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SUMMARY The outbreak of coronavirus disease 2019 (COVID-19) in December 2019
in Wuhan, China, introduced the third highly pathogenic coronavirus into humans in
the 21st century. Scientific advance after the severe acute respiratory syndrome
coronavirus (SARS-CoV) epidemic and Middle East respiratory syndrome coronavirus
(MERS-CoV) emergence enabled clinicians to understand the epidemiology and
pathophysiology of SARS-CoV-2. In this review, we summarize and discuss the epide-
miology, clinical features, and virology of and host immune responses to SARS-CoV,
MERS-CoV, and SARS-CoV-2 and the pathogenesis of coronavirus-induced acute re-
spiratory distress syndrome (ARDS). We especially highlight that highly pathogenic
coronaviruses might cause infection-associated hemophagocytic lymphohistiocytosis,
which is involved in the immunopathogenesis of human coronavirus-induced ARDS,
and also discuss the potential implication of hemophagocytic lymphohistiocytosis
therapeutics for combating severe coronavirus infection.
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INTRODUCTION

Coronaviruses (CoVs) are classified into three groups: both group 1 (Alphacoronavi-
rus) and group 2 (Betacoronavirus) include mammalian viruses, whereas group 3

(Gammacoronavirus) contains only avian viruses. Seven types of human CoVs have been
identified to date (1, 2). Among them, HCoV-229E and HCoV-NL63 are part of the
Alphacoronavirus genus; while the rest are part of the Betacoronavirus genus, including
HCoV-OC43, HCoVHKU1, severe acute respiratory syndrome coronavirus (SARS-CoV),
Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 (initially
called 2019-nCoV). Coronaviruses did not attract worldwide attention until the SARS
epidemic (3), followed by the MERS emergence (4) and, most recently, the coronavirus
disease 2019 (COVID-19) pandemic outbreak (5, 6). These three highly pathogenic
viruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) derived from bats cause atypical pneu-
monia in humans that may evolve to acute lung injury (ALI) or acute respiratory distress
syndrome (ARDS) leading to high morbidity and mortality, whereas infections with the
other four low-pathogenic coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43, and
HCoVHKU1) lead to ailments such as mild upper respiratory illness in immunocompe-
tent hosts, although they can also cause severe syndromes in those with weakened
immunity (1, 6).

The identification of SARS-CoV in civets, MERS-CoV in domesticated camels, and
SARS-CoV-2-like coronavirus in the intermediate horseshoe bat indicates that these
viruses are able to leap the species barriers and may cause more outbreaks in the
future. Although the intermediate host, transmissibility, and mortality among the three
highly pathogenic viruses are distinct, the dysregulated host immune response to these
viruses all resulted in ARDS, which is the primary cause of death among infected
patients. The viral features of these highly pathogenic coronaviruses and advances in
diagnosis and developing vaccines and therapeutics have been reviewed by Dhama
et al. (7). This review was written to detail our current understanding of the epidemi-
ology, clinical features, virology, dysregulated immune response of SARS, MERS, and
COVID-19, and the pathogenesis of coronavirus-induced ARDS. We particularly high-
light the potential role of the secondary hemophagocytic lymphohistiocytosis (HLH) on
the immunopathogenesis of fatal coronavirus infection and discuss the future impli-
cation of using HLH therapeutics to combat severe coronavirus infection.

EPIDEMIOLOGY

The first SARS case probably occurred in live animal markets of Foshan, China, in
November 2002 and increasingly spread around the globe in 2002 to 2003. The first
major outbreak emerged and spread among medical workers and families through
close contact in Guangzhou, China (3). Subsequently, a novel coronavirus was isolated
from those atypical pneumonia patients and called SARS-CoV (8). After March 2003, the
outbreak rapidly spread to other countries by air travel (9). Before the global outbreak
was officially announced over in July 2003, it had caused 8,098 reported cases and 774
deaths (case-fatality rate, 9.6%) (10). After the 2003 epidemics, several patients with
SARS were identified in 2005 because of contact with palm civets, which have been
thought to be the source of infection (11).

In June 2012, a second Betacoronavirus called MERS-CoV was found in a patient who
had died from a severe respiratory illness in Jeddah, Saudi Arabia (4). Following that,
MERS broke out with 11 people affected, including eight health care workers, in a
public hospital in Zarqa, Jordan. Subsequently, 30 MERS-infected cases were subse-
quently confirmed in Seoul, South Korea, in June 2015, which is the largest outbreak
outside the Middle East (12). The nosocomial and travel-related transmission was
reported to be increasing in the Middle East and other regions (12). The outbreaks of
MERS-CoV were reported in 27 countries with 2,494 reported cases, including 722
deaths (case fatality rate, 34%) (13).
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In December 2019, a number of atypical pneumonia patients associated with a
seafood wholesale market were identified in Wuhan, China (14). A previously unknown
coronavirus, later called SARS-CoV-2, was found in these patients (5). It infected men
more than women, which is also a characteristic found in MERS-CoV, but not in
SARS-CoV (15, 16). As of 21 June 2020, more than eight million confirmed cases with
more than 461,000 deaths were reported globally (case fatality rate, 5.3%). The number
is still increasing (Fig. 1) (17).

