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Abstract 

Background:  Nanomaterials that exhibit intrinsic enzyme-like characteristics have shown great promise as potential 
antibacterial agents. However, many of them exhibit inefficient antibacterial activity and biosafety problems that limit 
their usefulness. The development of new nanomaterials with good biocompatibility and rapid bactericidal effects 
is therefore highly desirable. Here, we show a new type of terbium oxide nanoparticles (Tb4O7 NPs) with intrinsic 
oxidase-like activity for in vitro and in vivo antibacterial application.

Results:  We find that Tb4O7 NPs can quickly oxidize a series of organic substrates in the absence of hydrogen per‑
oxide. The oxidase-like capacity of Tb4O7 NPs allows these NPs to consume antioxidant biomolecules and generate 
reactive oxygen species to disable bacteria in vitro. Moreover, the in vivo experiments showed that Tb4O7 NPs are 
efficacious in wound-healing and are protective of normal tissues.

Conclusions:  Our results reveal that Tb4O7 NPs have intrinsic oxidase-like activity and show effective antibacterial 
ability both in vitro and in vivo. These findings demonstrate that Tb4O7 NPs are effective antibacterial agents and may 
have a potential application in wound healing.
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Background
Wound infection is an important cause of poor wound 
healing and its treatment often requires the use of antibi-
otics [1, 2]. However, excessive use of antibiotics may lead 
to the development of antibiotic-resistant bacteria, and 
may also cause side effects on human health, such as gas-
trointestinal disturbances. In recent years, developments 

in nanomaterial technology have provided an opportu-
nity to develop novel antimicrobial agents. Due to the 
diversity in mechanisms of action against bacteria, bacte-
rial cells are less likely to develop antibacterial resistance 
compared to existing antibiotics [3–5]. However, most of 
these nanomaterials have application limitations, such as 
cytotoxicity, not biocompatible for human use, and envi-
ronmental concerns.

Nanozymes are nanomaterials that catalyze the same 
reactions originally catalyzed by natural enzymes in bio-
logical systems [6–8]. Over the past several years, a wide 
variety of nanomaterials, such as noble metals [9–11], 
metal oxides [12–14], and carbon nanomaterials [15–18], 
have been explored as potential nanozymes. Based on 
their intrinsic enzyme-like activity, several nanozymes 
have been used in antibacterial applications [19–23]. 
For instance, platinum nanomaterials have shown effec-
tive antibacterial activity in the presence of hydrogen 
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peroxide (H2O2) [24]. The antibacterial activity of these 
nanozymes are attributed primarily to their oxidase- and 
peroxidase-like activities that catalyze the production 
of hydroxyl radicals (·OH) in the presence of exogenous 
H2O2 and enhance the cellular levels of reactive oxy-
gen species (ROS) within bacteria cells. Fang et  al. also 
showed that palladium nanomaterials with oxidase- and 
peroxidase-like activities displayed effective antibacte-
rial activity in the presence of H2O2 [25]. Although many 
reported enzyme-like nanomaterials have been proposed 
as novel antibacterial agents, the high price and persis-
tence in living tissues are still important issues. Moreo-
ver, the application of H2O2 in human wound disinfection 
is harmful to healthy tissue and may delay wound healing 
[26].

Terbium oxide nanoparticles (Tb4O7 NPs) have been 
extensively used as precursors for the synthesis of lantha-
nide nanophosphors and superconductor materials [27, 
28]. For example, Tb4O7 complexed with reduced gra-
phene oxide composite exhibit typical green emission of 
terbium ions as well as the blue self-luminescence of gra-
phene [28]. In addition, it has been found that Tb4O7 NPs 
can be used as analytical reagents for food analysis [29]. 
Compared with noble metal nanomaterials, Tb4O7 NPs 
are easier to synthesize and are less expensive. However, 
a review of scientific literature was unable to find any 
studies that described the enzyme-like activity of Tb4O7 
NPs and their applications as antibacterial agents. In this 
paper, we show that Tb4O7 NPs have an intrinsic oxidase-
like activity at acidic pH values, as they quickly oxidize 
a series of organic substrates in the absence of H2O2. 
We then demonstrate the relationship between the oxi-
dase-like property of Tb4O7 NPs and their antibacterial 
activity with in vitro studies. Finally, the effects of Tb4O7 
NPs on wound disinfection and healing are evaluated in 
in vivo studies using a wound infection mouse model.

