algorithm, to predict the chemotherapy response of OS.
Internal cross-validation was performed using 10-fold cross-
validation based on the Genomics of Drug Sensitivity in
Cancer (GDSC).

Establishment of the mRNAsi-related risk model

According to the 1:1 random allocation principle, the
samples in TARGET were divided into training and
verification cohorts. We conducted univariate Cox
regression analysis on the training cohort of TARGET
for genes in key mRNAsi-related modules screened by
WGCNA. Genes with P<0.01 were screened and included
in the ‘glmnet’ package of R for conducting the least
absolute shrinkage and selection operator (LASSO) Cox
regression analysis. Multivariate Cox regression analysis was
performed using the ‘MASS’ package to reduce the number
of genes screened by LASSO Cox and to calculate the
predictive value of simulated genes. The product of the gene
expression level and multivariate Cox regression coefficient
were added to form a risk model. After calculating the risk
score, the samples in all of the cohorts were classified into
high- and low-risk groups using the ‘survminer’ package.
The ‘survival’ and ‘timeROC’ packages were adopted to
analyze survival and draw the time-dependent receiver
operating characteristic (ROC) curve.

Evaluation of the mRNAsi-related risk model in predicting
the prognosis of pan-cancer

The expression profiles and survival information of 33
cancer types were downloaded from The Cancer Genome
Atlas (TCGA). The mRNAsi-related risk model was applied
to the samples of each cancer type to calculate the risk
scores. The samples were grouped using the same method
as in the TARGET training set, and the survival differences
between the risk groups were calculated by the Kaplan-
Meier survival curve.
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Statistical analysis

All data in this study were statistically analyzed by the R
programming language (27). The statistical significance
of normally distributed variables between two groups was
assessed using the unpaired #-test, and a comparison of the
non-normally distributed variables was performed using
the Wilcoxon rank-sum test. If the P value representing
the statistical difference was not specified, then the default
P<0.05 was considered statistically significant.

Results

Clinical and immunological corvelation of mRNASsi

In the TARGET dataset, we calculated the mRNAsi of
the samples and sorted them in ascending order. The
change in mRNAsi was also accompanied by changes in the
stromal, immune, and ESTIMATE scores; higher mRNAsi
corresponded to lower stromal, immune, and ESTIMATE
scores (Figure 14). There was no significant correlation
between mRNAsi and age, gender, and the degree of
metastasis (Figure 1B). The Pearson correlation test showed
that mRNAsi was negatively correlated with the stromal,
immune, and ESTIMATE scores (Figure 1C). MRNAsi was
also significantly negatively correlated with several kinds
of immune cells; for instance, central memory cluster of
differentiation (CD)4 T cells, central memory CD8 T cells,
effector memory CD8 T cells, regulatory T cells, T follicular
helper cells, activated dendritic cells, CD56 dim natural killer
cells, and plasmacytoid dendritic cells (Figure S1).

Identification of the mRNAsi-related gene module

WGCNA was performed on TARGET data to identify
the gene modules related to mRNAsi. We found that the
minimum f in accordance with the distribution of the scale-
free networks was six (Figure 24). A total of six gene modules
were detected in the dynamic cutting tree (Figure 2B).
In the eigengene dendrogram and eigengene adjacency
heatmap, we observed that the yellow module had the
strongest statistically significant correlation with mRNAsi
and the immune, stromal, and ESTIMATE scores, with the
highest correlation coefficient absolute value. This module
was significantly negatively correlated with mRNAsi and
positively correlated with immune, stromal, and ESTIMATE
scores (Figure 2C). By analyzing the signaling pathways and
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Figure 1 Clinical and immunological correlation of mRNAsi. (A) The corresponding stromal, immune, ESTIMATE scores and clinical
features in ascending order of mRNAsi in TARGET; (B) the level of mRNAsi between the samples grouped according to age, gender,
and metastatic status; (C) the Pearson correlations analysis between mRNAsi and the stromal, immune, and ESTIMATE scores. ns, no

significance; mRNAsi, mRNA stemness indices.

biological processes enriched by the genes in the yellow
module, we learned that they were mainly significantly
related to many KEGG pathways, molecular functions (MF),
cellular components (CC), and biological processes (BP) that

dominate the immune response (Figure 2D).

