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ABSTRACT: Highly enantioselective selenocyclization
reactions are promoted by the combination of a new
chiral squaramide catalyst, a mineral acid, and an achiral
Lewis base. Mechanistic studies reveal that the enantio-
selectivity originates from the dynamic kinetic resolution
of seleniranium ions through anion-binding catalysis.

Anion-binding catalysis by dual hydrogen-bond donors such
as ureas and thioureas has been demonstrated as a

powerful strategy for the development of highly enantio-
selective transformations involving cationic intermediates.1 The
approach has been applied successfully to reactions involving an
assortment of prochiral electrophiles, such as iminium ions,
oxocarbenium ions, carbenium ions, and episulfonium ions.2 In
these reactions, the dual hydrogen-bond donors have been
shown to bind to the counterion of a prochiral electrophile and
remain associated intimately enough with the cationic
intermediate to induce high enantioselectivity in subsequent
nucleophilic additions. We sought to explore the application of
this principle to a stereochemically labile reactive substrate or
intermediate, such that a racemic mixture of chiral cationic
electrophiles might also be converted into highly enantio-
enriched products through anion-binding catalysis. Here, we
demonstrate the application of this dynamic kinetic resolution
strategy in the development of a highly enantioselective
selenoetherification reaction.
Selenofunctionalization of alkenes proceeds via reaction of a

π system with an electrophilic selenium source to generate a
seleniranium ion, followed by nucleophilic ring opening.3 The
resulting selenide product can be elaborated in a variety of
synthetically useful transformations including oxidative elimi-
nation and radical substitution reactions. However, the
development of catalytic, enantioselective variants of the
selenofunctionalization reaction remains a challenge that is
largely unmet.4,5 A principal difficulty lies in the configurational
instability of seleniranium ions, as any enantioenrichment in
seleniranium formation can be degraded prior to nucleophilic
ring opening.5a,6 This problem was addressed by Denmark and
co-workers through the design of an electrophilic selenium
reagent that slows down the racemization pathway to a
significant extent. By this strategy, a moderately enantio-
selective chiral Lewis base-catalyzed asymmetric selenoether-
ification reaction was devised that proceeds via ee-determining
formation of the seleniranium ion (Scheme 1, Strategy A).5a

The modest asymmetric induction is proposed to partly arise

from incomplete suppression of the configurational scrambling
of the seleniranium intermediate.

On the basis of these mechanistic insights, we sought to
develop a highly enantioselective selenofunctionalization that
takes advantage of rapid seleniranium racemization by means of
the aforementioned dynamic kinetic resolution strategy.
Through intimate association of an anion-bound chiral
hydrogen-bond donor with the seleniranium ion, nucleophilic
ring-opening of the two enantiomers of the electrophile could
be accelerated to different extents, thereby allowing asymmetric
induction to be achieved (Scheme 1, Strategy B).
We chose o-allyl-substituted phenol 1a as the model

substrate, which could undergo intramolecular selenoether-
ification to construct a chroman-type product with two
contiguous stereogenic centers. A survey of chiral H-bond
donor catalysts and reaction conditions led to the observation
that urea 4 promoted the formation of 2a with 33% ee and
near-quantitative yield in the presence of N-phenylselenyl
succinimide (NPSS) as the selenium donor and hydrogen
chloride as a co-catalyst (Table 1, entry 1). Acid is required to
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Scheme 1. Two Strategies for the Development of
Enantioselective Selenofunctionalization Reactions

Communication

pubs.acs.org/JACS

© 2014 American Chemical Society 16485 dx.doi.org/10.1021/ja510113s | J. Am. Chem. Soc. 2014, 136, 16485−16488

