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Application of Raman spectroscopy 
and Machine Learning algorithms 
for fruit distillates discrimination
Camelia Berghian‑Grosan & Dana Alina Magdas*

Through this pilot study, the association between Raman spectroscopy and Machine Learning 
algorithms were used for the first time with the purpose of distillates differentiation with respect to 
trademark, geographical and botanical origin. Two spectral Raman ranges (region I—200–600 cm−1 and 
region II—1200–1400 cm−1) appeared to have the higher discrimination potential for the investigated 
distillates. The proposed approach proved to be a very effective one for trademark fingerprint 
differentiation, a model accuracy of 95.5% being obtained (only one sample was misclassified). A 
comparable model accuracy (90.9%) was achieved for the geographical discrimination of the fruit 
spirits which can be considered as a very good one taking into account that this classification was 
made inside Transylvania region, among neighbouring areas. Because the trademark fingerprint is the 
prevailing one, the successfully distillate type differentiation, with respect to the fruit variety, was 
possible to be made only inside of each producing entity.

Fruit distillates represent an alcoholic beverage from Central and East European countries which traditional 
production implies the distillation of various fermented fruits (especially plums, but also apples, pears, apricots, 
etc.). Depending of the regions from Romania, these beverages are known as “ţuică”, “pălincă” or “horincă”. 
Considering the ethanolic concentration, their alcoholic strength varies from 24 to 86% v/v for ““ţuică”” and 
from 40 to 70% v/v for “pălincă”1, or they can be differentiated as function of the fruits variety: “ţuică” and 
“horincă” for spirits obtained from plums and “pălincă” for that achieved from other fruits (apples, apricots, 
pears, cherries, etc.)2.

Regardless of their commercial name, the composition of traditional Romanian distillates is a very complex 
one2, being influenced by the botanical origin alongside with the provenience region of fruits. To this, the 
preparation technologies and ageing in different wood barrels also affect the chemical constituents from fruit 
distillates, all of them influencing their quality3. In Transylvania, the knowledge related to the distillates produc-
tion process represents a legacy from father to sons. Not only that this tradition was proudly kept during the 
history, but it also has been enriched and perfected during the time. Nowadays, the continuous improvement 
of the distillation knowledge, in order to obtain premium products, is intertwined with keeping the traditions, 
passion for this profession and art.

In order to encourage and sustain the producing of high-quality fruit spirits and to detect fraudulently 
attempts, like false declaration of product provenience, new approaches should be established. The development 
of fast, reliable and economical effective analytical methods able to differentiate among distinct food and bever-
ages categories became a priority for research and control entities during the years. This interest was doubled by 
the producers’ perspective which are willing to keep the control on the quality and fingerprint of the goods they 
are producing. Therefore, the development of control methodologies, easy to be applied from the measurement’s 
skills perspective, became essential. In this context, vibrational spectroscopy techniques (IR and Raman) appear 
to be the ideal candidate, especially because of the development of new portable devices easily to be operated, 
and also due to the fact that through these techniques the measurements are performed directly on the sample. 
The vibrational spectroscopy was generally used for quantitative determination of ethanol and/or methanol 
from the fruit distillates1,4–7. As compared with IR methods, Raman spectroscopy is suitable for the analysis of 
high-water content food products because of its relatively weak water bending mode in the fingerprint region8.

Taking into account that spectroscopic methods generate large data sets, an advanced data processing is man-
datory to extract meaningful information. An effective approach is given by the association between Raman spec-
troscopy and Machine Learning algorithms in order to discriminate between different constituents of complex 
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substances9. Thus, this methods association was successfully applied in different fields like: food analysis10,11, 
bacteria identification12 or even diagnostic applications13.

In this context, the aim of this study was to test the potential of the application of Raman fingerprint, in 
conjunction with Machine Learning algorithms, for fruit distillates classifications. The three differentiation 
criteria which were followed alongside this study were: (i) the fruit variety which was used as row material; (ii) 
geographical origin; (iii) trademark fingerprint.

Materials and methods
Sample description.  All fruit distillates were provided by eight Romanian producers (30 samples). Two 
large producers, further denoted as processing companies (PC), supplied different varieties of fruit distillates as 
follows: PC 1–5 samples (apples, apricots, pears, plums, quince); PC 2–6 samples (apples, pears, plums, quince). 
Three small producers, designated as manufactures (MF), supplied the following samples: MF 1–5 samples 
(apricots, cherries, pears, plums, sour-cherries); MF 2–4 samples (apples, apricots, plums) and MF 3–7 samples 
(apples, grapes, plums). These alcoholic beverages were originated from four Transylvanian regions (Bistrita 
Nasaud—BN; Covasna—CV; Salaj—SJ; Satu Mare—SM). To these, a control sample set formed by three samples 
(2 plums and 1 pears distillates) from three small producers (manufactures) of Salaj (SJ) region was added to test 
the prediction capability of the model built for geographical origin recognition. Alcoholic strength of the fruit 
distillates was determined by GC-FID (PerkinElmer 990).