© Annals of Translational Medicine. All rights reserved.

Identification of three molecular subtypes of OS based on
the mRNAsi-related genes

A total of 1,313 genes were gathered in the yellow module.
Seventy-three genes that were significantly associated with
OS prognosis were obtained by univariate Cox regression

Ann Transl Med 2023;11(2):61 | https://dx.doi.org/10.21037/atm-22-6011



Page 6 of 18

A Scale independence Mean connectivity
o 10 121416 44 o0 1
¥ 6789 182022 , ) 28 30 3000 4
hel
Sos-
2 4 2500 |
pry 2
s 2 2000
< 0.6 ° 1
= 8 1500
0.4 =
o [
g 2 21000 ,
[}
2024 500
2 4
©
3 1 0 5678910 12 14 16 18 20 22 24 26 28 30
0.0 T T T T T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Soft threshold (power) Soft threshold (power)
0.9
0.8
E, 0.7
()
%06
05 2
—— K]
0.4 ® [} > 3 E’
° S o [ g 3
L a (=) =) 2 >
w w w w w w
= = = = = =
) o = S o)
3 T 3 b $
o o3 -~ &8 ~
© R = S = &
=3 < = = () 6})
(=2 o) =]
0 8 2 = 8 ] %
o3 hid T hid 2 hid 2
= £ = = 3 = 5 S,
[Z] o =] o T (=] 3 0,
c X T ] b 8 7 %
kel 8 & & e & &
E=] ) &l o 5 e ~
< = = = < < S S,
[ 0 I ~ < ~ i (o)
- = N = S =2 g 029
= (=} =] (=] = (=3 o 4
[ e L 2L 2 T %
= S g 5 5 = %
> T T T I T
@ [} [ [} & @
=] 8 5 R = R 4
3 = - = s g 2,
~
S A S 2 8 & 25
=] & S = & S
e A = TS e <
= = S = = < O
? 5 ] 2 3 3 ®
) IS 3 @ ) é
3 I S e N &
S S s s s %
e ¥ 3 2 & £ s,
S S 5 =] =] 1=} 7
S S < S S I
° o c > ) z
& & 8 3 £ 3
o] 2 o
E

Li et al. Role of mMRNAsi in osteosarcoma

Cluster dendrogram

1.0 4

0.9

0.8

0.7 A

Height

0.6

0.5

0.4 -

Dynamic module

Merged module

GO and KEGG

D

Pathway KEGG

Chemokine signaling pathway
Cytokine-cytokine receptor interaction
Osteoclast differentiation

Natural killer cell mediated cytotoxicity
Th17 cell differentiation

Th1 and Th2 cell differentiation
NF-kappa B signaling pathway

T cell receptor signaling pathway
Toll-like receptor signaling pathway
NOD-like receptor signaling pathway
Geneontology molecular function
Cytokine activity

Receptor ligand activity

Receptor regulator activity

Antigen binding

Chemokine activity

Cytokine receptor binding

Chemokine receptor binding

G protein-coupled receptor binding
Carbohydrate binding

Peptide antigen binding
Geneontology cellular component
External side of plasma membrane
Endocytic vesicle

Secretory granule lumen

Cytoplasmic vesicle lumen

Vesicle lumen

Receptor complex

Vacuolar part

Side of membrane

Lysosome

Lytic vacuole

Geneontology biological process
Regulation of inflammatory response
Adaptive immune response
Regulation of cell-cell adhesion
Defense response to other organism
Regulation of immune effector process
Positive regulation of cytokine production
Positive regulation of cell adhesion
Regulation of lymphocyte activation
Positive regulation of defense response
Leukocyte migration

