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Abstract

Background: Legionella pneumophila is an intracellular bacterial pathogen that

invades and replicates within alveolar macrophages through injection of ,300

effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box

protein, AnkB, is a nutritional virulence effector that triggers macrophages to

generate a surplus of amino acids, which is essential for intravacuolar proliferation.

Therefore, the ankB mutant represents a novel genetic tool to determine the

transcriptional response of human monocyte-derived macrophages (hMDMs) to

actively replicating L. pneumophila.

Methodology/Principal Findings: Here, we utilized total human gene microarrays

to determine the global transcriptional response of hMDMs to infection by wild type

or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with

either actively proliferating wild type or non-replicative ankB mutant bacteria were

remarkably similar. The transcriptome of infected hMDMs was predominated by up-

regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling

and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis

pathways. In addition, L. pneumophila modulated diverse metabolic pathways,

particularly those associated with bio-active lipid metabolism, and SLC amino acid

transporters expression.

Conclusion/Significance: Taken together, the hMDM transcriptional response to

L. pneumophila is independent of intra-vacuolar replication of the bacteria and

primarily involves modulation of the immune response and metabolic as well as

nutritional pathways.
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Introduction

Legionella pneumophila is found ubiquitously in the aquatic environment and

shares an intimate intracellular relationship with many species of amoeba and

ciliates [1, 2, 3]. L. pneumophila, the causative agent of Legionnaires’ disease,

invades and replicates in human alveolar macrophages [4, 5]. When L.

pneumophila invades amoeba or human macrophages, it evades the default

endosomal-lysosomal degradation pathway and remodels its phagosome into a

specialized ER-derived vacuole via intercepting ER-to-golgi vesicular trafficking

[2, 3, 5, 6]. This is achieved by the translocation of ,300 effector proteins via the

Dot/Icm type IVB secretion system [5, 7, 8, 9]. These effectors modulate a myriad

of eukaryotic processes including host signaling, vesicular trafficking, protein

synthesis, apoptosis, prenylation, ubiquitination, and proteasomal degradation

[2, 6, 10, 11, 12, 13]. Surprisingly, very few of these effectors are essential for

intracellular replication of L. pneumophila [5, 14], suggesting specific require-

ments for different effectors in different environmental hosts.

The AnkB translocated effector is one of very few effectors essential for

proliferation of L. pneumophila strain AA100/130B within the two evolutionarily-

distant hosts, mammalian and protozoan cells, and for intrapulmonary bacterial

proliferation and manifestation of pulmonary disease in the mouse model

[15, 16, 17, 18, 19]. In addition, AnkB in L. pneumophila strain Paris contributes to

intravacuolar proliferation in the THP-1 human macrophage cell line and in A549

human lung epithelial cells and is needed for lung colonization of A/J mice, albeit

at a less extent than in strain AA100 [20]. In contrast, AnkB is dispensable for

intravacuolar replication of L. pneumophila strain Philadelphia-derived Lp02 in

macrophages [21], suggesting that a compensatory genetic repertoire exists in this

strain that overcomes the loss of AnkB. AnkB is a non-canonical F-box protein

that interacts with the host SCF1 ubiquitin ligase on the LCV membrane [22] and

functions as a platform for the docking of Lys48-linked polyubiquitinated proteins

to the Legionella-containing vacuolar (LCV) membrane [18, 20]. The AnkB-

assembled Lys48-linked polyubiquitinated proteins are degraded by the host

proteasome machinery, which generates higher levels of cellular amino acids [19].

These amino acids are used by L. pneumophila to feed the tri-carboxylic acid

(TCA) cycle to generate ATP and secondary metabolites to power intra-vacuolar

replication of L. pneumophila [19, 23, 24]. Since the only defect of the ankB

mutant is its inability to import sufficient levels of host amino acids and is

localized within an ER-derived LCV that evades lysosomal fusion similar to the

wild type strain [15], the ankB mutant is a useful genetic tool to probe the global

human macrophage responses to actively replicating L. pneumophila.

The global transcriptional profile of L. pneumophila-resistant bone marrow-

derived C57BL/6J and the congenic L. pneumophila-susceptible BcA75 murine

macrophages in response to L. pneumophila infection revealed striking host

modulation of gene expression [25, 26]. C57BL/6J mouse macrophages are

inherently resistant to L. pneumophila because the inflammasome is activated

through Naip5-dependent sensing of bacterial flagellin [27, 28, 29, 30, 31]. In

Host Global Response to L. pneumophila
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contrast, A/J mice have an altered Naip5 allele that renders this mouse strain

sensitive to L. pneumophila infection. The C57BL/6J congenic mouse strain BcA75

harbors the A/J Naip5 allele [25]. The transcriptional profile of bone marrow-

derived macrophages (bMDMs) isolated from C57BL/6J or BcA75 mice in

response to L. pneumophila infection are very similar, indicating that the mouse

macrophage transcriptional response is independent of inflammasome activation

[25]. Further transcriptome studies using C57BL/6J bMDMs, revealed induction

of a novel innate immune response termed the ‘effector triggered response’ (ETR)

[26] that is dependent on five L. pneumophila effectors that directly block host

protein translation [32, 33, 34, 35, 36]. In addition to this finding, recent work has

demonstrated that infected cells exhibit a frustrated MAP kinase response due to

effector-dependent host protein synthesis inhibition, but inhibition of pro-

inflammatory cytokine translation is overcome in these cells by a MyD88-

dependent mechanism [37]. Additional work demonstrated the global transcrip-

tional response of the human macrophage-like U937 cell line to a low dose

challenge of L. pneumophila and found up-regulation of anti-apoptotic genes

controlled by the transcriptional regulator NF-kB [38]. However, genome wide

global transcriptome analysis of primary human monocyte-derived macrophages

(hMDMs), the mammalian host cell for L. pneumophila, has not been evaluated.