Raman measurements and data processing.  A JASCO NRS-3300 equipped with a CCD detector 
(− 69 °C) was employed for the Raman measurements. A diode laser system emitting at 785 nm wavelength, 600 
lines/mm grating and an UMPLFL Olympus objective of 20× were used for recording the Raman spectra. The 
calibration was performed using the sharp peak of Si from 521 cm−1. For the experiments, 4 mL of fruit distil-
lates were placed in a glass vessel; the spectrum was recorded using 100 s as exposure time and 3 accumulations.

The JASCO Spectra Manager (JASCO, Easton, USA) tools were used for spectra analysis and selection of the 
frequency range (120–1700 cm−1) before any processing of the Raman data. Then, for each sample, the average 
spectrum (obtained using the statistics on rows, mean process for the spectra registered in two points) was sub-
jected to the baseline subtraction and the [0,1] normalization. These processes were realized in OriginPro 2017 
(OriginLab, Northampton, USA) and allowed a fair comparison of the samples, especially of those manifesting 
the fluorescence phenomenon. These Raman data were further employed both for general Raman and Machine 
Learning studies.

Machine Learning investigations.  Machine Learning investigations were performed using the Classifi-
cation learner app implemented in MATLAB R2018b (MathWorks, Natick, Massachusetts, USA) and the pre-
treated Raman spectra of fruit distillates in the range 120–1700 cm−1. Considering the botanical, producers or 
geographical differentiation challenges, different training and testing groups have been adopted, all these being 
clearly indicated in each corresponding section. In order to study the use of Raman spectroscopy and Machine 
Learning algorithms for several fruit distillates discrimination, the five predictive modelling approaches were 
used: the decision trees14, the discriminant analysis15, the support vector machines (SVM)16, the nearest neigh-
bour classifiers (KNN)17, ensemble classifiers18.

Ethical approval.  This article does not contain any studies with human participants or animals performed 
by any of authors.

Results
Figure 1 contains the Raman spectra of the eight fruit distillates varieties. These fruit spirits contain between 
40 and 80 percent alcohol by volume and were obtained based on different fruit (apple, apricot, cherry, grape, 
pear, plum, quince, sour-cherry). The main Raman peaks, illustrated in Fig. 1 and assigned in Table 1, can be 
associated with the ethanol vibrations5,19–21. Some of these bands, namely 883, 1050 and 1456 cm−1, are generally 
used as single or multiple-band normalization method for quantification of ethanol in alcoholic beverages22,23.

A brief analysis of Fig.  1 indicates the existence of two ranges (region I—200–600  cm−1 and region 
II—1200–1400 cm−1) with small differences among spectra that can be the consequence of different influences 
like: producer technologies, geographical origin or fruit varieties. Thus, the presence of metals, Cu, Zn, Fe, Al, 
etc. from various sources (i.e. raw materials, process type, storage conditions)24 and the volatile compounds, like 
esters2 could affect the Raman profile of the alcoholic beverages, having some characteristic bands (Metal–O, 
Metal–C and C–O–C respectively) in these regions25.

The investigation of the Raman spectra of five plums distillates purchased from five different spirits producers 
shows differences in the same two regions, 200–600 and 1200–1400 cm−1 (Fig. 2a). In this figure, the different 
Raman pattern of the plums spirit from PC 2 is mainly explained through the great fluorescence of the sample, 
which could be primarily the result of the storage conditions used by this producer26. Going further and analys-
ing the spectra of plums distillates obtained from one manufacture, i.e. MF 3 (Fig. 2b), very slight differences 
in the region of 200–600 cm−1 can be observed. Moreover, the obtained data for five fruit varieties spirits from 
PC 1 (Fig. 2c) highlighted small changes in the spectral region 1200–1400 cm−1, while the spectrum obtained 
for quince spirit is the result of fluorescence influence due to the specific, light yellow colour of this alcoholic 
beverage.

Because of these very subtle changes which appear among the investigated samples, which are sometimes very 
difficult to be estimated only by eyes, the use of an advanced data processing tool was necessary to be employed. 
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For this purpose, Machine Learning algorithms were used for the differentiation among distinct classes like: 
botanical and geographical origin as well as for trademark identification.