—Iog10 (FDR)

Figure 2 Identification of the mRNAsi-related gene module. (A) The scale-free topology model fit index (left) and the mean connectivity

(right) for each soft-thresholding power; (B) the clustering dendrogram of the weighted gene co-expression network; (C) the module-trait
relationship; (D) KEGG pathway and GO terms enriched by genes in the yellow module. mRINAsi, mRINA stemness indices; KEGG, Kyoto

Encyclopedia of Genes and Genomes; GO, Gene Ontology.

analysis based on the expression of these genes in TARGET,
including seven genes with a hazard ratio (HR) >1 and
66 genes with a HR <1 (Figure 3A4). Pearson correlation
analysis showed that most of the 73 genes were positively
correlated with each other (Figure 3B). During consensus
clustering, we clustered and ranked the samples by applying
the clustering variable (k) from 2 to 10. According to CDF

© Annals of Translational Medicine. All rights reserved.

and the CDF Delta area curve, when k=4, the area under
the curve increases the least. Since the CDF Delta area
curve showed the relative change of the area under the
curve between k and K-1, 3 was the most appropriate k
value (Figure 3C,3D). Also, the clustering heatmap showed
that when k=3, both the inter-group separation and intra-
group aggregation exhibited obvious trends (Figure 3E).
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Figure 3 Identification of three molecular subtypes of OS based on mRNAsi-related genes. (A) The HRs and P values of 73 genes that were
significantly related to OS prognosis; (B) the heatmap displays the correlation between 73 genes; (C) CDF curves for k from 2 to 10; (D)
the relative change in area under the CDF curve for k from 2 to 10; (E) heatmap of clustering at k=3; (F) the Kaplan-Meier curve shows the
difference in survival among the three clusters. OS, osteosarcoma; mRNAsi, mRNA stemness indices; HR, hazards ratio; CDE, cumulative

distribution function.
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Therefore, the OS sample was divided into three clusters.
The survival differences among the three clusters were
analyzed, and a significant difference in survival rate among
clusters was detected, which was ranked as C3 < C1 < C2
according to the survival rate from low to high (Figure 3F).

Differences in the regulatory pathways among the three
clusters

By analyzing the differences between every two molecular
subtypes, 807 differentially expressed genes (DEGs)
were identified between C1 and C2, 552 DEGs were
identified between C3 and C2, and 1,089 DEGs were
identified between C3 and C1 (Figure S2A-S2C). The
biological function enrichment of each type of DEG was
then analyzed. The top three KEGG pathways related to
DEGs between C1 and C2 were Staphylococcus aureus
infection, phagosome, tuberculosis, and these DEGs were
also significantly correlated with antigen binding, peptide
antigen binding, immunoglobulin binding, granulocyte
activation, leukocyte degranulation, myeloid cell activation
involved in the immune response, and other GO terms
(Figure 44). The DEGs between C3 and C2 were
significantly enriched in Staphylococcus aureus infection,
phagosome, hematopoietic cell lineage KEGG pathways,
receptor-ligand activity, receptor regulator activity, cytokine
activity, T-cell activation, regulation of cell-cell adhesion,
activation of the immune response, and other GO terms
(Figure 4B). The DEGs-enriched KEGG pathway and
GO terms between C3 and CI coincided with the above
pathways and biological processes (Figure 4C).

The molecular pathways of differential enrichment
between subtypes were analyzed by GSEA. The results
showed that compared with C2, the pathways controlling
the cell cycle and growth in C1 were significantly activated,
while epithelial-mesenchymal transition (EMT) and
apoptosis and immunoreactive pathways were significantly
inhibited (Figure 4D). The pathways that were significantly
activated by C3 relative to C2 included Early 2 factor
(E2F) targets, oxidative phosphorylation, myelocytomatosis
oncogene (MYC) targets, G2M checkpoint, and so on.
Most of the pathways that were significantly activated in
C1 compared with C2 were also significantly activated in
C3, such as interferon alpha/gamma response, Interleukin
(IL)6-Janus kinases (JAK)-signal transducer and activator of
transcription (STAT) signaling, EMT, apoptosis, allograft
rejection, Kirsten rat sarcoma virus (KRAS) signaling,
apical junction, complement, and coagulation (Figure 4E).