Materials and methods
Chemicals and materials
Tb4O7 NPs were purchased from US Research Nano-
materials, Inc. (TX, USA). 3,3,5,5-tetramethylb-
enzidinedihydrochloride (TMB), diammonium 
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) 
(ABTS), o-phenylenediamine (OPD), and Lipid Peroxi-
dation MDA Assay Kit were all purchased from Sigma-
Aldrich (St. Louis, MO). The Live/Dead BacLight 
bacterial viability kit and 2′,7′-dichlorodihydrofluores-
cein diacetate (DCFH-DA) were obtained from Thermo 
Fisher Scientific, Inc. (MA, USA). 5-tert-butoxycar-
bonyl-5-methyl-1-pyrroline-N-oxide (BMPO) and Cell 
Counting Kit-8 (CCK-8) were obtained from Dojindo 
Laboratories (Kumamoto, Japan). Escherichia coli (E. 
coli) and Staphylococcus aureus subsp. aureus (S. aureus) 

were obtained from the China General Microbiological 
Culture Collection Center (CGMCC, Beijing, China). 
Human umbilical vein endothelial cells (HUVECs) were 
purchased from the American Type Culture Collection 
(ATCC, MD, USA).

Characterization of Tb4O7 NPs
The hydrodynamic size and zeta potential of the Tb4O7 
NPs were measured using a Zetasizer Nano-ZS (Malvern, 
UK). The morphology and size of the Tb4O7 NPs were 
characterized using a transmission electron microscopy 
(TEM, Tecnai G-20, FEI). The UV–vis absorption spec-
trum was recorded on a spectrophotometer (UV-3600, 
Shimadzu).

Electron spin resonance spectroscopic measurements
The electron spin resonance (ESR) measurements were 
carried out using a Bruker EMX ESR spectrometer 
according to our previous study [3, 9]. The final concen-
tration of each component is described in each figure 
caption. All the ESR measurements were carried out at 
ambient temperature.

Measurement of intracellular ROS
After Tb4O7 NPs (100  μg/mL) treatment, bacteria 
(1 × 109  CFU/mL) were collected by centrifugation and 
incubated with DCFH-DA (10  µM) for 30  min at dark, 
and stained bacteria were visualized with a confocal laser 
microscopy.

Cytotoxicity experiments
HUVECs were employed for investigating the cytotoxic-
ity of Tb4O7 NPs. HUVECs were seeded at a density of 
1 × 105  cells/well in 96-well plates and incubated over-
night. The HUVECs were then incubated with Tb4O7 
NPs (0–100 μg/mL) for 24 h, and cell viability was meas-
ured by MTT assay.

Mice injury model
BALB/c mice (8 weeks) were purchased from Pengsheng. 
On the day 0, the mice were anesthetized using 10% chlo-
ral hydrate. Then, the dorsal hair of mouse was shaved, 
full-thickness skin wounds with the diameter of 10 mm 
were created on the back of each mouse. After 24 h (day 
1), the mice were treated with 50 μL PBS or Tb4O7 NPs 
(100 μg/mL). The Tb4O7 NPs were dripping on the sur-
face of the wound.

Hemolysis test
Fresh blood was collected under sterile conditions from 
healthy BALB/c mice (n = 5) into an anticoagulation tube. 
The red blood cells were precipitated by centrifugation at 
2000  rpm for 10 min and washed three times with PBS 
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buffer solution to obtain red blood cells. The appropri-
ate amount of red blood cells was diluted five times with 
PBS buffer solution to prepare a red blood cell solution. 
20 μL of the diluted red blood cell suspension was mixed 
with a series of different concentrations of Tb4O7 NPs 
(0–200 μg/mL); ultrapure water was used as control. All 
the above samples were incubated at 37 °C for 2 h, cen-
trifuged at 2000 rpm for 10 min, imaged, and the super-
natant after centrifugation was taken in a 96-well plate 
to measure the absorbance at 540 nm using a microplate 
reader. The hemolysis rate was calculated as follows:

