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Introduction

Malaria vector control currently relies

almost exclusively on killing adult mosqui-

toes with chemical insecticides. Insecti-

cide-treated nets (ITNs), long-lasting in-

secticide-treated nets (LLINs), and indoor

residual sprays (IRS) aim to repel, disable,

and/or kill mosquitoes on contact. While

these tools have proven to be extremely

successful in reducing disease incidence

and mortality [1], insecticide resistance is

on the rise and a resurgence of malaria is

feared [2]. To mitigate the effects of

resistance, the development of new insec-

ticides and formulations for use in LLINs

and for IRS remains a research priority

[3]. In this paper we argue that, to

increase the effectiveness of the chemical

arsenal available, we need to consider the

relevant microclimatic conditions in which

these tools are deployed. We will discuss

how temperature in particular can interact

with the conventional use of chemicals

within houses, and broaden our discussion

to consider its potential influence on the

use of semiochemicals to lure mosquitoes

to traps.

Test Temperatures Are Higher
Than Mosquitoes Typically
Experience in the Field

The World Health Organization Pesti-

cide Evaluation Scheme (WHOPES),

which promotes and coordinates the

testing and evaluation of pesticides for

public health, specifies laboratory condi-

tions in their guidelines for testing mos-

quitocidal compounds and products. The

recommended temperatures for phase I

trials are 2562uC for testing of LLINs [4]

and 2762uC for IRS and treated bednets

[5].

Though temperatures are standardized

to improve the reliability and reproduc-

ibility of the tests, the ranges chosen are

only observed in small geographical areas

of sub-Saharan Africa, mainly directly

south of the desert (Figure 1, top row). In

most malaria transmission settings, the

observed mean temperatures range from

approximately 18 (cooler highland areas)

to 26uC.

Even more importantly, many vectors

of malaria are actively host seeking and

blood feeding from dusk until dawn [6],

when temperatures are considerably lower

than the daily mean. Nighttime minimum

temperatures of around 25uC are mostly

limited to small areas directly south of the

Sahara; in general, minima range from

about 13 to 22uC in most malaria

transmission zones, depending on season

and location (Figure 1, second row).

Temperatures inside houses are gener-

ally a few degrees Celsius warmer than

those recorded outdoors, and mean indoor

temperatures around 25uC can be ob-

served in larger geographic areas (Figure 1,

third row). However, indoor minimum

temperatures remain well below 25–27uC
(Figure 1, bottom row) with large areas

experiencing ,22uC. It is under these

environmental conditions that a mosquito

is searching for and biting new hosts.

Susceptible Mosquitoes Could
Be More Resistant during
Cooler Nighttime Periods

The insecticides used in public health

for vector control kill mosquitoes by

interfering with nervous system function.

But metabolic activity [7], which is

involved in degradation of insecticides,

and nervous system sensitivity [8] are

highly temperature-dependent. As mos-

quito body temperature changes with its

surroundings, environmental temperature

has the potential to influence the toxicity

of insecticides. This effect is quantified by

measuring the temperature coefficient

(TC) of an insecticide (Figure 2). A positive

TC indicates that an insecticide becomes

more toxic as temperature increases;

insecticides with a negative TC kill more

insects at lower temperatures. Pyrethroids,

the dominant insecticide class currently

used for malaria control, and DDT, the

only organochlorine permitted for IRS,

commonly exhibit a negative temperature

coefficient. Therefore, in theory, they

should perform better under cooler night-

time conditions. On the other hand,

carbamates and organophosphates (two

and three out of the 12 recommended

compounds for IRS, respectively) general-

ly have a positive TC, and may be less

efficient under these conditions.

Exceptions to these general TC rules,

however, are common. Whether the TC is

positive or negative can depend on the

insect (e.g., species, developmental stage,

age, sex), the chemical tested (e.g., formu-

lation, substrate, dose, duration of expo-

sure) and testing conditions (e.g., temper-

ature range, humidity, time of day). For

pyrethroids, the only insecticides currently

used on ITNs and LLINs [9,10] and the
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dominant insecticide class in IRS [11], a

strictly negative relationship with temper-

ature is not always observed. Type II

pyrethroids, which have an a-cyano group

on the phenoxybenzyl moiety [12], tend to

violate this rule. For example, deltame-

thrin and cypermethrin, which are used in

11 out of the 13 (or 85%) LLINs, have

been observed to have positive TCs for

mortality in several insect species

(Figure 2A, C, D, [13–17]). If the same

phenomenon applies to malaria mosqui-

toes, only DDT and two LLINs (those

treated with permethrin, a type I pyre-

throid) will be most effective during the

cooler nighttime periods when a mosquito

is active: all other recommended interven-

tions could be less effective at killing

vectors.