© Annals of Translational Medicine. All rights reserved.
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The activities of C3 oxidative phosphorylation, interferon
alpha/gamma response, coagulation, allograft rejection,
and complement were significantly improved, while G2M
checkpoint, E2F targets and mitotic spindle, and EMT
were significantly inhibited compared with C1 (Figure 4F).

Tumor microenvironment (TME) status of the three
mRNAsi-related clusters

The above results indicated that mRINAsi was significantly
associated with the stromal and immune scores, and the
genes belonging to the yellow module, which were divided
OS into three clusters, were also significantly associated
with these scores. We further explored the TME status
differences in the three clusters. SSGSEA quantified the
scores of 29 immune cell groups, compared these immune
cell scores between the clusters, and detected a significant
difference in 26 immune cell scores among the three
clusters. The abundance of most tumor suppressor immune
cells, such as activated B cells, activated CD8" T cells,
central memory CD4" T cells, central memory CD8" T
cells, immature B cells, macrophages, natural killer cells,
and so on, was the highest in C2 (Figure 5A).

MCP-counter quantified the levels of eight immune cell
groups and two stromal cell groups in the three mRINAsi-
related clusters. The T-cell, monocytic lymphocyte, and
fibroblast scores in C2 were significantly higher than those
in C1 and C3 (Figure 5B). Moreover, there were significant
differences in the stromal, immune, and ESTIMATE scores
among the three mRNAsi-related clusters, which were
always the highest in C2 (Figure 5C).

Sensitivity of the three mRNAsi-related clusters to
immunotherapy and tumor inhibitors

We analyzed whether immunotherapy and tumor inhibitors
were effective in the three mRNAsi-related clusters.
At present, immunotherapy mainly includes immune
checkpoint blockade (ICB) and chimeric antigen receptor
(CAR) T-cell therapies. Considering the significant
challenges faced by CAR-T therapy in solid tumors, no
CAR-T therapy has yet been approved for these tumors (28).
Therefore, we mainly explored the response of the three
mRNAsi-related clusters to ICB.

Firstly, we compared the expression differences in the
immune checkpoints among the three mRNAsi-related
clusters. Among the 20 immune checkpoints analyzed, more
than half showed significant expression differences among

Ann Transl Med 2023;11(2):61 | https://dx.doi.org/10.21037/atm-22-6011
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Figure 5 TME status of the three mRNAsi-related clusters. (A) Differences in the scores of 29 immune cell populations between the three

mRNAsi-related clusters; (B) differences in the levels of eight immune cell populations and two stromal cell populations among the three

mRNAsi-associated clusters; (C) the stromal, immune, and ESTIMATE score differences among the three mRNAsi-related clusters. *,
P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, no significance. TME, tumor microenvironment; mRNAsi, mRNA stemness indices.

the three subtypes (Figure 64). The T-cell dysfunction, T-cell
exclusion, TIDE, as well as MDSC and M2 TAM scores
calculated by TIDE exhibited significant differences among
the three subgroups, indicating that the responses of the
three clusters to immunotherapy were different (Figure 6B).

The sensitivity of tumor inhibitors erlotinib, rapamycin,
pyrimethamine, bortezomib, roscovitine, and midostaurin
in three mRNAsi-related subtypes was evaluated based
on the estimated inhibitory concentration (IC50) value.
Our comparison showed that Erlotinib, Rapamyecin,
Pyrimethamine, Bortezomib, and Roscovitine were all
significantly different in terms of the estimated IC50 values
among the three mRNAsi-related subtypes. Erlotinib,
Rapamycin, Pyrimethamine, and Roscovitine showed higher
sensitivity in C3, while Bortezomib had greater resistance in
C3 (Figure 6C).