Results and discussion
Characterization of Tb4O7 NPs
The Tb4O7 NPs used in the present study were purchased 
from US Research Nanomaterials, Inc. The physical char-
acterization of Tb4O7 NPs is shown in Additional file 1: 
Figure S1 and included images of particle core size and 
shape captured by TEM, the mean and homogeneity of 

Hemolysis rate (%)

=

(

sample absorption− negative control absorption
)

/
(

positive control absorption− negative control absorption
)

× 100%, and hemolysis rate exceeding 5%

is considered hemolysis.

particle hydrodynamic size by dynamic light scatter-
ing (DLS), and particle absorption spectrum by UV–vis. 
According to TEM and DLS data, the dispersity of Tb4O7 
NPs is poor. The mean core particle size of Tb4O7 NPs 
is approximately 200  nm (Additional file  1: Figure S1a, 
b); while the DLS result of Tb4O7 NPs is around 400 nm 
(Additional file 1: Figure S1c). This is mainly due to the 
size measured by DLS was a hydrodynamic size, and 
therefore the nanoparticles showed a larger hydrody-
namic volume due to solvent effect in the hydrated state. 
The zeta potential value of Tb4O7 NPs is 31.6  mV in 
water. The UV–vis spectrum of Tb4O7 NPs is shown in 
Additional file 1: Figure S1d.

Catalytic activity of Tb4O7 NPs as oxidase mimetics
The oxidase-like activity of Tb4O7 NPs was evaluated 
using the substrate TMB. The UV–vis spectroscopy 
measurements show time-dependent increases in TMB 
oxidation catalyzed by Tb4O7 NPs, yielding a blue-
colored product (Fig. 1a, b). In addition, Tb4O7 NPs can 
also catalyze the oxidation of ABTS and OPD (Fig. 1a).

We used the oxidation of TMB as a model reaction 
and found that the catalytic efficiency of the Tb4O7 NPs 
is dependent on TMB concentrations, pH and tempera-
ture (Fig. 1c and Additional file 1: Figure S2). As shown 

Fig. 1  Oxidase-like activity of Tb4O7 NPs. a A photograph showing the capability of the Tb4O7 NPs in catalyzing the oxidations of TMB, ABTS, and 
OPD that produce colored products. b Time-dependent absorption spectra of TMB catalyzed by Tb4O7 NPs. c Absorbance at 652 nm measured from 
samples containing TMB and different concentrations of Tb4O7 NPs. d The specific activities of Tb4O7 NPs. Steady-state kinetic assays of Tb4O7 NPs (e, 
f). e TMB concentration dependence of initial reaction velocity. f Double-reciprocal plot generated from (d)
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in Additional file 1: Figure S2a, Tb4O7 NPs exhibit excel-
lent catalytic activity over a broad temperature range 
(25–60  °C). Moreover, an acidic condition (pH = 3.6) 
is conducive to the oxidase-like activity of Tb4O7 NPs 
(Additional file  1: Figure S2b). We adopted pH 3.6 and 
25 °C (room temperature) as the standard conditions for 
subsequent studies.

Next, we determined the apparent steady-state kinetic 
parameters for the reaction of Tb4O7 NPs with TMB. 
Typical Michaelis–Menten curves were established 
(Fig. 1d). The curves were then fitted to the double-recip-
rocal Lineweaver–Burk plots (Fig.  1e), from which the 
kinetic parameters shown in Table 1 were determined.

Effects of Tb4O7 NPs on the anti‑oxidant defense system
The above results show that Tb4O7 NPs have oxidase-like 
activity oxidizing TMB, ABTS, and OPD in the absence of 
H2O2. We predict that Tb4O7 NPs would deplete intracel-
lular antioxidants and, eventually, disrupt the antioxidant 
defense systems of bacteria. To test this hypothesis, we 
examined the effects of Tb4O7 NPs on ascorbic acid (AA) 
oxidation in vitro. AA is an important endogenous bacte-
rial antioxidant that prevents cellular damage from ROS. 
AA can be oxidized to form an intermediate ascorbyl 
radical (·AA), which is detectable by ESR spectroscopy 

[9]. As shown in Fig. 2a, the oxidation of AA was negli-
gible within 10 min, while in the presence of Tb4O7 NPs 
the system showed a time-dependent increase in the ESR 
signal intensity in the first 8 min and then decreased over 
time. These results indicate that Tb4O7 NPs can acceler-
ate AA oxidation.