Discussions
Prevailing influences on the Raman fingerprint of distillates: fruit variety vs. final product 
characteristics.  The first performed differentiation on the investigated spirits aimed to discriminate the 
fruit variety from which each distillate was obtained. For this classification, a number of 27 fruit distillates 
(apricots, cherries, pears, plums, quince, sour-cherries) produced in two processing companies (PC) and three 
manufactures (MF) were involved. The distillates which were purchases from each producer were the following: 
PC 1 (apples, apricots, pears, plums, quince); PC 2 (apples, pears, plums, quince); MF 1 (apricots, cherries, pears, 
plums, sour-cherries); MF 2 (apples, apricots, plums) and MF 3 (apples, grapes, plums). Before the investiga-
tion, a training set containing the Raman spectra of 22 fruit distillates’ samples, assuring the representativeness 
of each producers, was created for further data processing. Based on these experimental data, the ML algo-
rithms extracted the essential information in order to build the classification model. Other 5 spectra of randomly 
selected fruit distillates’ samples were employed for the testing set generation. This group was created to verify 
the prediction of the model obtained on the training set and has the role of external sample quality control9. 
Thus, considering the fruit variety criterion, the best obtained accuracy was of only 27.3% being achieved based 
on the model Ensemble (boosted trees), suggesting that no differentiation can be made in this case. In these con-
ditions, the model verification, using the testing set, was not relevant anymore, therefore it was not performed.

It is well known that the technological process as well as the storage conditions highly impact the fruit distil-
lates overall composition and their quality. Thus, in order to verify if a Raman fingerprint of the final product, can 
be link with a certain producer, a new classification of the fruit distillates as function of PC/MF, was performed.

For this purpose, a new prediction model was obtained by applying all the classification learner algorithms 
from Matlab 2018b onto the training and testing groups previously created, for the fruit variety study. As can 
be observed in Fig. 3, independently of the distillate type (fruit variety), a high capacity for separation among 

Figure 1.   Raman spectra of distillates obtained from different varieties of fruit.

Table 1.   Main Raman peaks and their assignments.

Main Raman peaks/cm−1 Peaks’ assignments5,19–21

183 Lattice mode

226 –

260 –

437 C–C–O in-plane bending

883 C–C stretching

1050 C–O stretching

1091 CH3 rocking

1280 CH2 torsion and rotational vibrations

1456 CH3 bending

1482 CH3 bending
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producers, especially processing companies (PC) and two manufactures (MF), was obtained. This fact clearly 
demonstrates that the main influence on the Raman fingerprint of the distillates is given by the spirits processing 
and storage conditions rather than the raw material employed in the process. As can be seen from Fig. 3, only 
one sample from MF 1 was wrong attributed to MF 2. A possible explanation in this regard could be related to 
the similarities in the production processes between the two manufactures taking into account that both of them 
belongs to the same family-owned business, following the same traditional manufacturing steps.

Due to the high accuracy (95.5%) of the classification model, Ensemble (subspace KNN), its evaluation was 
realized on a testing group, containing 5 Raman spectra of randomly selected samples, inside of four producers. 
The testing set was built as follows: one sample from PC 1 and PC 2, one sample from MF 1 and two samples 
from MF 3; on account of the few samples acquired from MF 2, this manufacture was not included in the testing 
set. The results show a good capacity of the model to correctly predict the appurtenance of the tested samples 
(each sample from the testing set has been assigned to the right PC or MF).

The main question which arose here was if the classification among fruit distillates producers was made based 
on its specific fingerprint or was related to the ethanol concentrations. This because, as can be seen from Fig. 1, 
the main signals which appear in Raman spectra are those given by the ethanol (Table 1). Therefore, in order 
to better understand which is the connection between the distillates’ producers and Raman fingerprint and if 
this relationship is not influenced by the ethanol concentrations, a classification of distillates as function of their 
alcoholic strength was performed.

For this purpose, the classification was carried out on a training set containing 20 samples, having the fol-
lowing alcoholic concentrations: 80% (one sample), 70% (one sample), 54% (one sample), 52% (three samples), 
50% (six samples), 48% (eight samples), while the testing set implied 7 samples of 52% (one sample), 50% (one 

Figure 2.   Raman spectra of plums distillates considering the influence of the production process (a,b) and 
impact of fruit varieties onto the Raman spectra of PC 1 distillates’ samples (c).
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Figure 3.   Confusion matrix obtained for the fruit distillates considering the producers’ influences; classification 
presented as number of observations (a), true positive vs. false negative rates (b) or positive predicted values vs. 
false discovery rate (c).