© Annals of Translational Medicine. All rights reserved.

Development and validation of @ mRNAsi-related risk
model

In addition to screening genes from the yellow module to
cluster OS, we also used this module to screen the most
valuable genes to build a risk model. The risk model was
constructed using half of the samples in the TARGET
database. Univariate Cox regression analysis of the genes
in the yellow module in the TARGET training cohort
showed that 20 genes were significantly associated with OS
prognosis. Seven genes were screened at A=5 by LASSO
regression (Figure S3A). Following multivariate Cox
regression, only five of these genes remained as variables for
constructing a risk model (Figure S3B).

The risk model was calculated as follows: risk score
= -0.683 x Ring finger protein 130 (RNF130) - 0.607 x

Ann Transl Med 2023;11(2):61 | https://dx.doi.org/10.21037/atm-22-6011
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Figure 6 Sensitivity of the three mRINAsi-related clusters to immunotherapy and tumor inhibitors. (A) Differences in the expressions of
the three immune checkpoints among the three mRINAsi-related clusters; (B) differences in the T-cell dysfunction, T-cell exclusion, TIDE,
MDSC, CAF, and M2. TAM scores among the three mRNAsi-related clusters; (C) the estimated IC50 values of Erlotinib, Rapamycin,
Pyrimethamine, Bortezomib, Roscovitine and Midostaurin in the three mRNAsi-related subtypes. *, P<0.05; **, P<0.01; ***, P<0.001; ****,
P<0.0001; ns, no significance. mRNAsi, mRNA stemness indices; TIDE, Tumor Immune Dysfunction and Exclusion; MDSC, myeloid-
derived suppressor cell; CAF, cancer-associated fibroblast; TAM, tumor-associated macrophage.

guanylate binding protein 1 (GBP1) - 0.808 x amyloid
beta (A4) precursor protein-binding, family B, member 1
interacting protein (APBBI1IP) + 0.661 x human 11beta-
hydroxysteroid dehydrogenase type 2 (HSD11B2) - 0.814
x Niemann-Pick C2 (NPC2). This formula was then
introduced into two cohorts of the TARGET database,
an unsplit TARGET cohort, and two external verification
cohorts (GSE21257 and GSE39058) to calculate the risk
score of the sample. The risk groups were divided using the

© Annals of Translational Medicine. All rights reserved.

‘survminer’ package.

Significant differences between the two risk groups
in terms of survival rates were detected in each cohort.
Furthermore, the 5-year survival prediction results were
satisfactory. The areas under the ROC curve (AUC) were
>0.73. The 5-year AUC of TARGET training, TARGET
verification, unsplit TARGET, and GSE21257 and
GSE39058 cohorts were 0.92, 0.84, 0.87, 0.73, and 0.76,
respectively (Figure 74-7E).
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cohorts. mRNAsi, mRNA stemness indices; ROC, receiver operating characteristic.

Prognostic effect of the mRNAsi-related risk model in pan-

cancer

The risk score of the sample in each cancer type was
calculated by introducing the mRNAsi-related risk model
into 33 cancer types. At the same time, the ‘survminer’
package was used to split the risk groups of samples from
each type of cancer dataset. Through survival analysis,
we found that the mRNAsi-related risk model could
significantly distinguish the survival rates of 28 types of
cancer samples, and the survival time of the high-risk group
was always markedly longer than that of the low-risk group
(Figure 8).

© Annals of Translational Medicine. All rights reserved.

