
RESEARCH ARTICLE

A cyclin-dependent kinase inhibitor, dinaciclib

in preclinical treatment models of thyroid

cancer

Shu-Fu Lin1*, Jen-Der Lin1, Chuen Hsueh2, Ting-Chao Chou3¤, Richard J. Wong4

1 Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan,

Taiwan, 2 Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan,

Taiwan, 3 Laboratory of Preclinical Pharmacology Core, Memorial Sloan-Kettering Cancer Center, New York,

New York, United States of America, 4 Department of Surgery, Memorial Sloan-Kettering Cancer Center,

New York, New York, United States of America

¤ Current address: PD Science, Inc., Paramus, New York, United States of America

* mmg@cgmh.org.tw

Abstract

Background

We explored the therapeutic effects of dinaciclib, a cyclin-dependent kinase (CDK) inhibitor,

in the treatment of thyroid cancer.

Materials and methods

Seven cell lines originating from three pathologic types of thyroid cancer (papillary, follicular

and anaplastic) were studied. The cytotoxicity of dinaciclib was measured using a lactate

dehydrogenase assay. The expression of proteins associated with cell cycle and apoptosis

was assessed using Western blot analysis and immunofluorescence microscopy. Cell cycle

distribution was measured by flow cytometry and immunofluorescence microscopy. Apopto-

sis and caspase-3 activity were measured by flow cytometry and fluorometric assay. Mice

bearing flank anaplastic thyroid cancer (ATC) were treated with intraperitoneal injections of

dinaciclib.

Results

Dinaciclib inhibited thyroid cancer cell proliferation in a dose-dependent manner. Dinaciclib

had a low median-effect dose (� 16.0 nM) to inhibit cell proliferation in seven thyroid cancer

cell lines. Dinaciclib decreased CDK1, cyclin B1, and Aurora A expression, induced cell

cycle arrest in the G2/M phase, and induced accumulation of prophase mitotic cells. Dinaci-

clib decreased Mcl-1, Bcl-xL and survivin expression, activated caspase-3 and induced apo-

ptosis. In vivo, the growth of ATC xenograft tumors was retarded in a dose-dependent

fashion with daily dinaciclib treatment. Higher-dose dinaciclib (50 mg/kg) caused slight, but

significant weight loss, which was absent with lower-dose dinaciclib (40 mg/kg) treatment.
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Conclusions

Dinaciclib inhibited thyroid cancer proliferation both in vitro and in vivo. These findings sup-

port dinaciclib as a potential drug for further studies in clinical trials for the treatment of

patients with refractory thyroid cancer.

Introduction

Thyroid cancer is a common endocrine malignancy with an increasing incidence in the past

three decades. There are three major histologic types of thyroid cancer originate from thyroid

follicular cells: papillary (PTC), follicular (FTC) and anaplastic (ATC) thyroid cancer [1].

More than 90% patients with thyroid malignancy are PTC and FTC, known as well-differenti-

ated thyroid cancer (WDTC). Patients with WDTC usually survive for more than 10 years fol-

lowing treatment with surgery, radioactive iodine (RAI) and thyroid hormone suppressive or

replacement therapy. However, some patients who develop metastatic and RAI-refractory

WDTC have survival of< 3–5 years [2]. Two multi-kinase inhibitors, sorafenib and lenvatinib,

have recently been approved by the U.S. Food and Drug Administration for the treatment of

metastatic and RAI-refractory WDTC. However, the therapeutic efficacy of these agents is lim-

ited in many patients who eventually develop disease progression and require additional ther-

apy [3,4]. ATC is a rare but fatal disease with a median survival of 6 months, and most patients

die within 1 year after diagnosis [5]. Novel treatments with different therapeutic mechanisms

are crucial for improving the outcomes of these patients with refractory thyroid cancer.

Unrestricted cell proliferation, one of the hallmarks of malignant tumors, is often driven by

alterations in cyclin-dependent kinase (CDK) activity. CDKs are serine/threonine kinases that

regulate the cell cycle by interacting with specific cell cycle regulatory cyclins. According to the

classical model of cell cycle control in the mammalian cells, CDK4 and CDK6 are activated by

D-type cyclins and induce cells to transition from quiescent (G0) to the first gap phase (G1).

In the late G1 phase, CDK2 is activated by cyclin E, driving G1 to S phase transition. Cell

cycle progression is further promoted by the CDK2-cyclin A and CDK1-cyclin A complexes.

Finally, the CDK1-cyclin B1 complex is responsible for entry and progression of the mitotic

phase (M) [6–8]. Altered CDKs activity is observed in many cancers [9,10]. In addition to cell

cycle regulation, the CDK family has other biologic functions. For example, CDK5 is impor-

tant for neural development in embryos and promotes proliferation of the medullary thyroid

cancer cell line [11,12]. CDK9 phosphorylates the C-terminal domain of RNA polymerase II,

promoting RNA transcription [13]. Given the important role of CDKs in the regulation of cell

proliferation, inhibition of their activity may represent a promising strategy in the treatment

of human malignancies, including thyroid cancer [14].

Dinaciclib is a potent and specific CDK inhibitor that represses CDK1, CDK2, CDK5 and

CDK9 with 50% inhibitory concentrations in the low nanomolar range (3, 1, 1 and 4 nM,

respectively) [15]. Preclinical studies have shown that dinaciclib can arrest cell cycle progres-

sion, induce apoptosis and inhibit tumor growth in multiple types of cancer [15–19]. In addi-

tion, a recent clinical trial demonstrated this drug was well-tolerated and had single agent

activity against multiple myeloma, supporting its potential in treating human malignancies

[20].