Analyzing the global transcriptome response of hMDMs to L. pneumophila

infection is important to determine the cellular responses in the human host and

would allow us to compare the findings to the model system of bMDMs of the

mouse animal model.

Here we show the global transcriptional response of hMDMs infected with wild

type L. pneumophila and its isogenic ankB mutant. The ankB mutant was selected

for this study because it fails to replicate intracellularly, but is enclosed within an

ER-derived vacuole that evades lysosomal fusion and translocate its full repertoire

of effectors, similar to the wild type strain. It is a unique nutritional mutant that

resides within a replicative vacuole but simply lacks sufficient levels of amino acids

to power its proliferation. Interestingly, the hMDM transcriptional response to L.

pneumophila, involves modulation of several immunological pathways, protein

synthesis pathways, metabolic pathways and amino acid transporters.

Importantly, the global response of hMDMs to infection by L. pneumophila is

independent of intracellular bacterial replication.

Materials and Methods

Ethics statement

Human monocyte-derived macrophages were obtained from healthy donors who

had given written consent for their use, and this work was approved by the

University of Louisville Institutional Review Board.

Host Global Response to L. pneumophila
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Bacterial strains and cell cultures

L. pneumophila strain AA100/130b (ATCC BAA-74) and the isogenic ankB mutant

were grown on BCYE agar plates for 3 days at 37 C̊ prior to use for infection of

macrophages [15]. Human monocyte-derived macrophages (hMDMs) were

isolated from healthy donors as described previously IRB [18]. Briefly, monocytes

were isolated from whole blood and allowed to adhere to low adherence cell

culture plates for 3 days in RPMI 1640 supplemented with 20% FBS at 37 C̊ and

5% CO2. The monocytes were then counted and resuspended RPMI 1640

supplemented with 10% FBS and plated at a density of 36106 cells per well of a 6

well cell culture plate and incubated for a further 2 days. The cell culture media

was then replaced with RPMI 1640 supplemented with 5% FBS for one day, and

then with RPMI 1640 supplemented with 1% FBS for one day. The mature

hMDMs were then used for infection by L. pneumophila.

Isolation of RNA from L. pneumophila infected hMDMs

The hMDM monolayers plated at density of 36106 cells per well in a 6 well plate

were either uninfected or infected in triplicate with either the wild type L.

pneumophila or the ankB mutant at an MOI of 20 for 1 h and then treated for 1 h

with gentamicin to kill remaining extracellular bacteria and incubated at 37 C̊ and

5% CO2. The infections were allowed to proceed for a total of 8 h prior to

isolation of total RNA. Total RNA from the hMDM monolayers was isolated from

3 individual wells for each condition (uninfected, wild type or ankB infected)

using the Qiagen RNeasy Mini kit (Qiagen) according to the manufacturer’s

instructions. A total of 3 biological replicates were performed. Quality of the

purified RNA from each sample was confirmed by using a Bioanalyzer (Agilent)

prior to use for microarray analysis.

Microarray sample preparation and analysis

Total RNA was amplified from each sample and labeled following the Affymetrix

(Santa Clara, CA) standard protocol for whole transcript expression analysis

followed by hybridization to individual Affymetrix Human Gene 1.0 ST arrays for

each sample. The arrays were processed following the manufacturer recom-

mended wash and stain protocol on an Affymetrix FS-450 fluidics station and

scanned on an Affymetrix GeneChip 7G scanner using Command Console 3.1.

The resulting.cel files were imported into Partek Genomics Suite 6.6 and

transcripts were normalized on a gene level using RMA as normalization and

background correction method. Contrasts in a 1-way ANOVA were set up to

compare the treatments of interest. The data was then analyzed using Metacore

Pathway software (Thomson Reuters) with a threshold set to set to 0 and a p-value

of 0.15. Microarray data was submitted to the Gene Expression Omnibus (GEO)

repository and can be accessed through accession number GSE61535. This data set

also contains additional microarray data of hMDMs infected with a type II

secretion mutant of L. pneumophila.

Host Global Response to L. pneumophila
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Results and Discussion

Global transcriptional response of hMDMs to infection by wild type

and an ankB mutant of L. pneumophila

We utilized the ankB mutant, that resides within an ER-derived LCV, similar to

the wild type strain [15], as a genetic tool to determine if the transcriptional

response of hMDMs to infection by L. pneumophila was dependent on intra-

vacuolar proliferation. In order to examine the global transcriptional response of

hMDMs to infection by either wild type or ankB mutant L. pneumophila, RNA

from uninfected or infected hMDMs was isolated at 8 h post-infection and

examined by microarray analysis. Interestingly, even though the ankB mutant fails

to proliferate in hMDMs, the overall global transcriptional response of hMDMs to

the mutant strain was similar to infection by the wild type strain (S1 Table). This

result is likely due to Dot/Icm translocation-dependent activation of the global

transcription factor NF- kB by L. pneumophila infection of human macrophages,

which drives major changes in macrophage gene transcription

[15, 28, 29, 30, 38, 39, 40, 41, 42, 43]. In addition, the ‘effector triggered response’

in C57BL/6J bMDMs, which is mediated by 5 translocated effectors that inhibit

protein synthesis [26], are shared by the wild type strain and the ankB mutant.