Comparison of the mRNAsi-related risk and TIDE scores
in predicting prognosis and immunotherapy response

Finally, we also investigated and compared the applicability
of the mRNAsi-related risk and TIDE scores in
predicting prognosis and immunotherapy response.
Data from the IMvigor210, GSE91061, and GSE135222
immunotherapy cohorts were downloaded from the
‘IMvigor210CoreBiology’ R package and the GEO
database, respectively. The signatures obtained by the
mRNAsi-related risk model and TIDE were substituted

into each immunotherapy cohort to calculate the risk and

TIDE scores of the sample.

Ann Transl Med 2023;11(2):61 | https://dx.doi.org/10.21037/atm-22-6011



Annals of Translational Medicine, Vol 11, No 2 January 2023 Page 13 of 18

Bea ano " con
. Son] ----) H Lo .
3 3 3 e ; I ] [inuaun VSRSV
P00 | P-0.00008 pooo0t || Peoo0037 | Pots | P-0014 |
guala . e 3 1 0 guwfas 3 4 0 guwlo 4 8 1 o 0 gun{ise 20 7 o 0 gl 6 3 2 1 T guefes 7 10 8 1
2 ]38 2 15 7 3 2 @78 13 2 0 &un{806 202 33 1 6 0o {1z 24 9 2 0 Fu{2e 21 12 9 4 1 G164 39 1 4 0
L — T v T o T 5 7 o I g T T z 0 5 B g T 7 7 7
Time,years Time,yea Time,years Time. Time, years Time. years
Bsca insc
H H
2 2
K H
P00z P-0ts | Peofoor | P-00013 P<0.0001
gl 7 o 3 o 0 g2 3 1 o o zwle 4 1 o 0 gu{mo 2 1 o o g s 3 1 o o g w1 3 o o
3 1 40 9 4 2 0 Buefrar 3% 8 1 0 8101 19 2 1 0 £in{329 40 10 2 0 % im{54 44 34 27 6 2 Sue{4s1 288 140 52 13 0
T T 0 ] T T T ] 0 T T o 0 ) 7 > T Ca— T " 7
Tine, years Time,yea Time,years Time,years Time,years Time, years
LA Lao L s
H H H g
b b 3 3
& o A I s N 21 Q. Y £ o |- —
3 3 H H
H 3 3 3
pe00001 | P-0g002s | P<0001 P<00001 P=0001)
g v 10 3 1 o gulia 10 3 0 0 [ 2 3 2 1 gualir 19 3 o
< 3 13 3 0 = 101363 54 13 2 0 291 96 37 6 0 3 317 65 " o
Time, years | Time, years. ‘ Time, years. Time, years.
o ' cﬁ“—w
z z z z
i i 3 3
. H g H
H £ £ £
’ *| p-ooozs 1 oo ] peo2z *| p-ocooe2
Qs b 2 o o e a 3 o guim 0 3 o 0 gusfze 2 4 7 1 1 guelazs 2 4 0 gusfio % 3 2 2
R 10 6 3 0 129 30 6 1 151 36 1 2 0o Buism 6 o 0 o o e 8 o 0o Biss 2 4 1
: Time, years ' ° Time, years N Time, years N Time, year Time, e T Time years
skow 3 Tiica " T‘ﬁ‘iﬁ
z z z
i i i
H | U N— H | p—
£ £ £ £
| p-o0oor “| peoooor ! | p-o000sb “| P-o00s | peoooot 1 peoo0or
Q88 ) 5 3 0o zwlz 18 3 1 o 0 guelzm2 B 6 2 0 5|5 7 4 2 0 gu{re 14 1 0 g e 2 1 o o
§fimt 58 1 2 0 Fuw{rm = 20 3 1 0 Bunfr 2 s 2 1 2 45 2 13 1 F e{ss [ ” 0 Eua &7 s w7 1
Time, years Time, years “ Tmeyeus Time! years Time, years T Tmeyers
ucee
|- b I £,
H H H
“| peocoot “| peoooor |
s f305 o7 6 1 0 gusst 2 5 1 o gl 10 0 o 0
S {148 45 1 1 0 Sum{4 0 0 0 0 Suns2 35 [ 2 [
Time, years. vwm.’yean ' Time, years.