In this study, we evaluated the therapeutic effects of dinaciclib on seven thyroid cancer cell

lines of follicular cell origin, including PTC, FTC and ATC.

Dinaciclib in preclinical treatment for thyroid cancer
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Materials and methods

Cell lines

Seven human thyroid cancer cell lines were evaluated, including a papillary (BHP7-13), a fol-

licular (WRO82-1), a follicular undifferentiated (FRO81-2) and four anaplastic (8305C,

8505C, KAT18, KAT4C) cancer cell lines [21–25]. With the exception of KAT4C cells, for

which no DNA short tandem repeat (STR) profile is available, all cell lines were authenticated

using DNA STR profiling and stored in liquid nitrogen until use. BHP7-13, WRO82-1,

FRO81-2, KAT18 and KAT4C were maintained in RPMI 1640 with sodium bicarbonate (2.0

g/L). 8305C and 8505C were maintained in MEM with sodium pyruvate (1 mmol/L) and

sodium bicarbonate (2.2 g/L). All media contained 10% FCS, 100,000 units/L penicillin and

100 mg/L streptomycin. All cells were maintained in a 5% CO2 humidified incubator at 37˚C.

Pharmacologic agents

Dinaciclib was obtained from Selleck Chemicals and was dissolved in DMSO (Sigma) to a con-

centration of 10 mM and stored at -80˚C until further use in vitro experiments. For the in vivo
studies, dinaciclib was diluted in 20% (w/v) of 2-hydroxypropyl-β-cyclodextrin (Sigma) and

stored at -30˚C until use.

Antibodies

Antibodies targeting cyclin B1, Aurora A, Mcl-1, Bcl-xL, survivin and pro-caspase-3 were pur-

chased from Cell Signaling Technology. CDK1 and α-tubulin antibodies were obtained from

Sigma.

Cytotoxicity assays

Cells were plated at 2 x 103 (BHP7-13, FRO81-2, 8505C), 1 x 104 (KAT18) or 2 x 104 (WRO82-

1, 8305C, KAT4C) cells per well in 24-well plates in 1 mL media. After an overnight incuba-

tion, six serial 1:1 dilutions of dinaciclib or vehicle were added at the starting dose of 100 nM

over a 4-day treatment course. Cytotoxicity was determined on day 4. Culture medium was

removed and cells were washed with PBS and lysed with Triton X-100 (1.35%, Sigma) to

release intracellular lactate dehydrogenase (LDH), which was quantified with a Cytotox 96 kit

(Promega) at 490 nM by spectrophotometry (Infinite M200 PRO, Tecan). Each experiment

was performed in triplicate, and the results are shown as the percentage of surviving cells

determined by comparing the LDH of each sample relative to control samples, which were

considered 100% viable. Median-effect dose (Dm) on day 4 was calculated for each cell line

using CompuSyn software [26,27]. Dm is the dose inhibiting cell viability by 50%.

Cell cycle assessment

The effects of dinaciclib on cell cycle progression were evaluated. Cells were plated at 4 x 104

(KAT4C) or 1 x 105 cells (all other cell lines) per well in 6-well plates in 2 mL of media over-

night. Dinaciclib (25 nM), a clinically relevant dose [19], or vehicle was added and incubated

for 24 h, after which adherent cells were trypsinized, washed with PBS, fixed with cold 70%

ethanol and incubated with RNase A (100 μg/mL; Sigma) and propidium iodide (PI, 5 μg/mL;

Sigma) at 37˚C for 15 min. Cell cycle distribution was assessed by DNA content detected by

flow cytometry (BD FACScalibur Flow Cytometer, BD Biosciences). Each condition was per-

formed in triplicate.

Dinaciclib in preclinical treatment for thyroid cancer
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Immunofluorescence microscopy

The effect of dinaciclib on mitotic progression was evaluated using confocal microscopy. Thy-

roid cancer cells were plated at 5 x 104 (WRO82-1) or 1 x 105 (BHP7-13, 8505C) in four-well

culture slides in 1 mL of media overnight. Cells were treated with dinaciclib (25 nM) or pla-

cebo for 24 h, washed with PBS, fixed in 4% paraformaldehyde (Sigma) for 15 min at room

temperature, washed with PBS, permeabilized with 0.1% Triton X-100 (10 min, room temper-

ature), washed with PBS, incubated with 4’,6-diamidino-2-phenylindole (DAPI; 0.2 μg/mL,

Invitrogen) for 10 min at room temperature, washed with PBS, and covered with Vectashield

mounting medium (Vector Laboratories). Images were captured with Leica TCS SP8 X confo-

cal microscopy (Leica Microsystems). Chromosomes were examined to identify mitotic cells.

The expression of cyclin B1 and Aurora A was evaluated using immunofluorescence

microscopy. Dinaciclib (25 nM) or placebo treated thyroid cancer cell samples were prepared

as described above. Cells were then incubated with primary rabbit cyclin B1 antibody (1:200),

rabbit Aurora A antibody (1:200) and mouse α-tubulin antibody (1:1000) at 4˚C overnight,

washed with PBS and incubated with secondary Alexa Fluor 633-conjugated goat anti-rabbit

antibody (1:1000; Invitrogen) and Alexa Fluor 488-conjugated goat anti-mouse antibody

(1:1000; Life Technologies) for 25 min at 37˚C, washed with PBS, counterstained with DAPI,

washed with PBS and covered with mounting medium. Images were acquired using Leica TCS

SP8 X confocal microscopy.