To the best of our knowledge, there

are only two studies that examined the

effect of temperature on the toxicity of

insecticides on susceptible, adult malaria

vectors. Hodjati and Curtis [18] observed

a bimodal relationship between tempera-

ture and toxicity for permethrin, a type I

pyrethroid, against Anopheles stephensi, a

primary malaria vector in India (negative

between 16 and 22uC, but positive be-

tween 22 and 37uC). Over the same range

of temperatures, An. gambiae, a major

malaria vector in sub-Saharan Africa,

displayed a consistently positive TC. This

indicates that malaria mosquitoes may not

follow the general temperature-toxicity

rules. The second study [19] saw a

negative TC for DDT and a positive TC

for the organophosphate diazinon when

An. stephensi was exposed to insecticide

residues between 20 and 30uC.

While vector control chemicals are

typically applied at concentrations meant

to overwhelm variation in susceptibility,

evidence from the field shows that the

ability of LLINs or IRS to kill mosquitoes

can decrease rapidly over time after initial

deployment. Although LLINs should re-

tain their insecticidal activity for at least

three years under field conditions [20], the

mosquitocidal activity of several LLINs is

reduced on much shorter time scales

[21,22]. The activity of IRS compounds

can decline significantly within the first

few months after spraying due to, for

example, variation in building materials

[22,23] or in the spraying technique of

individual applicators [24]. Thus, there

could be periods prior to IRS retreatment

or redistribution of new LLINs during

which the loss of efficacy from chemical,

operational, or environmental factors

could be exacerbated by using chemicals

that are even less effective under variable

temperature conditions.

With approximately 34 dominant

anopheline vector species in the world

Figure 1. Monthly mean and minimum outdoor and indoor temperatures throughout Africa for January, April, July, and October.
Outdoor monthly mean (top row) and minimum (second row) temperatures. Temperature surfaces were generated by interpolation using weather
station data collected between 1960 and 1990. For areas where data records were limited, such as in the Democratic Republic of the Congo, the time
period was extended to 2000 (see [45] for details). The current geographical limits of malaria transmission are demarcated by the dotted lines. Indoor
monthly mean (third row) and minimum (bottom row) temperatures. Indoor temperature estimates were determined using regression equations that
capture the relationship between indoor and outdoor temperatures at different elevations. These regressions were used to convert the outdoor
temperature surfaces to matching estimates of indoor temperatures (see [46] for more detailed information).
doi:10.1371/journal.ppat.1003602.g001

Figure 2. Temperature coefficients of deltamethrin against different insect species. Toxicity (median lethal dose) of deltamethrin to (A)
Heliothis virescens (mg/g) [17], (B) Trichoplusia ni (mg/g) [17], (C) Chilo suppressalis (mg/insect) [16], and (D) Triatoma infestans (ng/insect) [47]. Note that
the Y-axis is inverted to visualize the temperature coefficient (TC). If the dose required to kill 50% of insects decreases as temperature increases, the
insecticide has a positive TC, indicated by +. Negative TC indicated by 2.
doi:10.1371/journal.ppat.1003602.g002

PLOS Pathogens | www.plospathogens.org 3 October 2013 | Volume 9 | Issue 10 | e1003602



[25], and a variety of recommended

chemical products on the market, this lack

of data represents a critical gap in our

understanding. Although current tools do

kill mosquitoes and reduce malaria risk, a

better understanding of chemical temper-

ature coefficients could affect the chemical

toolbox in two ways: first, it could increase

the number of chemicals available for

control. By testing insecticidal perfor-

mance under standard laboratory condi-

tions (25–27uC), there is the possibility that

we currently eliminate compounds in the

testing phase—especially those with a

strongly negative TC—that may perform

very well in the field. Second, without

information about their action at different

temperatures, we may deploy chemicals

that will be less efficient than we expect

under actual field conditions. Investigating

the performance of our vector control

tools under different temperature condi-

tions will augment our ability to select the

most efficacious tool for a given environ-

ment. For insecticidal control of pests in

crop systems, it has been acknowledged

that knowing a product’s temperature

coefficient enables pest managers to

select a product that is efficacious under

the prevailing environmental conditions

[26–28].