Therefore, analyses were focused on the shared transcriptional response of

hMDMs to wild type and ankB mutant infection. The top 40 genes that showed

the greatest differential expression in response to wild type or the ankB mutant are

shown in Table 1. The up-regulated genes primarily encode mediators of the

immune response such as IL23A, IL10 and TNF (Table 1), many of which but not

all, have been shown previously to be up-regulated in C57BL/6J bMDMs infection

by L. pneumophila Lp02 [25, 26]. The most down-regulated genes encode proteins

with diverse cellular functions (Table 1). APOBEC3A was the most down-

regulated genes in hMDMs infected with L. pneumophila. This gene encodes a

cytidine deaminase that plays a key role in restriction of retroviruses by converting

cytidine bases in viral DNA to uridine [44]. It is not currently known if

APOBEC3A can affect DNA of intracellular bacterial pathogens, but it appears L.

pneumophila actively protects itself from this host enzyme through down-

regulation of its transcription. GAPT, the second most down-regulated gene in

hMDMs infected with L. pneumophila binds to Grb2 and plays a role in B-cell

activation and maintenance [45]. To facilitate the analysis of the microarray data,

MetaCore Pathway Enrichment analyses were performed.

Intra-vacuolar L. pneumophila triggers transcription of multiple

immunologic pathways in hMDMs

MetaCore enrichment analysis of the microarray data revealed that several key

immunological response pathways are the most significantly up-regulated during

infection by the wild type strain or the ankB mutant of L. pneumophila. The top

scoring Pathway Maps for both wild type and ankB mutant infected hMDMs are

shown in Fig. 1 and individual genes affected by L. pneumophila infection in each

Host Global Response to L. pneumophila
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Table 1. The top 40 up- and down-regulated genes in hMDMs infected by either wild type or an isogenic ankB L. pneumophila mutant strain compared to
uninfected hMDMs at 8 h post-infection.

Upregulated Downregulated

Gene wild type ankB Gene wild type ankB

RANBP3L 24.9558 26.77 APOBEC3A 22.1301 22.73152

EGR1 20.546 24.0411 GAPT 22.03252 22.7872

NR4A2 17.8068 18.0274 ACAA1 21.68363 21.1802

CCL20 12.9572 13.7933 CD177 21.61745 21.56168

RHCG 12.7492 15.4015 MIR186 21.61347 21.5868

PMAIP1 11.8732 12.7965 PSG3 21.57598 1.05404

IL23A 9.56236 12.0511 MSL3L2 21.57256 21.37738

GADD45B 8.87087 10.1934 LRRC25 21.57178 21.88843

HES1 8.83049 10.3995 CLEC4A 21.5458 21.75417

LIF 8.79145 10.6728 EFTUD1 21.53079 21.38747

FOS 8.7718 8.89375 SNORD49A 21.52728 21.37486

CSF2 8.40756 10.9112 INSIG2 21.50978 21.34251

IL10 7.94675 8.5155 LOC100133315 21.50807 21.19079

CXCL2 7.55389 8.69098 C5orf20 21.47832 21.60939

IL12B 7.53365 10.1927 CMKLR1 21.47262 21.74118

PTX3 7.49085 9.93165 SNORD5 21.46528 21.4449

IL6 7.41431 7.90096 CD209 21.46377 21.05034

TNF 6.88512 7.34775 C5orf44 21.45662 21.43777

E2F7 6.83706 9.88067 LOC221442 21.45215 21.4062

IL20 6.72872 9.20687 ZNF814 21.45034 21.44363

CLCF1 6.67757 7.83769 CLCN4 21.44066 21.44317

LOC440896 6.5948 7.38741 RAB42 21.43825 21.36904

ZFP36 6.59423 8.02248 C8orf44 21.43825 21.44839

MIR155 5.77859 5.98857 SUMO1P3 21.43729 21.04598

GADD45A 5.51276 7.40294 RASA4 21.43024 21.74162

KLF4 4.73673 5.55325 MIR142 21.42423 21.76193

CCL4 4.73258 5.05042 ZNF573 21.42362 21.2825

HIVEP2 4.64881 5.47726 AKR1C3 21.42287 21.38282

TNFSF9 4.61437 5.90509 FCGR3A 21.41971 21.44462

FOSB 4.53659 4.5787 CLEC6A 21.41775 21.48098

NFKBIZ 4.52984 6.05722 ZNF846 21.41227 21.13047

DENND4A 4.46864 5.57978 ZNF594 21.40638 21.70581

NIPAL4 4.39544 5.99992 CDKN3 21.40499 21.39675

TFPI2 4.3389 4.61199 LYPLAL1 21.40468 21.38222

GEM 4.29366 5.00829 SNORD42B 21.40304 21.61795

IFNG 4.21353 2.68894 FPR3 21.40273 21.73894

ZBTB10 4.17859 4.82323 C5orf54 21.40168 21.88889

OVOS 4.17333 4.11822 TRIM16 21.3968 21.37838

CXCL3 3.99019 4.59161 LOC344887 21.3964 21.44194

GPR109B 3.9855 5.21438 SNORD96A 21.3957 21.36989

Numbers indicate fold change.