Western blot analysis

Cells were plated at 1 x 106 cells in 100-mm Petri dishes in 10 mL of media overnight and

treated with dinaciclib at 25 nM or vehicle for the indicated periods. Cell pellets were dissolved

in radio-immunoprecipitation assay buffer and protease inhibitor cocktail, vortexed and clari-

fied by centrifugation. Total protein (40 μg) was separated by electrophoresis on 6% or 12%

Tris-HCl gels, transferred to polyvinylidene difluoride membranes, blocked and exposed to

primary antibodies followed by a secondary antibody conjugated to horseradish peroxidase.

Signals were developed using an enhanced chemiluminescence kit (PerkinElmer).

Apoptosis assessment

Caspase-3 activity was analyzed using fluorometric assay kit (Abcam). Cells were plated at 1 x

106 cells in 100-mm Petri dishes in 10 mL of media overnight. Dinaciclib (25 nM) or vehicle

was added for 24 h. Adherent cells (5 x 105) were collected, centrifuged, lysed using 50 μL of

lysis buffer on ice for 10 min, incubated with DEVD-AFC substrate and reaction buffer at

37˚C for 1.5 h. Caspase-3 activity was detected by spectrophotometry. The fluorescence inten-

sity of the treated samples was compared with that of control samples to determine the fold-

increase in caspase activity. Each condition was performed in duplicate.

Early apoptosis was measured by Annexin V-Alexa Fluor 488 and PI staining kit (Invitro-

gen). Cells were plated at 1 x 105 cells per well in 6-well plates in 2 mL of media overnight and

treated with dinaciclib (25 nM) or placebo for 24 h. Adherent cells were collected, washed with

PBS and incubated with Annexin V-Alexa Fluor 488 and PI at room temperature in the dark

for 15 min per the manufacturer’s protocol. Early apoptotic cells (Annexin V-positive, PI-neg-

ative) were detected by flow cytometry (BD FACScalibur Flow Cytometer, BD Biosciences).

Each condition was performed in triplicate.

Sub-G1 apoptosis was detected using flow cytometry. Cells were plated at 4 x 104 (KAT4C)

or 1 x 105 cells (all other cell lines) per well in 6-well plates in 2 mL of media overnight and

treated with dinaciclib (25 nM) or vehicle. Both floating cells and trypsinized adherent cells

were collected at 72 h and processed as described above for cell cycle assessment. Each

Dinaciclib in preclinical treatment for thyroid cancer
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experiment was performed in triplicate and the proportion of apoptotic sub-G1 cells was

determined by measuring the DNA content using flow cytometry.

Flank xenograft tumor therapy

Eight-week-old athymic female nude mice from the National Laboratory Animal Center, Tai-

wan, were anesthetized with an intraperitoneal injection of 2% 2,2,2-Tribromoethanol (200 μl/

mouse; Sigma) before implantation of thyroid cancer cells. 8505C flank tumors were estab-

lished by injecting 1 x 106 cells in 100 μL of ECM gel (Sigma) into the subcutaneous flanks of

nude mice. When 8505C tumors reached 5.0 mm in mean diameter, mice received daily intra-

peritoneal injections of vehicle (n = 13), lower-dose dinaciclib (40 mg/kg, n = 13) or higher-

dose dinaciclib (50 mg/kg, n = 7). These doses were chosen based on a previous report [15].

Tumor dimensions were serially measured with electronic calipers, and the volumes were

calculated by the following formula: a x b2 x 0.4, where a represents the largest diameter and b

is the perpendicular diameter. The body weight of each animal was followed as a marker of

toxicity.

Tumor levels of CDK1, cyclin B1, Aurora A, Mcl-1, Bcl-xL, survivin and pro-caspase-3 were

evaluated in mice treated with daily intraperitoneal injections of lower-dose dinaciclib (40 mg/

kg) by Western blot analysis. At indicated periods, animals were euthanized with carbon diox-

ide, and the tumors were harvested, mixed with protein extraction buffer (GE Healthcare),

homogenized and sonicated on ice. After centrifugation, clarified supernatants were aliquoted

and stored at -80˚C for Western blotting.

This study was performed in accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the Chang Gung Memorial Hospital, and the protocol

was approved by the Committee of Laboratory Animal Center at the Chang Gung Memorial

Hospital, Linkou (permission No: 2013121401). Housing and care of mice were provided by

the Laboratory Animal Center, Chang Gung Memorial Hospital, Linkou. Animals were given

ad libitum access to food and water. The physical condition of mice was monitored by our ani-

mal care personnel on a daily basis. In addition, the investigators checked the conditions of

the mice at least once a week before treatment, and daily during the treatment period. The

humane endpoints were a tumor diameter� 2.0 cm, significant weight loss (20% of pre-exper-

iment body weight), weight loss to a final weight of 16 g, very slow breathing rate, shallow or

labored breathing pattern, decreased activity, poor response to handling, absence of grooming,

social isolation, hunched posture, shivering, and muscle atrophy. The method of euthanasia

was CO2 exposure for 10 min, at a 20% fill rate of cage volume/min.

Statistical analyses

Comparisons were performed when appropriate using two-sided Student’s t tests (Excel, Micro-

soft). P< 0.05 was considered statistically significant. Results were expressed as mean ± SE.