Figure 8 Prognostic effect of the mRNAsi-related risk model in pan-cancer patients. mRNAsi, mRNA stemness indices.

In the IMvigor210 cohort, both the risk and TIDE cohort was also significantly higher than that of the TIDE
scores were significantly correlated with the prognosis of model (Figure 9C). In the GSE91061 cohort, the mRNAsi-
the sample. Also, the AUC of the risk model for predicting related risk model could also markedly distinguish the
survival was higher than that of the TIDE model at 0.5, differences in sample survival, and the AUC that predicted
1, and 1.5 years (Figure 94,9B). Moreover, the AUC 1-, 2-, 2.5-year survival was 0.6, 0.62 and 0.66 (Figure 9D).
of the mRNAsi-related risk model for evaluating the IDE model could not significantly distinguish the survival
immunotherapy response of the samples in the IMvigor210 differences between two groups in GSE91061 dataset
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(Figure 9E). The AUC of TIDE was 0.58, which lower than
0.63 of risk model (Figure 9F). In the GSE135222 cohort,
the risk score could predict survival, and the 1-year AUC
reaching 0.86 (Figure 9G). However, the TIDE model could
not significantly distinguish the survival differences between
samples in these two cohorts (Figure 9H). Regarding the
prediction of immunotherapy response, the AUCs of the
mRNAsi-related risk model in the GSE135222 cohorts
were also higher than that of the TIDE model (Figure 9I).

Discussion

CSC surface markers are more difficult to identify in
OS originating from mesenchymal cells than in tumors
originating from other tissue types. The analysis of
histopathological specimens also indicates that in some
cases, tumors are organized in a stratified manner, and the
leading CSC is the producer of phenotypic and functional
heterogeneity (15). mRNAsi is a cancer stem cell index that
describes the degree of similarity between tumors and stem
cells and can be considered as a quantification of cancer
stem cells (17). In the present study, we employed the
OCLR algorithm to hESC and iPSC samples and defined
stemness by calculating mRNAsi. There was a significant
negative correlation between mRNAsi and immune activity
in OS, which was consistent with the previously reported
trend in non-small cell lung cancer (29). Then, we identified
the module with the strongest negative correlation with
mRNAsi and the highest positive correlation with the
immune score by WGCNA and screened the mRNAsi-
related genes that were significantly related to OS prognosis
from the module. Based on the expressions of the mRINAsi-
related genes, we identified the molecular subtypes and risk
models in OS and indirectly indicated the importance of
stemness in OS. There are three main differences between
our study and others that have been published recently.
Firstly, the analysis was conducted based on mRNAsi for
the first time. We then propose that the unique treatment of
osteosarcoma CSC can be addressed by focusing on CSC-
related genes. Finally, the prognostic model was further
constructed based on the differences of tumor stem cell
subtypes.

Specifically, the yellow module (divided by WGCNA)
had the strongest negative correlation with mRNAsi and
the highest positive correlation with the immune score.
From this module, we identified 73 genes that were
significantly related to the prognosis of OS and divided
OS into three subgroups according to their consensus
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clustering expression. In terms of clinical and biological
characteristics, the survival rate of C2 was the highest
among the three subgroups, and this subgroup also
exhibited a markedly active TME status compared with
C1 and C3; for example, it had the highest abundance of
activated B cells, activated CD8" T cells, central memory
CD4" T cells, central memory CD8" T cells, immature
B cells, macrophages, and natural killer cells, as well
as the highest stromal and immune scores. Available
evidence suggests that a large number of these immune
components are associated with anti-tumor responses and
patient outcomes. Tumor-infiltrating B cells inhibit tumor
progression by secreting immunoglobulin, promoting the
T-cell response, and directly killing cancer cells, which is
beneficial for the prognosis of tumor patients (30). Activated
CD8" T cells induce the apoptosis of mesenchymal tumor
stromal cells and inhibit tumor invasion and metastasis by
releasing extracellular vesicles (31). Central memory CD8"
T cells have been shown to exert strong antitumor activity
and have been associated with a better prognosis in cancer
patients (32). Central memory CD4" T cells have also
been proposed as an independent prognostic biomarker of
oral squamous cell carcinoma (33). Natural killer cells not
only exert antitumor effects via direct cytolytic activity but
also indirectly exert antitumor effects through cytokine
production (34). These findings provide evidence for the
positive clinical outcomes of C2.