doi:10.1371/journal.pone.0114914.t001
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of these Pathway Maps can be seen in S2 Table. The top three Pathway Maps

include ‘Immune response HSP60 and HSP70/TLR’ (p value wild type 1.886216,

ankB 3.530212), ‘Development_Regulation of epithelial-to-mesenchymal transi-

tion (EMT) signaling pathway’ (p value wild type 4.154216, ankB 1.290213) and

‘Immune response TLR5, TLR7, TLR8 and TLR9 signaling pathways’ (p value wild

type 1.082213, ankB 9.093211) (Fig. 1, S2 Table). This indicates L. pneumophila

instigates a robust innate immune response in infected hMDMs and this response

is independent of intra-vacuolar proliferation.

A clearer overall impact of L. pneumophila infection on the hMDM global

transcriptional response can be observed through enrichment of Process

Networks, which combine the manually collated Pathway Maps and Gene

Ontology (GO) processes to demonstrate major cellular processes. Genes in each

of these process networks affected by L. pneumophila are listed in S2 Table. The

data revealed that infection of hMDMs with either wild type or ankB mutant L.

pneumophila induces a broad transcriptional response of genes involved in innate

immunity. Five of the top ten Process Networks identified were associated with

inflammation and the immune response (IL-10 anti-inflammatory response,

interferon signaling, amphoterin signaling, IL-12,15,18 signaling and immune

response to Th17-derived cytokines) (Fig. 2, S2 Table). L. pneumophila infection

stimulates both pro-inflammatory Th1 and anti-inflammatory Th2 cytokine

responses. Studies have shown that L. pneumophila stimulates the production of

many pro-inflammatory cytokines including IL-1a, IL-1b, IL-6, IL-8, TNF-a,

Figure 1. Top 10 Pathway Maps up-regulated in hMDMs upon infection by L. pneumophila. Metacore
analysis of triplicate microarrays of wild type strain and ankB mutant-infected hMDMs at 8 h post-infection
showing the top 10 Pathway Maps. The upper orange bar of each column represents wild type-infected
hMDMs while the lower blue bar represents the ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g001

Host Global Response to L. pneumophila
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IFN-c, IL-12, IL-17 and IL-18 by mouse bMDMs, human macrophage cell lines,

murine models of L. pneumophila infection and in patients with Legionnaires’

disease [28, 29, 30, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. In addition, L. pneumophila

stimulates the production of IL-10, the chief mediator of the Th2 response, which

suppresses production of Th1 cytokines such as IFN-c, promoting an anti-

inflammatory response and allowing L. pneumophila to proliferate within

hMDMs, primary human alveolar macrophages, U937 human macrophage cell

line and mouse bMDMs [56, 57, 58, 59]. Therefore, it appears L. pneumophila

endeavors to strike a balance between Th1 and Th2 responses and our microarray

data clearly demonstrate that L. pneumophila modulates both pro- and anti-

inflammatory pathways in hMDMs, and these host modulations are independent

of intra-vacuolar proliferation.

Two Process Networks involved in cellular differentiation were also upregulated

in hMDMs during infection by wild type or ankB mutant bacteria. The NOTCH

signaling Process Network, which plays a key role in cell-cell communication

during differentiation (p value wild type 1.238204, ankB 3.857209) and the Process

Network defining blood vessel morphogenesis (p value wild type 3.503207, ankB

1.044208) were both up-regulated during wild type or ankB mutant infection

(Fig. 2, S2 Table). Currently, little is known regarding these processes in relation

to L. pneumophila infection.

L. pneumophila employs a multi-faceted approach to modulate host cell

apoptosis, delaying death of the infected cell, enabling time for the bacteria to

proliferate [39, 60, 61, 62, 63]. This is partially achieved through translocation of

several effectors including SdhA, SidF, LegK1 and LnaB [64, 65, 66, 67] that either

Figure 2. Top 10 Process Networks up-regulated in hMDMs upon infection by L. pneumophila. Meta-
ankB mutant-infected hMDMs at 8 h post-infe-

ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g002
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directly or indirectly modulates the apoptosis pathway. L. pneumophila also

induces NF-kB dependent transcription of anti-apoptotic genes [38, 39] and this

is at least dependent on the LegK1 effector, which directly phosphorylates the NF-

kB inhibitor IkBa, promoting its proteasomal degradation [66], and on five

effectors that block host cell protein synthesis that ultimately promote NF-kB

dependent transcriptional activity [26]. The PI3K/Akt signaling pathway plays a

crucial role in maintenance of eukaryotic cell survival through control of major

cellular processes including glucose metabolism, protein synthesis, anti-apoptosis

and phagocytosis [68]. Our microarray data show that the Process Network

defining anti-apoptosis mediated by external signals via PI3K/Akt (p value wild

type 1.075208, ankB 2.859205) is up-regulated in hMDMs infected with wild type

or ankB mutant L. pneumophila (Fig. 2, S2 Table). Activation of the PI3K/Akt

pathway is important in the phagocytosis of L. pneumophila by macrophages [69].