Results

Dinaciclib induced cytotoxicity in thyroid cancer cell lines

Dinaciclib repressed cell proliferation in all thyroid cancer lines in a dose-dependent manner

(Fig 1A). A clinically achievable dose (25 nM) inhibited at least 66% of cell growth in all

cell lines by day 4. At 100 nM, dinaciclib arrested > 97% cell growth in the WDTC lines

and> 77% in the ATC lines. The potency of cytotoxicity of dinaciclib in various thyroid can-

cer cell line was determined by the median-effect plot of the mass-action law [26] using the

CompuSyn software [27]. The median-effect doses were determined following each set of

Dinaciclib in preclinical treatment for thyroid cancer
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dose-effect data entries on day 4 (Fig 1B). The well-differentiated papillary and follicular thy-

roid cancer cell lines (BHP7-13 and WRO82-1) were the most sensitive (Dm = 7.1 ± 0.3 nM

and 7.2 ± 0.2 nM, respectively). Two ATC cell lines (KAT4C and 8305C) were the most resis-

tant (Dm = 16.0 ± 0.2 nM and 14.3 ± 0.1 nM, respectively).

Fig 1. Dinaciclib induces cytotoxicity in thyroid cancer cells. (A) Cytotoxicity was evaluated in cells treated with a series of six

1:1 dilutions of dinaciclib. Dose-response curves were obtained on day 4 using a LDH assay. (B) Median-effect dose (Dm) of

dinaciclib on day 4 was calculated for each cell line using CompuSyn software.

doi:10.1371/journal.pone.0172315.g001
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Effects of dinaciclib on the cell cycle

The effect of dinaciclib (25 nM for 24 h) on cell cycle distribution was evaluated. One represen-

tative thyroid cancer cell line, BHP7-13, revealed that dinaciclib arrested cell cycle progression

in G2/M phase (Fig 2A). Similar cell cycle data were analyzed for all seven cell lines (Fig 2B).

Compared with control cells, dinaciclib significantly induced cell accumulation in G2/M

phase in BHP7-13 (69.3 ± 0.4% and 25.2 ± 0.1%, P< 0.001), WRO82-1 (50.1 ± 0.8% and

39.5 ± 0.3%, P< 0.001), FRO81-2 (31.9 ± 0.2% and 21.3 ± 0.3%, P< 0.001), 8305C

(52.7 ± 0.1% and 28.3 ± 3.2%, P = 0.002), 8505C (33.4 ± 0.3% and 28.9 ± 0.7%, P = 0.004),

KAT18 (34.0 ± 0.3% and 20.5 ± 0.6%, P< 0.001) and KAT4C (49.5 ± 0.3% and 20.3 ± 0.5%,

P< 0.001), demonstrating induction of G2/M arrest.

The ability of dinaciclib to accumulate cells in mitotic phase was determined using confocal

fluorescence microscope (S1 Fig). Mitotic cells were identified and mitotic index was calcu-

lated for three thyroid cancer cell lines representing papillary (BHP7-13), follicular (WRO82-

1) and anaplastic (8505C) thyroid cancer (Fig 2C). Compared with control cells, dinaciclib (25

nM) treatment for 24 h significantly increased the percentage of mitotic cells in BHP7-13

(19.7 ± 2.0% and 1.2 ± 0.2%, P< 0.001), WRO82-1 (20.8 ± 2.5% and 2.9 ± 0.3%, P< 0.001)

and 8505C (22.9 ± 1.7% and 2.2 ± 0.2%, P< 0.001), demonstrating that dinaciclib arrested

cells in mitosis.

The distribution of cells in mitosis was evaluated (Fig 2D). Compared with control treat-

ment, dinaciclib significantly increased the percentage of prophase cells in BHP7-13 (100 ± 0%

and 7.5 ± 4.0%, P< 0.001), WRO82-1 (100 ± 0% and 4.5 ± 3.4%, P< 0.001) and 8505C

(100 ± 0% and 5.3 ± 3.7%, P< 0.001), revealing mitotic arrest was in the first phase of mitosis.

Viable cells were less than 4% when compared with control cells by the treatment of dinaci-

clib at 25 nM on day 4 in 4 of 7 cell lines. The limited numbers of viable cells precluded further

analyses of cell cycle on day 4 in all 7 cell lines.

Dinaciclib modulates the expression of CDK1, cyclin B1 and Aurora A

CDK1, cyclin B1 and Aurora A are essential proteins for G2/M transition and mitotic progres-

sion [28–30]. The effects of dinaciclib (25 nM) on the expression of these proteins were evalu-

ated in three cell lines (Fig 3A). The intensity of the bands was quantified using the Molecular

Imager VersaDoc MP 4000 system (Bio-Rad). The ratios of CDK1, cyclin B1, and Aurora A to

α-tubulin in each cell line were calculated. Relative expression was calculated using the control

value as reference (S2 Fig). CDK1 level was decreased by 8 h in BHP7-13 and WRO82-1 and

by 24 h in 8505C. Cyclin B1 expression was decreased by 6 h in WRO82-1, by 8 h in BHP7-13,

and by 24 h in 8505C. Aurora A was decreased by 6 h in BHP7-13, WRO82-1, and 8505C.

These results demonstrate that 24-h dinaciclib treatment reduces CDK1, cyclin B1, and Aurora

A expression in thyroid cancer cell lines. Confocal fluorescence microscopy demonstrated that

dinaciclib significantly decreased cyclin B1 (Fig 3B) and Aurora A (Fig 3C) expression in pro-

phase cells of BHP7-13, WRO82-1 and 8505C. These findings are consistent with prior results

showing that dinaciclib was able to decrease CDK1 and cyclin B1 [16,17].