In the substrate oxidation mechanism of most oxi-
dases in nature, oxygen acts as the electron acceptor 
and is reduced to H2O2. To gain a better understand-
ing of the oxidation of AA by Tb4O7 NPs, we examined 
whether the catalytic oxidation product of Tb4O7 NPs 
and AA produced H2O2. As shown in Additional file  1: 
Figure S3, a marked increase of H2O2 was detected 
in the presence of Tb4O7 compared to control (AA 
alone). Moreover, the production of H2O2 was Tb4O7 
concentration-dependent.

Previous studies have demonstrated that several kinds 
of nanoparticles are capable of catalyzing the produc-
tion of hydroxyl radicals by H2O2 [30, 31]. Therefore, 
we determined whether Tb4O7 NPs would catalyze 
the production of hydroxyl radicals by H2O2 using ESR 
spectroscopy. We selected BMPO as the capture agent, 
since BMPO can capture hydroxyl radicals to form 
BMPO/·OH adducts indicated by the presence of four 
characteristic lines on the ESR spectrum. As shown in 
Fig.  2b, the characteristic ESR signals of BMPO/·OH 
were negligible in the absence of Tb4O7 NPs. However, 
the addition of Tb4O7 NPs resulted in a strong ESR spec-
trum that displayed the four characteristic lines (1:2:2:1) 
of BMPO/·OH. These results clearly show that Tb4O7 
NPs can be used as a catalyst in the decomposition of 
H2O2 to produce hydroxyl radicals.

Taken together, our results confirm that Tb4O7 NPs 
are capable of catalyzing the oxidation of biologically 

Table 1  The kinetic constants of Tb4O7 NPs

[E] is the concentration of Tb4O7 NPs. The particle number of Tb4O7 NPs is 
calculated using the density and diameter of Tb4O7 NPs. Dividing the particle 
number by the Avogadro constant is the molar concentration of Tb4O7 NPs

[E] (M) Km (M) Vmax (M/s) Kcat (s
−1) Kcat/Km 

(M−1 S−1)

Tb4O7 
NPs

7.04 × 10−10 1.24 × 10−4 4.31 × 10−8 1.61 × 10−4 1.30

Fig. 2  a Oxidation of AA by Tb4O7 NPs. b ESR spectra of BMPO/·OH generated from a sample solution containing 25 mM BMPO, 1 mM H2O2 in the 
absence (control) and presence of different concentrations of Tb4O7 NPs
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relevant antioxidant agents, resulting in the production 
of H2O2. Moreover, Tb4O7 NPs can further catalyze the 
production of hydroxyl radicals via the decomposition of 
H2O2.

Antibacterial activity of Tb4O7 NPs
Both H2O2 and hydroxyl radicals have strong oxidizing 
ability and can oxidize biological macromolecules, such 
as proteins and phospholipids [32]. Our study found that 
Tb4O7 NPs with oxidase-like activity can catalyze the 
production of H2O2 and further produce hydroxyl radi-
cals. Therefore, the oxidase-like activity of the Tb4O7 NPs 
makes them potentially useful as antibacterial agents. 
We evaluated the antibacterial activity of Tb4O7 NPs 
against E. coli and S. aureus. A colony-forming units plate 
counting method was used to determine the antibacte-
rial ability (Fig.  3a, b). As compared to the PBS control 
group, Tb4O7 NPs exhibited potent antimicrobial activ-
ity against both S. aureus and E. coli in a concentration-
dependent manner. At a concentration of 25  μg/mL, 
Tb4O7 NPs exhibited only modest antibacterial effects 
against S. aureus; more than 80% of the bacterial cells 
survived. However, when the concentration of Tb4O7 
NPs was increased to 100  μg/mL, nearly 90% of the S. 
aureus were killed. A similar trend of antibacterial effects 
were observed towards the E. coli.