Therefore, our data implicate that upon phagocytosis, L. pneumophila reprograms

diverse pathways in hMDMs to block apoptosis through activation of the PI3K/

Akt pathway, in addition to the activity of various translocated effectors that

promote NF-kB activity which prolongs cell survival [26, 39, 66], protecting the

intracellular niche for L. pneumophila.

Infection of hMDMs with wild type or ankB mutant L. pneumophila also

impacted genes involved in platelet-endothelium-leucocyte interactions (p value

wild type 3.547208, ankB 2.894205) and regulation of cell proliferation (p value

wild type 3.650208, ankB 1.474206) (Fig. 2, S2 Table). Infection of mouse bMDMs

by the L. pneumophila Lp02 strain also induced genes associated with cell

proliferation [25]. However currently, there are little data available to indicate the

importance of these pathways in relation to L. pneumophila infection. Taken

together, L. pneumophila infection of hMDMs up-regulates transcription of

multiple immune responses, anti-apoptosis, cellular differentiation, proliferation

and adhesion processes. This robust global transcriptional response in hMDMs is

similar to that observed in infected bMDMs and U937 cells despite differences in

genetic susceptibility and mammalian species [25, 26, 38]. Importantly, these

global L. pneumophila-triggered host modulations are independent of

intra-vacuolar proliferation of the bacteria.

Repression of transcription of protein synthesis pathways in

hMDMs independent of intra-vacuolar proliferation of

L. pneumophila

In addition to analyses of cellular pathways up-regulated in hMDMs upon

infection by L. pneumophila, down-regulated pathways were analyzed. Initial

enrichment analysis for Pathway Maps revealed multiple host pathways that are

down-regulated upon infection by both the wild type strain and the ankB mutant.

These included clathrin-coated vesicle cycle, multiple nucleotide metabolism

pathways, oxidative phosphorylation, EIF4F protein translation, S1P1 receptor

signaling, LRRK2 signaling, CXCR4 signaling and nucleotide excision repair

(Fig. 3, S3 Table). It is clear L. pneumophila infection of hMDMs down-regulates

Host Global Response to L. pneumophila
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many pathways that have broad effects on the host cell. For example LRRK2

interacts with a wide range of signaling proteins including the MAPK family, and

can modulate GTPase-activating and GTPase-exchange factors that affect

vesicular trafficking and autophagy and altering this pathway may provide benefit

for the pathogen [70]. Genes affected by L. pneumophila in these pathways are

listed in S3 Table.

To develop a broad understanding of the effect of L. pneumophila infection in

hMDMs in terms of down-regulated pathways, enrichment of down-regulated

Process Networks was performed. Strikingly, L. pneumophila infection causes a

broad repression of genes involved in protein translation in hMDMs, with 3 out of

top 10 scoring Process Networks involved in protein translation initiation and

termination (Fig. 4, S3 Table). L. pneumophila infection directly affects networks

defining ‘Protein Translation Initiation’ (p value wild type 1.157215, ankB

9.261224) ‘Regulation of Initiation’ (p value wild type 9.097211, ankB 1.527206

and also ‘Elongation – Termination’ (p value wild type 6.960208, ankB 6.962211),

indicating a significant and diverse impact on overall host protein translation

(Fig. 4, S3 Table). Interestingly, infection of hMDMs with either wild type or

ankB mutant L. pneumophila also negatively impacted the network defining

‘Transcription by RNA polymerase II’ (p value wild type 4.222208, ankB 1.369212)

(Fig. 4, S3 Table). Genes directly impacted by L. pneumophila in these Process

Networks can be seen in S3 Table. L. pneumophila is known to reduce protein

translation in the host cell through the action of at least five translocated effectors

[32, 33, 34, 35, 36]. It is possible that blocking host cell protein synthesis and

transcription is beneficial for L. pneumophila through increasing cytosolic

availability of amino acids in addition to promoting proteasomal degradation

Figure 3. Top 10 Pathway Maps down-regulated in hMDMs upon infection by L. pneumophila. Meta-
ankB mutant-infected hMDMs at 8 h post-infe-

hMDMs while the lower blue bar represents the ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g003

Host Global Response to L. pneumophila

PLOS ONE | DOI:10.1371/journal.pone.0114914 December 8, 2014 10 / 22

core analysis of triplicate microarrays of wild type strain and
ction showing the top 10 Pathway Maps. The upper orange bar of each column represents wild type-infected



[19]. L. pneumophila relies heavily on amino acids as its primary source of carbon

and energy and actively promotes increased host cytosolic amino acid

concentrations through AnkB-dependent proteasomal degradation [19]. Similar

to the wild type strain, the ankB mutant also reduced transcription of the protein

synthesis pathways in hMDMs, but this mutant fails to replicate. This suggests any

increase in bioavailability of amino acids due to reduced host protein translation

plays only a minor role for L. pneumophila in terms of raising the levels of amino

acids in hMDMs above the threshold needed for intra-vacuolar proliferation. L.