Effects of dinaciclib on apoptosis

Dinaciclib alters the expression of apoptosis proteins, including Mcl-1, Bcl-xL and survivin,

and induces apoptosis in ovarian cancer and osteosarcoma cells [16,17]. We evaluated the

effects of dinaciclib on the expression of Mcl-1, Bcl-xL and survivin in BHP7-13, WRO82-1

and 8505C cells (Fig 4A). Band densities were imaged and quantified. The ratios of Mcl-1, Bcl-

xL, and survivin to α-tubulin in each cell line were calculated. Relative expression was calcu-

lated using the control value as reference (S3 Fig). Dinaciclib (25 nM) significantly decreased

Dinaciclib in preclinical treatment for thyroid cancer
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Fig 2. Dinaciclib accumulates cells in G2/M phase and inhibits mitotic progression in prophase. (A) Cell cycle analysis was

undertaken by evaluating the DNA content using flow cytometry in BHP7-13 cells treated with placebo or dinaciclib (25 nM) for 24 h. (B)

Statistical analyses revealed that dinaciclib (25 nM) significantly arrested cells in the G2/M phase at 24 h in all seven thyroid cancer cell

lines. (C) The percentage of thyroid cancer cells in mitosis was assessed after treatment with placebo or dinaciclib (25 nM) for 24 h.

Cells were stained with DAPI and chromosome features were evaluated using immunofluorescence confocal microscopy. Mitotic index

Dinaciclib in preclinical treatment for thyroid cancer
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Mcl-1 levels by 4 h in BHP7-13, WRO82-1 and 8505C. The inhibitory effects persisted for 24

h. Bcl-xL was decreased by 8 h in WRO82-1 and by 16 h in BHP7-13 and 8505C. Survivin was

decreased by 8 h in BHP7-13 and 8505C and by 16 h in WRO82-1. Thus, dinaciclib decreased

the levels of anti-apoptotic proteins in thyroid cancer cell lines.

The decreased levels of anti-apoptotic proteins may lead to activation of executioner cas-

pase-3 [31,32]. The effects of dinaciclib (25 nM) on caspase-3 activity were determined using a

fluorometric assay at 24 h in BHP7-13, WRO82-1 and 8505C cells (Fig 4B). Dinaciclib signifi-

cantly increased caspase-3 activity when compared with control in BHP7-13 (1.338 ± 0.011-

fold and 1.000 ± 0.013-fold, P = 0.003), WRO82-1 (1.295 ± 0.015-fold and 1.000 ± 0.011-fold,

P = 0.004) and 8505C (1.737 ± 0.042-fold and 1.000 ± 0.107-fold, P = 0.023).

Activation of caspase-3 may result in apoptotic cell death. The effect of dinaciclib (25 nM)

on early apoptosis was evaluated using Annexin V-Alexa Fluor 488 and PI staining at 24 h in

three thyroid cancer cell lines. Statistical analyses show dinaciclib significantly increased

early apoptotic cells when compared with control treatment in BHP7-13 (11.8 ± 0.4% and

2.4 ± 0.1%, P< 0.001), WRO82-1 (11.1 ± 0.7% and 4.5 ± 0.1%, P< 0.001) and 8505C

(31.6 ± 0.4% and 2.9 ± 0.3%, P< 0.001) (Fig 4C). To confirm that dinaciclib can induce apo-

ptosis in all thyroid cancer cell lines, seven thyroid cancer lines were exposed to dinaciclib (25

nM) or placebo for 72 h, and the proportions of sub-G1 cells were calculated (Fig 4D). Dinaci-

clib significantly increased the proportion of sub-G1 cells when compared with control in

BHP7-13 (35.9 ± 0.2% and 6.5 ± 0.3%, P< 0.001), WRO82-1 (66.6 ± 0.5% and 9.0 ± 0.1%,

P< 0.001), FRO81-2 (27.2 ± 0.3% and 15.8 ± 0.6%, P< 0.001), 8305C (11.7 ± 0.6% and

3.6 ± 0.1%, P< 0.001), 8505C (61.4 ± 0.2% and 2.9 ± 0.1%, P< 0.001), KAT18 (78.8 ± 0.3%

and 9.3 ± 0.3%, P< 0.001) and KAT4C (44.2 ± 0.5% and 12.7 ± 0.5%, P< 0.001), demonstrat-

ing induction of apoptosis.

These cell cycle and apoptosis data reveal the cytotoxicity of dinaciclib was mediated

through both cell cycle arrest and apoptosis in thyroid cancer cell lines.

Dinaciclib therapy of murine flank tumors

Nude mice bearing flank xenografts of 8505C were used to study the therapeutic efficacy and

safety of dinaciclib in vivo. The 8505C cell line was chosen in this study because it had a high

tumorigenesis rate in a murine model. Animals with established flank tumors with a mean

diameter of 5.0 mm were treated with daily intraperitoneal injections of placebo (n = 13),

lower-dose dinaciclib (40 mg/kg, n = 13) or higher-dose dinaciclib (50 mg/kg, n = 7) for 12

days. Daily lower-dose dinaciclib treatment significantly retarded 8505C tumor growth by day

6 as compared to the control group (2.0 ± 0.3-fold and 2.9 ± 0.3-fold, P = 0.036), and the effect

persisted through day 12 (2.9 ± 0.4-fold and 4.7 ± 0.4-fold, P = 0.007; Fig 5A). Higher-dose

dinaciclib treatment significantly retarded 8505C tumor growth by day 4 (1.3 ± 0.1-fold and

2.2 ± 0.3-fold, P = 0.022) and the effect persisted until day 12 (2.0 ± 0.2-fold and 4.7 ± 0.4-

fold, P< 0.001). An even lower dose of dinaciclib (30 mg/kg) had no significant effect on the

growth of 8505C tumors (S4 Fig).