To further investigate the interaction between Tb4O7 
NPs and bacteria, a fluorescent-based cell live/dead 
assay was conducted. As shown in Fig. 3c, d, Tb4O7 NPs 
exhibited significant antibacterial activity against both S. 
aureus and E. coli, which was consistent with the afore-
mentioned results. The exposure of S. aureus cells to 
Tb4O7 NPs at a concentration of 100 μg/mL resulted in 
nearly 100% lethality, as evidenced by the dominant red 
fluorescent signal. At a concentration of 50 μg/mL, Tb4O7 
NPs completely inhibited the bacterial growth of E. coli.

The morphology and membrane integrity of bacteria 
were then determined by SEM (Fig. 3c, d). Untreated S. 
aureus displayed a typical rod-shaped structure with 
a continuous, smooth surface. When exposure to the 
50 μg/mL of Tb4O7 NPs, the S. aureus bacterial cell walls 
became partially wrinkled and discontinuance. Nota-
bly, after treatment with 100  μg/mL of Tb4O7 NPs, the 
S. aureus bacterial cell walls showed much more pro-
nounced damage, indicating stronger antibacterial effects 
at higher concentrations of Tb4O7 NPs. A similar ten-
dency was found for E. coli. The loss of membrane integ-
rity of E. coli was observed at concentrations lower than 
100  μg/mL of Tb4O7 NPs treatment. Moreover, Tb4O7 
NPs were observed by SEM and SEM-energy dispersive 
X-ray spectroscopy (EDS) to aggregate on the surfaces of 
S. aureus and E. coli (Additional file 1: Figure S4).

It is known that the proton motive force decreases the 
local pH (as low as pH 3.0) in the cytoplasm and mem-
brane of bacteria cells [33, 34]. Since we found that 
Tb4O7 NPs exhibit oxidase-like activity under acidic con-
ditions, we speculate that the antibacterial mechanism of 
Tb4O7 NPs may arise from their oxidase activity to accel-
erate the process of bacterial cell oxidation and consump-
tion of antioxidant biomolecules, leading to a reduction 
of oxygen products including H2O2 along with other 
antibacterial activity from the accumulation of ROS. To 
confirm this hypothesis, the intracellular levels of ROS 
were determined using the florescent probe, DCFH-DA 
(Fig. 4). For both S. aureus and E. coli, the untreated cells 
showed extremely weak fluorescence, indicating low lev-
els in the formation of intracellular ROS. In contrast, bac-
terial cells exposed to Tb4O7 NPs showed high levels of 
ROS formed within the cellular cytoplasm, as evidenced 
by the strong fluorescence signal. We also found that the 
generation of ROS is Tb4O7 NPs dose-dependent (Addi-
tional file 1: Figure S5).

In vivo wound disinfection effect of Tb4O7 NPs
The above findings suggest that Tb4O7 NPs may have role 
as an antibacterial agent for bacterial infections in vivo. 
To assess the antibacterial capacity of Tb4O7 NPs in vivo, 
a wound infection model was constructed using BALB/c 
mice. A wound was introduced on the back of the mouse 
and an infection was established by implanting S. aureus 
into the wounded area. After infection was established, 
PBS or Tb4O7 NPs were applied to the infected wound. 
Figure 5a, b shows the progress of the wounds. Compared 
with the control (PBS treatment) group after 3 days, the 
wound area was reduced under Tb4O7 NPs treatment. 
After treating of 7  days with Tb4O7 NPs treatment, the 
wounds were nearly healed completely. In contrast, obvi-
ous scab was observed from the control group, indicating 
incomplete recovery.