In the process of building the risk model, we took half
of the samples in the TARGET as the training cohort and
the other half as the verification cohort. Of course, the
performance of the risk model was also tested on the unsplit
TARGET-OS dataset and two other independent validation
cohorts, GSE21257 and GSE39058. The risk model is
composed of five mRNAsi, including HSD11B2, GBP1,
RNF130, APBB1IP, and NPC2. It has been found that the
silencing of HSD11B2 prevents the formation of adenoma
as well as the growth and metastasis of colon cancer in
mice (35), suggesting that HSD11B2 is a tumor-driving
gene in colorectal cancer. GBP1 is a unique large guanosine
triphosphate (GTP) enzyme that controls the cellular
response to infection, inflammation, and environmental
stressors. It is highly environmentally dependent and may
act as a double-edged sword in cancer. In ovarian cancer,
the above responses are hijacked by upstream carcinogenic
events to induce cancer treatment resistance and tumor
progression. In breast and colorectal cancers, it inhibits
cancer cell proliferation (36). APBBI1IP has prognostic
significance in many human cancers, and its correlation
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with prognosis varies with cancer types. For example,
the high expression of APBBI1IP is related to survival
advantages in patients with endocervical adenocarcinoma
(CESCQ), head and neck squamous cell carcinoma (HNSC),
kidney renal papillary cell carcinoma (KIRP), skin
cutaneous melanoma (SKCM), thymoma (THYM), and
uterine corpus endometrial carcinoma (UCEC), and its
low expression is related to better prognoses in esophageal
cancer (ESCA), liver hepatocellular carcinoma (LIHC),
stomach adenocarcinomas (STAD), and tenosynovial giant
cell tumor (TGCT) (37). The down-regulation of NPC2 in
hepatocellular carcinoma is significantly related to vascular
infiltration and late pathological stages of the tumor.
Meanwhile, the up-regulation of its expression weakens
the proliferation and migration of cancer cells (38). In the
present research, these genes were combined into a risk
model to significantly distinguish not only the different
death risks of OS samples but also the survival rates of 28
types of cancer samples in TCGA, and the survival rates
of high-risk samples defined by the mRNAsi-related gene
signature were significantly higher than those of low-risk
samples.

TIDE is a common calculation method applied to predict
the response to immunotherapy. Herein, we compared the
sensitivity of the mRNAsi-related risk model and TIDE in
predicting sample survival and immunotherapy response
in the immunotherapy cohort and confirmed that the
mRNAsi-related risk model was more sensitive than the
TIDE model in predicting prognosis and immunotherapy
response in the three immunotherapy cohorts. The
limitations of this study cannot be ignored. Firstly, all data
were downloaded from public databases, and the sample
size and clinical information were limited. Second, although
a risk score system consisting of mRNAsi-related gene has
been created, the regulatory network and biological effects
between these genes remain to be explored.

Conclusions

In summary, this study classified OS and constructed a
mRNAsi-related risk model based on mRNAsi-related
genes. We also identified three miRINA-related molecular
subtypes of OS that showed differences in survival and
TME. The developed mRNAsi-related risk model
performed well in predicting the prognosis of OS and
predicted the immunotherapy response of OS more reliably
than TIDE. The results of this study may provide clues for
the treatment of targeted CSC.

© Annals of Translational Medicine. All rights reserved.
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