Daily treatment of lower-dose dinaciclib did not induce significant changes in body weight

(Fig 5B). However, serial injections of higher-dose dinaciclib significantly reduced body

was assessed with a minimum of 352 cells counted from at least ten different fields for each condition. Dinaciclib significantly increased

the proportion of cells in mitosis in three thyroid cancer cell lines. (D) The distribution of cells in mitosis was determined by counting a

minimum of 38 mitotic cells from ten different fields by confocal microscopy for each condition. Quantification analyses revealed 100% of

mitotic cells were in prophase by the treatment of dinaciclib (25 nM) for 24 h. ** P < 0.005 compared with vehicle-treated cells.

doi:10.1371/journal.pone.0172315.g002
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Fig 3. Dinaciclib decreases the levels of CDK1, cyclin B1 and Aurora A in thyroid cancer cell lines. (A) The expression of these cell-cycle

associated proteins was evaluated by Western blotting in BHP7-13, WRO82-1 and 8505C cells treated with dinaciclib (25 nM) or placebo for the indicated

periods. (B) Cells were treated with dinaciclib (25 nM) or placebo for 24 h and stained with fluorescent antibodies against DAPI (blue), cyclin B1 (red) and

α-tubulin (green). Cyclin B1 level was significantly reduced after treatment of dinaciclib in prophase cells of BHP7-13, WRO82-1 and 8505C. (C) Cells

were treated with dinaciclib (25 nM) or placebo for 24 h and stained with fluorescent antibodies against DAPI (blue), Aurora A (red) and α-tubulin (green).

Aurora A level was significantly reduced after treatment of dinaciclib in BHP7-13, WRO82-1 and 8505C cells in prophase. Scale bar, 10 μm.

doi:10.1371/journal.pone.0172315.g003
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Fig 4. Dinaciclib decreases Mcl-1, Bcl-xL and survivin levels, activates caspase-3 and induces apoptosis in thyroid cancer cells. (A) Western

blot analysis was performed in cells treated with dinaciclib (25 nM) or vehicle for the indicated time. The levels of Mcl-1, Bcl-xL and survivin were evaluated

in BHP7-13, WRO82-1 and 8505C cells. (B) Caspase-3 activity was detected using fluorometric assay kit in cells treated with dinaciclib (25 nM) or vehicle

for 24 h. (C) Statistical analyses of early apoptotic cells determined by flow cytometry to detect Annexin V-positive and PI-negative staining showed

dinaciclib significantly induced early apoptosis at 24 h in BHP7-13, WRO82-1 and 8505C cells. (D) Sub-G1 apoptosis was detected by measuring the DNA

content using flow cytometry in cells treated with dinaciclib (25 nM) or vehicle for 72 h. Dinaciclib increased the proportions of sub-G1 cells in all seven

thyroid cancer cell lines. ** P < 0.005 compared with vehicle-treated cells.

doi:10.1371/journal.pone.0172315.g004
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weight when compared with control mice on day 8 (96.8 ± 2.7% and 104.2 ± 0.5%, P = 0.002)

and the effect persisted until day 12 (95.9 ± 3.1% and 104.3 ± 0.7%, P = 0.003). These data

reveal that the therapeutic efficacy and side effects of dinaciclib treatment were dose-depen-

dent in vivo.

Fig 5. Dinaciclib inhibits subcutaneous xenograft growth of anaplastic thyroid cancer. (A) The therapeutic effects of dinaciclib

were evaluated in mice bearing 8505C flank tumors. Daily intraperitoneal injections of lower-dose (40 mg/kg) and higher-dose (50 mg/kg)

dinaciclib significantly repressed 8505C tumor growth after 6 and 4 days when compared with control mice, respectively. (B) Daily

treatment of lower-dose dinaciclib did not meaningfully induce weight loss when compared with control mice during the study period.

However, higher-dose dinaciclib induced significant weight loss between days 8 and 12. (C) The molecular effects of daily lower-dose

dinaciclib (40 mg/kg) treatment were evaluated in 8505C tumors using Western blot analysis. ** P < 0.005 compared with vehicle-treated

mice on day 12.

doi:10.1371/journal.pone.0172315.g005
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The molecular effects of daily dinaciclib treatment (40 mg/kg) in 8505C xenografts were

evaluated (Fig 5C). Mcl-1 was decreased by 3 h and the effects persisted for 48 h. The expres-

sion of CDK1 and Aurora A was decreased between 27 h and 48 h. Cyclin B1 was decreased

between 30 h and 48 h. Furthermore, Bcl-xL, survivin and pro-caspase-3 levels were decreased

by 48 h. These data suggest that dinaciclib inhibited cell cycle progression and induced apopto-

sis in vivo.

Discussion

Dinaciclib effectively inhibited cell proliferation in seven thyroid cancer lines of follicular cell

origin, including PTC, FTC and ATC. Overall, dinaciclib has a relatively low median-effect

dose in vitro (� 16.0 nM). Dinaciclib effectively represses tumor growth of ATC (8505C), sug-

gesting that this agent has the potential for future clinical evaluations in the treatment of thy-

roid malignancies.

Dinaciclib caused prophase cell accumulation, which is likely one of the mechanisms of

cytotoxicity in the treatment of thyroid cancer cells. The decreased levels of CDK1, cyclin B1,

and Aurora A may account for this mitotic block. CDK1-cyclin B1 activity is activated in late

G2 phase and the activation is required for mitotic entry. During mitosis, increasing activity of

CDK1-cyclin B1 is needed for mitotic progression from prophase to prometaphase and meta-

phase [28]. Aurora A is a serine/threonine kinase that is also needed for G2/M transition and

mitotic progression. The effects of decreased levels of CDK1, cyclin B1 and Aurora A may

range from a failure in G2/M transition to mitotic arrest, depending on the magnitudes of

these proteins affected. In this study, dinaciclib consistently induced mitotic block in the first

mitotic phase (prophase) in three cell lines.