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

pubs.acs.org/JACS
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


achieve synthetically useful yields, presumably by facilitating
selenyl group transfer from NPSS to the olefin.7 However,
under these conditions, significant product racemization was
observed after prolonged reaction time. We speculate the
strong acid promotes reversibility of the selenocyclization
process by initial protonation of the ether product. Indeed,
when a weaker acid, pyridinium chloride (PyHCl) was
employed, the product was observed to be configurationally
stable under the reaction conditions (entry 2).
We evaluated whether stronger dual H-bond donors, such as

thioureas and squaramides,8 might impart higher levels of
stereoinduction in the selenocyclization reaction. While the
thiourea analogue of catalyst 4 undergoes rapid decomposition
under the reaction conditions,9 the corresponding squaramide
5a (Table 1, entry 3) indeed provides slightly improved
enantioselectivity.10 We also hypothesized that expanding the
aromatic substituent on the pyrrolidine unit might further
increase the stereochemical communication in the transition
structure by strengthening a cation−π interaction. Such a trend
is precedented with the thiourea analogues of this class of
catalysts in the context of polycyclizations and episulfonium
ring-openings.2c,f This strategy proved fruitful, as squaramides
bearing larger aryl groups (5b−d) furnish further improvement
of the enantioselectivity (entries 4−6).
Through evaluation of reaction temperature, we found that

reactions conducted at −30 °C instead of room temperature
provided an increase in product ee, albeit with substantially

lower reactivity (Table 1, entry 7 vs entry 6). Further decrease
in temperature led to almost complete shutdown of the
reaction (entry 8). We hypothesized that the group transfer
between NPSS and the substrate was inhibited at low
temperatures due to the decreased solubility of the selenium
reagent. This problem was circumvented by the introduction of
a strong Lewis base in the reaction, which has been shown to
activate NPSS in the presence of Brønsted acids.11 Tris-
(dimethylamino)phosphorus sulfide (HMPA(S)) promoted
selenocyclization at −45 °C with full conversion after 48 h,
and the product was generated in elevated enantiomeric excess
(entry 9). Enantioselectivity is also responsive to substitution
on the aryl group of the selenylating reagent, as the more
electron-rich N-p-anisylselenyl succinimide (NPASS) allows the
formation of 3a with improved ee (entry 11 vs entry 10).
Reoptimization of the reaction temperature reveals that the
optimal enantioselectivity can be achieved at −35 °C under
otherwise identical conditions, with product 3a isolated in 88%
ee (entry 11). Finally, at low temperature, the same result was
observed when PyHCl was replaced by HCl as the acid catalyst,
indicating that no significant acid-induced racemization of
product occurred at this temperature during the course of the
reaction (entry 12).
The scope of the selenocyclization reaction was evaluated

under the optimized conditions. As shown in Table 2,
substrates with different substituent patterns on the phenol
motif (3b−g) provide cyclization products in high yield and
enantioselectivity. Substitution ortho to the hydroxyl group
(3h), however, results in significant reductions in enantio-
selectivity. The detrimental effect of an ortho substituent
suggests a possible interaction between the hydroxyl group and
catalyst that may play an important role in the mechanism of
enantioinduction, as such an interaction may be sensitive to the
steric environment around the hydroxyl group.2f Substrates
functionalized at the meta or para position of the styrenyl ring
can also undergo cyclization with high levels of reactivity and
enantioselectivity (3i−l). However, generality with respect to
styrenyl substitutents was limited, as lower enantioselectivities
were observed with the o-methyl-substituted and p-anisyl
derivatives (3m,n). In most cases, the enantiopurity of the
selenocyclization products could be improved to >95% ee
through a single recrystallization procedure with good recovery.
The products accessed by the squaramide-catalyzed

selenocyclization can be elaborated through the variety of
chemistries available to organoselenides (Scheme 2). Such
operations could enable the synthesis of a diverse range of
compounds of pharmaceutical interest, particularly since the
selenocyclization products bear structural resemblance to the
flavonoids, a family of natural products with a broad spectrum
of biological activities.12 For example, we subjected the
enantioenriched 3a to oxidative syn-elimination in the presence
of H2O2 to generate flavene 6, which was subsequently
subjected to osmium-catalyzed dihydroxylation to afford diol
7 with high diastereoselectivity (dr >20:1). In the presence of
the radical initiator 2,2′-azobis(4-methoxy-2,4-dimethylvalero-
nitrile) (V-70), 3a also undergoes reaction with 8 under mild
conditions to produce alkylated flavan 9 as 2:1 mixture of
chromatographically separable diastereomers. The enantio-
enrichment of 3a is preserved in all the derived products.
The high enantioselectivity we observed in the chiral H-bond

donor-catalyzed selenoetherification can originate either from
(i) face-selective selenyl group transfer to the olefin, or from
(ii) dynamic kinetic resolution of the seleniranium ion in the