Resistant Mosquitoes May Be
More Resistant in the
Laboratory

Insecticide resistance is one of the

greatest threats to the success of malaria

control and elimination campaigns. The

WHO currently recommends that the

level of resistance in mosquito populations

be evaluated at 2562uC [29]. As with

susceptible insects, the mortality of resis-

tant insects can increase or decrease with

temperature (e.g., [30,31]). Hodjati and

Curtis [18] showed that resistant An.

stephensi mosquitoes were more susceptible

to permethrin at 16 and 37uC, compared

to 22 and 28uC, where nearly all mosqui-

toes survived the exposure. In resistant An.

gambiae, as in the susceptible strain,

susceptibility increased with temperature.

This suggests that quantifying resistance

under relatively high temperature condi-

tions in the laboratory will not necessarily

inform us to what extent a chemical

intervention is still effective in the field.

Efficiency of Other
(Semio)chemical Interventions
Will Also Depend on
Environmental Temperature

There is growing evidence that the

widespread use of LLINs and IRS is

reducing mosquito activity indoors and

can drive vector-species composition

changes or host-species switching behavior

to increase outdoor biting [32]. Alternative

interventions that specifically target out-

door biting are needed. One approach is

to use chemical compounds to trap or

repel mosquitoes, thereby reducing the

number of mosquito bites to human hosts.

There are reasons to expect that the

effectiveness of such odor-baited traps

could be affected by environmental tem-

perature.

For odor-baited traps to work, a mos-

quito needs to detect the odor plume and

follow it back to the source. The number

of odor molecules of a compound in the

gas phase will be reduced when tempera-

tures decrease (see example in [33]).

Simply put, there will be less for a

mosquito to smell when it is cooler outside.

Additionally, odor plume dynamics de-

pend on the stability of the atmosphere,

which depends in part on temperature

[34]. Although adding a heat source could

regulate the release of molecules from a

trapping device, the resulting odor plume

can be expected to behave differently

under cool nighttime conditions than it

would under warmer laboratory condi-

tions. In addition, temperature affects

several physiological processes involved

in insects’ odor reception [35,36]. Lower

temperatures can reduce response distance

and specificity [37], but also directly

impact insect flight behavior by reducing

flight speed [38].

So, although these traps seem to work in

the field [39], cooler field temperatures

may reduce trap efficiency, which has

been shown for adult plum curculios,

Conotrachelus nenuphar [40]. At present, the

behavioral responses of mosquitoes to

chemical cues in olfactometers are evalu-

ated at standard insectary conditions,

around 26–27uC [41,42], and there are

no WHO guidelines for testing such

devices. Again, as malaria mosquitoes host

seek and bite only during the cooler

evening and night, there might be room

for improvement when the actual micro-

climate observed in the field is considered

during laboratory trials.

Conclusions

Chemicals are powerful tools in the

control of malaria and other vector-borne

diseases such as dengue, leishmaniasis, and

Chagas disease [43]. Given that tempera-

ture has the potential to affect the toxicity

of chemicals used for ITNs, LLINs, and

IRS, as well as to alter chemical release

from and mosquito response to odor-

baited traps, candidate chemicals need to

be evaluated under relevant climatic

conditions. For the initial development of

chemicals to be used in the fight against

malaria, we suggest that testing recom-

mendations, currently at 25 to 2762uC,

should include a range of temperatures:

15, 20, 25, and 30uC. Such a change

would provide valuable information about

how mosquitoes and chemicals will inter-

act under natural field conditions, there-

fore allowing us to develop more effective

tools in the laboratory and to select the

tools most likely to be effective in a given

local environment. As insecticide resis-

tance monitoring in the field is frequently

carried out in areas where malaria is

endemic (or epidemic), and these areas

are often low-income countries, we suggest

adding one additional temperature for

these tests: 20uC. This change will give

us a better understanding of how well the

chemicals currently being used are work-

ing to control night-biting vectors. In areas

where insecticide resistance has been

detected in the mosquito population, such

knowledge could be especially valuable. By

applying a mixture of chemicals, which

may also counter or postpone the devel-

opment of insecticide resistance in mos-

quito populations to chemicals used on

ITNs, LLINs, and in IRS [3], a given

regimen could be efficient across different

thermal environments, or in environments

with a wide thermal envelope [44]. We

believe that considering the temperature

coefficient of chemicals from the outset of

testing will increase the effectiveness of

the chemical toolbox for malaria vector

control.
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