Besides mitotic arrest, we also noted dinaciclib accumulated cells in G2 phase in BHP7-13

cells. In this cell line, dinaciclib increased the proportion of G2/M phase cells (44.1%; Fig 2B)

over that of M phase cells (18.5%; Fig 2C), indicating dinaciclib arrested cells in G2 phase.

Thus, G2 phase block was likely another therapeutic mechanism of dinaciclib in BHP7-13. G2

phase arrest was not appeared in WRO82-1 and 8505C cells.

Dinaciclib decreased Mcl-1, Bcl-xL and survivin levels in thyroid cancer cell lines. Mcl-1

and Bcl-xL are pro-survival proteins that sequester pro-apoptotic proteins and inhibiting the

apoptosis pathway [32]. Dinaciclib decreased Mcl-1 and Bcl-xL, which may result in the activa-

tion of downstream executioner caspase-3 and subsequently induce apoptosis. Survivin, an

inhibitor of apoptosis proteins, interacts with partners to inhibit caspase-3 [33,34]. Dinaciclib

decreased survivin, which may potentiate the apoptotic effects of Mcl-1 and Bcl-xL depletion.

Dinaciclib treatment inhibited 8505C tumor growth in a dose-dependent manner. The

anti-tumor effect of dinaciclib is likely mediated through cell cycle inhibition and apoptosis

induction given that CKD1, cyclin B1, Aurora A, Mcl-1, Bcl-xL, survivin and pro-caspase-3

levels were all decreased. The expression of cell cycle and apoptosis proteins was considerably

altered by 48 h of dinaciclib treatment, implying that the therapeutic effect appeared following

a two-dose treatment.

Paclitaxel has demonstrated therapeutic effects in patients with ATC, with a 53% response

rate [35]. We evaluated the therapeutic effects of paclitaxel in mice bearing 8505C xenografts.

Paclitaxel did not repress the growth of 8505C tumors after a 21-day treatment (S5 Fig). In

contrary, dinaciclib was able to repress the growth of 8505C xenografts in this study. These

data suggest dinaciclib may be an alternative option for patients with ATC unresponsive to

paclitaxel therapy.

Among seven thyroid cancer cell lines, 8305C cells were the most resistant to 4-day treat-

ment with dinaciclib at 25 nM. The possible mechanisms underlying the relative resistance of
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8305C cells were evaluated (S6 Fig). In consistent with prior data, dinaciclib (25 nM for 24 h)

accumulated cells in mitosis and inhibited mitotic progression in prophase. The proportion of

cells in G2 phase arrest was also observed to increase (24% of cells being in G2/M phase and

15.9% in M phase). We also evaluated the effects of dinaciclib on the expression of proteins

associated with cell cycle and apoptosis in 8305C cells (S7 Fig). As expected, treatment with

dinaciclib (25 nM) for 24 h significantly decreased cyclin B1, Aurora A, Mcl-1, and Bcl-xL lev-

els. However, the magnitude of decreased survivin level was not as great in 8305C cells as that

in BHP7-13, WRO82-1, and 8505C cells (S3 and S7B Figs). The failure of robust effect to

decrease survivin expression may be one of the potential mechanisms accounting for dinaci-

clib resistance in 8305C cells.

A study of patients with acute leukemia indicated the plasma dinaciclib concentration can

reach 2850.0 nM at 2 h and 92.5 nM at 6 h after initiation of a single 2-h infusion of dinaciclib

(50 mg/m2) [36]. These plasma concentrations exceed the median-effect doses (7.1–16.0 nM)

observed in our 7 thyroid cancer cell lines. We also calculated the human equivalent dose

(HED) of dinaciclib based on the dosage used in mice (40 mg/kg) [37]. The HED is 121.5 mg/

m2, which exceeds the maximally tolerated dose (50 mg/m2) in humans [20]. Future clinical

trials are needed to clarify the efficacy of dinaciclib in the treatment of patients with thyroid

cancer.

Using biomarkers to select patients who are likely to benefit from dinaciclib treatment is

pivotal in clinical trials. Booher et al. reported that Mcl-1 copy number and the Mcl-1:Bcl-xL

mRNA ratio positively correlated with dinaciclib sensitivity in solid tumor cell lines, whereas

Bcl-xL mRNA level had an inverse correlation [19]. We evaluated the association between

dinaciclib sensitivity and basal Mcl-1 and Bcl-xL levels as well as the ratio of Mcl-1:Bcl-xL in

thyroid cancer cell lines (S8A Fig), and found no significant correlation (S8B Fig). However,

two relatively sensitive cell lines (WRO82-1 and 8505C) had high basal levels of Mcl-1, raising

the hypothesis that thyroid cancer cells that depend on Mcl-1 for survival may be susceptible

to dinaciclib treatment. Analysis of more thyroid cancer cell lines with a wide range of dinaci-

clib sensitivity is needed to clarify this possibility. We also failed to find any association

between dinaciclib sensitivity and basal survivin level in thyroid cancer cell lines (S9 Fig).

Conclusions

The CDK inhibitor, dinaciclib, induced cytotoxicity in three major subtypes of thyroid cancer.