Biosafety of Tb4O7 NPs
Biosafety is an important factor for antimicrobial agents 
designers. To assess the biosafety of Tb4O7 NPs, we first 
determined the effects of Tb4O7 NPs on red blood cells 
and HUVECs in  vitro. The effect of Tb4O7 NPs on cell 
membrane disrupt was first determined by a red blood 
cell hemolysis assay. As shown in Fig. 6a, pure water can 
cause severe red blood cells hemolysis within 2 h. In con-
trast, the introduction of Tb4O7 NPs did not cause signs 
of hemolysis. In this experimental result, the hemolysis 
rate was still less than 1% at a concentration of 100 µg/
mL, which fully demonstrated that Tb4O7 NPs have good 
blood compatibility. Meanwhile, the cytotoxicity tests on 
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mammalian cells HUVECs further confirm the biosafety 
of Tb4O7 NPs (Fig. 6b).

Then, the biosafety of Tb4O7 NPs in  vivo were deter-
mined. As shown in Fig. 7a, the indicators in blood were 

within the normal range. The major mouse organs (heart, 
liver, spleen, lung, and kidney) were formalin-fixed 
and processed for the evaluation of H&E sections by 

Fig. 3  The effect of Tb4O7 NPs on survival rates of bacteria a CFUs of S. aureus following incubation with Tb4O7 NPs; b CFUs of E. coli following 
incubation with Tb4O7 NPs; c Representative fluorescence and SEM images of S. aureus after Tb4O7 NPs treatments. Bacterial cells were treated with 
1) PBS as control, 2) 25 μg/mL Tb4O7 NPs, 3) 50 μg/mL Tb4O7 NPs or 4) 100 μg/mL Tb4O7 NPs; d Representative fluorescence and SEM images of E. 
coli after Tb4O7 NPs treatments. Bacterial cells were treated with 1) PBS as control, 2) 10 μg/mL Tb4O7 NPs, 3) 25 μg/mL Tb4O7 NPs or 4) 50 μg/mL 
Tb4O7 NPs. **p < 0.01 and ***p < 0.001 vs control
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Fig. 4  a Fluorescence images of bacterial cells. b Analysis of the ROS levels by microplate reader. ***p < 0.001 vs control

Fig. 5  a Photographs of wounds on the backs of mice in control (PBS) and Tb4O7 NPs treatment groups (n = 5). Scale bar: 5 mm. b Related wound 
size in each treatment group. c Bacterial number of infected wounds on the 7th day. ***p < 0.001 vs control



Page 8 of 10Li et al. J Nanobiotechnol           (2019) 17:54 

Fig. 6  a The hemolysis ratio of red blood cells. The insert images of tubes containing red blood cells solution show the direct observation of 
hemolysis. Tube 1: PBS buffer; Tube 2–5: 25, 50, 100, and 200 μg/mL Tb4O7 NPs; Tube 6: ultrapure water. b MTT assays determined cell viability of 
HUVECs after Tb4O7 NPs treatment

Fig. 7  In vivo toxicity of Tb4O7 NPs. a The blood biochemistry data of the mice treated with Tb4O7 NPs after 7 d (n = 5). b Histological data (H&E 
staining images) are obtained from the major organs of mice treated with Tb4O7 NPs after 7 d. Scale bar = 100 μm
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histopathology (Fig. 7b). No obvious mouse organ dam-
age was observed from Tb4O7 NPs treatment.

Conclusions
In summary, this study demonstrates for the first time 
that Tb4O7 NPs exhibit oxidase-like activity. In addi-
tion, the results of this study established a relationship 
between the oxidase-like enzyme activity of Tb4O7 NPs 
and their antibacterial properties. The data collected 
from this work revealed that the oxidase-like activ-
ity of Tb4O7 NPs was able to function with a variety of 
substrates, including biomolecules, and resulted in the 
generation of ROS, which further enhanced their anti-
bacterial activity. The application of the antibacterial 
activities of Tb4O7 NPs were demonstrated in a wound 
infection mouse model. Our study provides evidence that 
Tb4O7 NPs can be utilized as an efficient antibacterial 
agent and the potential applications in wound healing are 
promising.

Additional file

Additional file 1: Figure S1. Characterization of Tb4O7 NPs. Figure S2. 
The oxidase-like catalytic activity of the Tb4O7 NPs. Figure S3. The con‑
centration of H2O2 generated in the catalytic system. Figure S4. SEM-EDS 
elemental images. Figure S5. ROS levels of S. aureus.
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