pneumophila encodes five effectors that directly block host protein translation

[32, 33, 34, 35, 36], and in non-permissive bMDMs derived from C57BL/6J mice

leads to induction of the ‘effector-triggered response (ETR)’ characterized by

increased transcription of IL23a and Gem [26]. In addition, L. pneumophila-

dependent inhibition of host translation generates a frustrated MAP kinase

response where many genes are transcribed but not translated, however a subset of

pro-inflammatory cytokines including Il-1a and Il-1b can bypass this effect in a

MyD88-dependent manner [37]. Transcription of both IL23a and Gem were

amongst the top 40 highest expressed genes in hMDMs infected with L.

pneumophila (Table 1), indicating the ETR phenotype also occurs in primary

human macrophages, regardless of the genetic susceptibility or mammalian

species of the host cell. Taken together, it appears L. pneumophila combines

inhibition of protein translation pathway transcription and a direct

effector-dependent inhibition of protein synthesis that leads to elevated

expression of innate immunological pathways against pathogens in hMDMs.

Figure 4. Top 10 Process Networks down-regulated in hMDMs upon infection by L. pneumophila.
Metacore analysis of triplicate microarrays of wild type strain and ankB mutant-infected hMDMs 8 h post-
infection showing the top 10 Process Networks. The upper orange bar of each column represents wild type-
infected hMDMs while the lower blue bar represents the ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g004
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Global transcriptional down-regulation of host pathways in

L. pneumophila-infected hMDMs

In addition to major impacts on gene transcription and protein translation, L.

pneumophila infection negatively impacted several other major cellular processes.

The second highest scoring down-regulated Process Network identified in L

pneumophila-infected hMDMs defines ‘Ubiquitin-proteasomal proteolysis’ with p

values of 4.243208 and 6.605214 for wild type and ankB mutant infection,

respectively (Fig. 4, S3 Table). L. pneumophila hijacks the ubiquitin-proteasome

system through multiple mechanisms to promote successful intracellular infection

[19, 20, 21, 71, 72, 73]. The effector, LubX, mimics the function of eukaryotic U-

box domain proteins to ubiquitinate the host cell kinase CDC2-like kinase 1 [71],

though the consequences of LubX-mediated ubiquitination are currently unclear,

it appears to be important for bacterial replication in A/J mouse macrophages

[71]. LubX also functions as a ‘meta-effector’ by promoting the ubiquitination

and subsequent proteasomal degradation of the SidH effector [72]. L.

pneumophila harbors several effector proteins that encode the eukaryotic F-box

domain [74, 75]. F-box domain proteins play an important role in directing target

proteins to the SCF1 ubiquitin ligase complex to promote their ubiquitination

[75]. In L. pneumophila strain Philadelphia-derived Lp02, the F-box effector

LegU1 promotes the ubiquitination of the host chaperone protein BAT3, a protein

that plays an important role in regulation of ER stress [21, 76, 77]. Another F-box

effector protein, AnkB interacts with the host SCF1 ubiquitin ligase in the LCV

membrane [22] and functions as a platform for the docking of lys48-linked

polyubiquitinated proteins to the LCV membrane [18, 20] that are subsequently

degraded by the host proteasome machinery, generating higher levels of cellular

amino acids that are used by L. pneumophila to feed the TCA cycle [19]. L.

pneumophila infection of bMDMs derived from A/J mice also reduces formation

of dendritic cell aggresome-like structures (DALIS) that are enriched in

ubiquitinated proteins and is dependent on the Dot/Icm T4SS [73]. DALIS

formation is believed to protect ubiquitinated proteins from proteasomal

degradation and serve as a pool of antigens available for downstream processing in

dendritic cells [78]. Currently, the significance of the inhibition of DALIS

formation in A/J mouse bMDMs by L. pneumophila is unclear.

In addition to effector-dependent modulation of host ubiquitination pathways,

recognition of L. pneumophila ‘signatures’ by macrophages results in ubiquiti-

nation and subsequent proteasomal degradation of mTOR regulators [79]. This

results in an enhanced pro-inflammatory cytokine response in macrophages [79].

It is clear that L. pneumophila actively hijacks the host ubiquitin/proteasome

system at the protein level, however transcription of genes involved in the Process

Network ‘ubiquitin-proteasomal proteolysis’ are also repressed by L. pneumophila.

This suggests that hMDMs endeavor to limit the ability of L. pneumophila to affect

the ubiquitin-proteasomal pathway at the transcriptional level albeit with limited

success.

Host Global Response to L. pneumophila
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The Process Network that defines ‘Antigen presentation’ was also down-

regulated in hMDMs by L. pneumophila infection (p value wild type 8.228204,

ankB 6.411210), suggesting that even though a robust immune transcriptional

response is induced, presentation of antigens is reduced (Fig. 4, S3 Table). The

Process Network which encompasses ‘Regulation of cytoskeleton rearrangement’

was significantly down-regulated in hMDMs infected with L. pneumophila (p

value wild type 9.401205, ankB 2.536209), and the related Process Network ‘Cell

Cycle – Mitosis’ that shares many genes as ‘Regulation of cytoskeleton

rearrangement’ was similarly affected in hMDMs infected with L. pneumophila (p

value wild type 4.495207, ankB 4.911209) (Fig. 4, S3 Table). Two L. pneumophila

translocated effectors have been shown to directly modulate the host cell

cytoskeleton. The VipA effector functions as an actin nucleator and localizes to

endosomes during L. pneumophila infection and likely interferes with organelle

trafficking in the host cell [80]. In contrast to VipA, the Ceg14 effector inhibits

actin polymerization through an uncharacterized mechanism [81]. Interestingly,

protein translation in eukaryotic cells is tightly linked to the cytoskeleton [82]. We

found that genes involved in protein synthesis and the cytoskeleton are down-

regulated in infected hMDMs. Therefore, it will be interesting to determine if

effectors that modulate the cytoskeleton have downstream effects on host protein

synthesis. Conversely, it is possible effectors that inhibit protein synthesis

[32, 33, 34, 36] may also impact the host cytoskeleton.