In vivo analysis using 8505C xenograft tumors demonstrated the therapeutic efficacy. These

data support future clinical trials studying the feasibility of dinaciclib to treat patients with

refractory thyroid cancer of follicular cell origin.

Supporting information

S1 Fig. The effect of dinaciclib on mitosis in thyroid cancer cells. (A) Chromosomal appear-

ance was evaluated in BHP7-13, WRO82-1 and 8505C cells treated with dinaciclib (25 nM) or

placebo for 24 h using immunofluorescence confocal microscopy. DNA was stained with

DAPI. Placebo-treated cells at metaphase (white arrows), anaphase (yellow arrows) and telo-

phase (blue arrows) were indicated. Dinaciclib-treated cells at prophase (blue arrowheads)

were demonstrated. Scale bar, 50 μm.

(TIF)

S2 Fig. Effects of dinaciclib on the expression of proteins associated with the cell cycle. (A)

In BHP7-13 cells, dinaciclib (25 nM) decreased CDK1 and cyclin B1 levels by 8 h and the

inhibitory effects persisted for 24 h. Aurora A was transiently increased by 4 h and decreased
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by 6 h. (B) In WRO82-1 cells, dinaciclib (25 nM) decreased CDK1 by 8 h and the inhibitory

effect persisted for 24 h. Cyclin B1 and Aurora A were transiently increased by 4 h and

decreased by 6 h. (C) In 8505C cells, CDK1 was increased by 4 h and decreased by 24 h. Cyclin

B1 was increased by 6 h and decreased by 24 h. Aurora A was decreased by 6 h and the inhibi-

tory effects persisted for 24 h.

(TIF)

S3 Fig. Effects of dinaciclib on the expression of proteins associated with apoptosis. (A) In

BHP7-13 cells, dinaciclib (25 nM) decreased Mcl-1 level by 4 h (the effect persisting for 24 h),

Bcl-xL level by 16 h, and survivin level by 8 h. (B) In WRO82-1 cells, dinaciclib (25 nM)

decreased Mcl-1 level by 4 h (the effect persisting for 24 h), Bcl-xL level by 8 h, and survivin

level by 16 h. (C) In 8505C cells, dinaciclib (25 nM) decreased Mcl-1 level by 4 h (the effect

persisting for 24 h), decreased Bcl-xL level by 16 h, and decreased survivin level by 8 h.

(TIF)

S4 Fig. Daily intraperitoneal injections of mice with 30 mg/kg dinaciclib had no significant

effect on growth of 8505C tumor xenografts over 12 days.

(TIF)

S5 Fig. Biweekly intraperitoneal injections of paclitaxel (0.4 mg/mouse) over a 21-day

treatment period failed to repress 8505C tumor growth.

(TIF)

S6 Fig. Dinaciclib accumulated 8305C cells in mitosis and inhibited mitotic progression in

prophase. (A) The percentage of 8305C cells in mitosis was assessed after treatment with pla-

cebo or dinaciclib (25 nM) for 24 h. Cells were stained with DAPI, and chromosome features

were evaluated using immunofluorescence confocal microscopy. Mitotic index was assessed

with a minimum of 941 cells counted for each condition. Dinaciclib significantly increased the

proportion of 8305C cells in mitosis. (B) The distribution of cells in mitosis was determined by

counting a minimum of 117 mitotic cells by confocal microscopy for each condition. All

mitotic cells were found to be in prophase after treatment with dinaciclib (25 nM) for 24 h.
�� P< 0.005 compared with vehicle-treated cells.

(TIF)

S7 Fig. Dinaciclib decreased the levels of cyclin B1, Aurora A, Mcl-1, Bcl-xL, and survivin

in 8305C cells. (A) The expression of cell-cycle and apoptosis proteins was evaluated by West-

ern blotting in 8305C cells treated with dinaciclib (25 nM) or placebo for the indicated periods.

(B) Band density was quantified using Molecular Imager VersaDoc MP 4000 system (Bio-

Rad). The ratios of cyclin B1, Aurora A, Mcl-1, Bcl-xL, and survivin to α-tubulin were calcu-

lated. Relative expression was calculated using the control value as reference.

(TIF)

S8 Fig. The association between susceptibility to dinaciclib and baseline expression of Mcl-

1 and Bcl-xL and the ratio of Mcl-1:Bcl-xL in seven thyroid cancer cell lines. (A) Immuno-

blot analysis was performed to evaluate the expression of Mcl-1 and Bcl-xL in seven untreated

thyroid cancer cell lines. The sequence of proteins loaded was according to the Dm value of

dinaciclib. (B) Band density was imaged and quantified using Molecular Imager VersaDoc MP

4000 system (Bio-Rad). The ratios of Mcl-1 and Bcl-xL to α-tubulin and Mcl-1 to Bcl-xL in

each cell line were calculated. Relative expression was calculated using BHP7-13 value as a ref-

erence. The levels of Mcl-1 and Bcl-xL and the ratio of Mcl-1:Bcl-xL did not significantly corre-

late with dinaciclib sensitivity (Pearson correlation).

(TIF)
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S9 Fig. The association between susceptibility to dinaciclib and baseline expression of sur-

vivin in seven thyroid cancer cell lines. (A) Immunoblot analysis was performed to evaluate

the expression of survivin in seven untreated thyroid cancer cell lines. (B) Band density was

quantified. The ratios of survivin to α-tubulin in each cell line were calculated. Relative expres-

sion was calculated using the BHP7-13 value as reference. The levels of survivin did not signifi-

cantly correlate with dinaciclib sensitivity (Pearson correlation).

(TIF)
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