Figure 4.   Confusion matrix obtained for the fruit distillates investigation considering the influence of the 
ethanol concentration.
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sample) and 48% (three samples). The obtained results are presented in Fig. 4 and indicate a small differentia-
tion between the 6 classes of the investigated alcoholic concentrations. The best response (accuracy 60%) was 
obtained for an Ensemble model (subspace KNN), and because of the low achieved classification percentage the 
verification of the model with the test dataset was not further made.

For this differentiation, a poor correlation was obtained suggesting that a producer Raman fingerprint exists 
independently of the ethanol concentrations. All these results highlight the idea that the discrimination among 
the investigated distillates is not linked to the major Raman peaks, but rather to the minor components contain-
ing in these alcoholic beverages.

Distillates’ classification considering their botanical origin inside of each producer.  To test if 
a discrimination as function of fruit variety can be achieved, after exclusion of the trademark effect, a new clas-
sification series was performed inside of each fruit distillates producer.

In this study, for each producer a training set containing all the samples owned from that producer was cre-
ated. Thus, five training sets that include a total of 27 samples were used by the Machine Learning algorithms to 
build the appropriate models (Fig. 5a–e). Due to the low number of the same fruit variety inside each producer, 
the testing step was not possible to be performed for these classifications. Based on the obtained results, good 
discrimination of fruit type inside the processing companies and a relatively acceptable differentiation of the fruit 
varieties inside the manufactures, we consider that the prediction models could be successfully used for this type 
of analysis. The high accuracy (100%) of the models (fine Gaussian SVM and medium Gaussian SVM, respec-
tively) achieved for the processing companies (PC) might be due to a more rigorous and constant technological 
process as well as to similar storage conditions for all distillates. The same method (fine Gaussian SVM) yielded 
a high accuracy (100%) for MF 1 and 75% or 57.1% for MF 2 and MF 3 respectively. These results could suggest 
that for an accurate identification of fruit fingerprint inside the producer distillates, each producer should follow 
similar technological and storage conditions for its fruit spirits.

Distillates’ classification considering their geographical origin.  For the geographical differentia-
tion, samples from four Transylvanian regions were used (Bistrita Nasaud—BN; Covasna—CV; Salaj—SJ; Satu 
Mare—SM). From SM region, samples from one distillate processor and one manufacture were involved in the 
classification: PC 2 and MF 1.

Within this analysis, the training set was formed by the 22 Raman spectra of the fruit distillates’ samples 
generally used for the fruit variety and producers’ discrimination (Fig. 6). The best geographical classification 
of the fruit distillates was obtained with the Ensemble (subspace KNN) method—accuracy 90.9% (two samples 
were misclassified). For the testing dataset, 3 more Raman spectra were added to that of the 5 distillates’ samples 
contained in the previously mentioned classifications in order to enlarge the geographical groups, even if the new 
spirits could not be correlated with the investigated producers. Thus, a total of 30 fruit distillates were employed 
for the geographical investigations. The testing set consisted of the following samples: 2 from SM, 1 from BN 
and 5 from SJ. The obtained results showed a good correlation of the predicted regions with the true investigated 
ones. Only one sample from SJ country was misclassified and assigned to BN region, while the other 7 samples 
were correctly predicted even if the producers of three of them were new. Considering that this classification was 
made inside Transylvania region, among neighbouring areas, these results are very promising.

Conclusions
This pilot study revelled the existence of a specific distillate producer fingerprint which can be pointed out 
through the association between Raman spectroscopy and Machine Learning algorithms. The trademark finger-
print dominates the varietal one, proving the high influence which is manifested through the entirely production 
and storage processes on the Raman spectra of the distillates. Anyway, the fruit variety classification of distillates 
was possible to be successfully performed inside of each producer, only after the technological influences were 
eliminated.

The classification model built for geographical recognition proved to be effective for the correct attribution 
of seven samples from the eight investigated ones, even if some of these samples were purchased from other 
distillates producers.

Through this work it was demonstrated the potential offered by association between Raman spectroscopy 
and Machine Learning algorithms for a rapid and unexpansive way to verify the fruit distillates trademarks.
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Figure 5.   Confusion matrix obtained for the fruits distillates’ classification considering their botanical origin 
inside of each producer; classification presented as the number of observations for PC 1 (a), PC 2 (b), MF 1 (c), 
MF 2 (d) and MF 3 (e) producers.
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