Our data show that infection of hMDMs with L. pneumophila reduce

transcription of genes that define the Process Network ‘DNA damage – BER-NER

repair’ (p value wild type 3.552204, ankB 1.250208), suggesting intracellular

infection of L. pneumophila reduces the ability of hMDMs to repair DNA damage

(Fig. 4, S3 Table). Currently, how this applies to L. pneumophila infection is

unclear.

Modulation of metabolic pathways in hMDMs by L. pneumophila

We have previously shown that infection of hMDMs by L. pneumophila triggers a

rapid rise in intracellular amino acid concentrations above the threshold needed

for L. pneumophila to utilize as a source of carbon and energy to power rapid

bacterial growth [19]. Therefore, we examined which metabolic pathways in

hMDMs are up- or down-regulated in response to infection by wild type or ankB

mutant of L. pneumophila. The data show that infection of hMDMs by L.

pneumophila triggers modulation of many metabolic pathways at the transcrip-

tional level. The top 50 up- and down-regulated metabolic pathways are shown in

S4 and S5 Tables and include broad alterations in lipid and amino acid

metabolism and transport, as well as sugar metabolism (Figs. 5 and 6).

Interestingly, changes in diverse lipid metabolic pathways were the most

pronounced metabolic alterations observed in hMDMs infected with by the wild

type strain or the ankB mutant. Membrane lipids including sphingolipids and

phosphoinositides regulate diverse cellular processes such as apoptosis, immu-

noregulation and migration, through interaction with specific cellular proteins

Host Global Response to L. pneumophila
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Figure 5. Top 10 Metabolic Pathways up-regulated in hMDMs upon infection by L. pneumophila. Meta-
ankB mutant-infected hMDMs 8 h post-infection

showing the top 10 Metabolic Pathways. The upper orange bar of each column represents wild type-infected
hMDMs while the lower blue bar represents the ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g005

Figure 6. Top 10 Metabolic Pathways down-regulated in hMDMs upon infection by L. pneumophila.
Metacore analysis of triplicate microarrays of wild type strain and ankB mutant-infected hMDMs 8 h post-
infection showing the top 10 Metabolic Pathways. The upper orange bar of each column represents wild type-
infected hMDMs while the lower blue bar represents the ankB mutant-infected hMDMs.

doi:10.1371/journal.pone.0114914.g006
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that trigger diverse signaling cascades [83, 84]. Local concentrations of specific

lipids act as thresholds for triggering cellular events. Therefore, lipid biosynthesis,

degradation and transport are tightly controlled processes [84]. Our data show

that L. pneumophila infection of hMDMs causes significant alterations in these

diverse lipid metabolic pathways independent of bacterial replication, which in

turn likely results in stimulation or repression of many host immunological

pathways as demonstrated above. A number of L. pneumophila effectors have been

shown to affect lipid pathways. For example, the effectors LecE and LpdA affect

phospholipid metabolism in the host cell, while LegS2 affects sphingolipid

metabolism [85, 86]. Hijacking phosphoinositides is a key virulence strategy of L.

pneumophila [87]. These lipids play a central role in diverse processes including

membrane trafficking, cytoskeleton and signaling pathways [84]. The LCV

membrane is enriched for phosphatidylinositol-4-phosphate and several effectors

anchor to this lipid to modulate biogenesis of the LCV [87]. Interestingly, the top

down-regulated metabolic pathway in hMDMs infected with the wild type strain

or the ankB mutant was the phosphatidylinositol-4,5-diphosphate pathway

(Fig. 6, S5 Table). Phosphatidylinositol-4,5-diphosphate is hydrolyzed to

phosphatidylinositol-4-phosphate via the enzyme OCRL1, which is localized to

the LCV membrane [88]. This indicates that even though L. pneumophila hijacks

phosphoinositide lipids during intracellular infection to modulate biogenesis of

the LCV, host pathways for their generation are down-regulated in hMDMs

during infection by L. pneumophila, and this is independent of intra-vacuolar

proliferation.

The top up-regulated metabolic pathway in hMDMs infected by the wild type

strain or the ankB mutant was the lyso-phosphatidylserine pathway (Fig. 5, S4

Table). Lyso-phosphatidylserine is a bio-active lipid that is increasingly shown to

play a key role in initiation of acute inflammation and its subsequent resolution

[89]. To date, the role of this bio-active lipid in macrophages during infection by

intracellular bacteria remains unknown.

Amino acid transporters

L. pneumophila has a strict requirement for amino acids that it satisfies by

promoting elevated amino acid levels through proteasomal degradation of

Lys48-linked polyubiquitinated proteins in the host cell cytosol [19]. Since L.

pneumophila resides within a membrane bound compartment in its host cell, the

bacteria must employ amino acid transporters to import cytosolic amino acids.