Table 1. Reaction Optimizationa

entry [Se] acid cat.
temp
(°C)

time
(h)

yield
(%)b ee (%)c

1 NPSS HCl 4 rt 0.5 92 33(11d)
2 NPSS PyHCl 4 rt 2 85 36(36d)
3 NPSS PyHCl 5a rt 2 82 46
4 NPSS PyHCl 5b rt 2 82 60
5 NPSS PyHCl 5c rt 2 88 64
6 NPSS PyHCl 5d rt 2 84 67
7 NPSS PyHCl 5d −30 48 67 72
8 NPSS PyHCl 5d −45 48 <5 nd
9e NPSS PyHCl 5d −45 48 89 84
10e NPASS PyHCl 5d −45 48 85 87
11e NPASS PyHCl 5d −35 48 85 88
12e NPASS HCl 5d −35 48 87 88

aReactions conducted on 0.1 mmol scale. bIsolated yield of purified
product. cEnantiomeric excess determined by HPLC analysis on
commercial chiral columns. dee after 12 h. eHMPA(S) (10 mol%) was
added.
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ring-opening by the phenol. These two possibilities were
evaluated by preparing the racemic seleniranium ion
intermediate and subjecting it to the conditions of the
enantioselective catalytic reaction. Racemic β-chloroselenide
adduct rac-Int-k is formed quantitatively and instantaneously

upon treating 1k with PhSeCl at −78 °C in the absence of
catalyst, as determined by 1H NMR analysis.13 After addition of
20 mol% 5d and HMPA(S) to rac-Int-k, the reaction
temperature was elevated to −45 °C to trigger the cyclization
to form 2k (Scheme 3). The product ee generated through this

stepwise procedure was similar to that of the reaction with
PhSeCl added in the presence of catalysts 5d and HMPA(S).14

This result provides definitive evidence that rac-Int-k under-
goes dynamic kinetic resolution in the presence of 5d, most
likely via rapid equilibration of the enantiomeric seleniranium
ions.
Based on our experimental findings, a possible catalytic cycle

involving cooperative catalysis by a dual H-bond donor, a
Brønsted acid, and a Lewis base may be advanced (Scheme 4).

Cooperative Lewis base and Brønsted acid activation of the
electrophilic selenium reagent results in formation of a reactive
ion pair, Se-I, which may be associated with the squaramide
catalyst.6a,13 This intermediate undergoes group transfer to
olefin 1a to form enantiomeric seleniranium ions (R,R)-Se-II
and (S,S)-Se-II, which are rapidly equilibrating. The subsequent
cyclizations of (R,R)-Se-II and (S,S)-Se-II occurs at sufficiently
different rates due to the association with chiral squaramide 5d
to result in formation of highly enantioenriched product 3a.
In summary, a dual H-bond donor-catalyzed dynamic kinetic

resolution protocol has been developed for highly enantio-
selective selenocyclization reactions. The scope of anion-
binding catalysis has therefore been extended to stereochemi-
cally labile racemic electrophiles.

Table 2. Substrate Scopea

aReactions were conducted on 0.25 mmol scale. bIsolated yield and ee
of purified product before recrystallization. The structure and absolute
configuration of 3k were established by X-ray crystallography, and the
stereochemistry of all other products was assigned by analogy.
cNumbers in parentheses correspond to the isolated yield and ee after
recrystallization. For details on the recrystallization procedure, see the
Supporting Information. dReaction was conducted on 1 mmol scale.

Scheme 2. Derivatization of a Selenocyclization Product

Scheme 3. DKR of Intermediate rac-Int-k with 5d

Scheme 4. Proposed Catalytic Cycle
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