The eukaryotic amino acid transporter SLC1A5, which transports a variety of

neutral amino acids, is required for L. pneumophila replication in the Mono Mac 6

human macrophage cell line and has been identified via proteomics on LCVs

isolated from RAW 264.7 mouse macrophages [90, 91]. The SLC7A5 and SLC3A2

amino acid transporters have also been identified by proteomic analysis to be

present on LCVs isolated from RAW 264.7 mouse macrophages [91]. It is likely

these transporters and others are recruited to the LCV to mediate the import of

amino acids from the cytosolic milieu into the LCV lumen. Therefore, the
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microarray data were analyzed to determine if infection of hMDMs by L.

pneumophila causes alterations in transcription of amino acid transporter genes.

We observed that infection of hMDMs with L. pneumophila resulted in minor

changes in transcription of amino acid transporters, with only 3 out of 45 genes

showing statistically significant up- or down-regulation (Table 2). The cationic

amino acid transporter SLC7A2 (CAT-2) was up-regulated 1.4 fold in L.

pneumophila infected hMDMs and mediates the transport of arginine into

macrophages [92, 93]. The mouse homolog of CAT-2, mCAT-2, is upregulated by

Salmonella infection of mouse bMDMs and likely aids the import of arginine into

the Salmonella-containing vacuole [94]. In addition, expression of SLC7A2 has

been implicated in the ability of macrophages to mediate an innate immune

response to Helicobacter pylori and Leishmania infection [93, 95, 96]. It is possible

increased arginine transport in L. pneumophila infected hMDMs enhances the

ability of the macrophage to clear infection by contributing to the production of

nitric oxide by NOS2, or alternatively L. pneumophila hijacks this transporter to

mediate arginine transport into the LCV. The glutamate transporter SLC1A2

(GLT1) was also induced 1.4 fold in hMDMs infected by L. pneumophila

(Table 2). This transporter is primarily found in neural cells [97] but can be

expressed in macrophages where it mediates uptake of glutamate [98, 99] and

possibly hijacked by L. pneumophila to mediate transport of glutamate into the

LCV during infection of hMDMs. SLC7A5 transports large neutral amino acids

and has been implicated in the pathogenesis of Salmonella [100], and has been

identified on the LCV by proteomics [91]. We observed a small but statistically

significant 1.2 fold increase in SLC7A5 gene transcription in hMDMs infected

with L. pneumophila (Table 2). It is likely L. pneumophila hijacks SLC7A5 to

mediate import of amino acids into the LCV.

Although up-regulation of the SLC amino acid transporters by L. pneumophila

is modest, it is important to note that our infection conditions result in infection

of ,20% of the hMDMs in the monolayers. Therefore, it is expected that most

transcriptional modulations throughout this study are much more pronounced in

the infected hMDMs in the monolayers. However, small changes in transcription

of certain genes in the infected cells may not be detectable in the whole cell

population. Taken together, L. pneumophila up-regulates transcription of various

host transporters during infection, which can contribute to the ability of this

pathogen to import amino acids and other host molecules from the host cytosol

into the LCV lumen.

In conclusion, we have shown that infection of hMDMs by L. pneumophila

triggers robust transcription of inflammatory and immunological pathways whilst

transcription of protein synthesis pathways is repressed. Furthermore, transcrip-

tion of metabolic pathways in hMDMs is significantly altered by L. pneumophila

infection and in particular lipid metabolism. Importantly, this global host cell

response is independent of intra-vacuolar bacterial proliferation and validates

findings of other studies that used bMDMs and human macrophage cells lines.

Taken together, it is clear that human macrophages alter their transcriptional

landscape in response to infection by L. pneumophila in an endeavor to mount a

Host Global Response to L. pneumophila

PLOS ONE | DOI:10.1371/journal.pone.0114914 December 8, 2014 16 / 22



successful immune response to the pathogen regardless if the bacterium is able to

proliferate intracellularly. Finally, the microarray data presented will be a useful

resource for the research community in understanding global and complex L.

pneumophila-hMDM interactions.

Supporting Information

S1 Table. The total processed microarray data of hMDMs uninfected or infected

with wild type or ankB mutant L. pneumophila at 8 h post-infection.

doi:10.1371/journal.pone.0114914.S001 (XLSX)

S2 Table. Metacore enrichment analysis of hMDMs infected with wild type or

ankB mutant L. pneumophila at 8 h post-infection showing up-regulated

pathways.

doi:10.1371/journal.pone.0114914.S002 (XLS)

S3 Table. Metacore enrichment analysis of hMDMs infected with wild type or

ankB mutant L. pneumophila at 8 h post-infection showing down-regulated

pathways.

doi:10.1371/journal.pone.0114914.S003 (XLS)

S4 Table. Metacore enrichment analysis of hMDMs infected with wild type or

ankB mutant L. pneumophila at 8 h post-infection showing up-regulated

metabolic pathways.

doi:10.1371/journal.pone.0114914.S004 (XLS)

S5 Table. Metacore enrichment analysis of hMDMs infected with wild type or

ankB mutant L. pneumophila at 8 h post-infection showing down-regulated

metabolic pathways.

doi:10.1371/journal.pone.0114914.S005 (XLS)
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