Similar to the other two kinds of highly pathogenic coronaviruses, SARS-CoV-2 also
spread mainly via large droplets and contact. There is a risk of fecal-oral and vertical
transmission, but evidence of aerosol transmission is controversial (18). Since December
2019, a series of case reports confirmed human-to-human transmission of SARS-CoV-2
based on close patient contact with family members and health care providers (19). The
superspreading events (SSEs) of SARS-CoV-2, which are associated with the rapidly
increasing cases, tend to occur at close gatherings of households and large commu-
nities (20). Asymptomatic carriers may continue to transmit COVID-19 and lead to a
possible epidemic rebound (21). Therefore, the World Health Organization (WHO)
officially announced that COVID-19 is a pandemic, which means that the new corona-
virus is a threat to humans around the world.

THE DISORDERS AND THE CORONAVIRUS
Manifestation of Disease

The main clinical features of highly pathogenic coronavirus are symptoms of acute
pulmonary infection, ranging from asymptomatic or mild febrile illness to ALI and
ARDS. ALI/ARD is a clinical syndrome characterized by decreased lung compliance,
severe hypoxemia, and bilateral pulmonary infiltrates resulting from various diseases
(sepsis, pneumonia, trauma) with extrapulmonary manifestations in some cases (Table
1) (22). The acute onset with fever, cough, myalgia, headache, and sore throat subsided
in a few days in SARS patients (Table 1). The following clinical stage was characterized
by high fever, shortness of breath, and hypoxemia, and two-thirds of the patients had
atypical pneumonia (Table 1). After 2 weeks or so, approximately one-fifth developed
ARDS with extrapulmonary manifestations, which is the primary cause of death in
SARS-CoV infection (23). Compared with SARS-CoV, MERS-CoV infection progresses
more rapidly to ARDS, septic shock, renal failure, and death, particularly in immuno-

FIG 1 The global spread of COVID-19. Location of COVID-19 cases and deaths, as of 10 June 2020. The countries colored in red
are those where confirmed cases emerged. Darker colors indicate more cases. (Based on data from reference 213.)
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compromised patients and those with comorbid conditions. Therefore, the time from
onset to requiring ventilation in MERS-CoV-infected patients is shorter than that in
SARS. The mortality rate of MERS (34%) is higher than that of SARS (10%), which may
be associated with the prevalence of comorbidities (24, 25). Approximately three-
fourths of patients who died of MERS were more likely to have at least one underlying
comorbidity, including obesity, diabetes, systemic immunocompromising conditions,
and chronic heart and pulmonary diseases (24). Similar to SARS, the gastrointestinal
symptoms, such as vomiting and diarrhea, occurred in a third of patients with MERS
(24). The main clinical features of COVID-19 vary from asymptomatic infection to severe
atypical pneumonia with ARDS, which likely results in death. Compared to SARS and
MERS, the symptoms of COVID-19 are more subtle, and many asymptomatic carriers or
presymptomatic cases are less easily recognized, making SARS-CoV-2 more transmis-
sible. At the onset of COVID-19, common manifestations were fever, dry cough, and
fatigue, but only a minority of cases showed upper respiratory tract infection symp-
toms. Severe cases with dyspnea and hypoxemia usually occur 1 week after onset, and
subacutely progress to ARDS and other multiple organ failures. Moreover, severe cases
may manifest with low to moderate fever, even no fever, throughout the course of the
disease, which may be because older patients are more likely to have severe disease
and they may not have a good “fever response” (6, 26). The incidence of the probability
of the progression to ARDS and mortality (approximately 5.7%) is lower than those with
SARS and MERS. In addition, SARS-CoV-2 infection rarely causes diarrhea, which is more
likely to occur in MERS or SARS (20 to 25%).

The laboratory characteristics of SARS and MERS were various degrees of pancyto-
penia, including lymphopenia and thrombocytopenia (Table 2) (8, 25). It was reported

TABLE 1 Comparison of clinical features among SARS, MERS, and COVID-19 patients

Clinical feature

Value for disease (references)

SARS (24, 27) MERS (24, 91) COVID-19 (6, 26)

Incubation period
Mean, days 4.6 5.2 6.4
95% CI,a days 3.8–5.8 1.9–14.7 2.1–11.1
Serial interval, days 8.4 7.6 7.5

Basic reproduction no. 2–3 �1 2.2–3.6

Patient characteristics
Age, median, yr 50.0 39.9 55.5
Sex (male:female), % 43:57 64.5:35.5 68:32

Disease progression (days)
Time from onset to ventilatory support Mean 11 Median 7 Median 8
Time from onset to death Mean 23.7 Median 11.5 Mean 9.5

Mortality, % 9.6 34 5.3

Presenting symptoms, %
Fever 99–100 98 83
Cough 62–100 83 82
Sputum production 4–29 44 28
Shortness of breath 40–42 72 31
Fatigue or malaise 31–45 38 44
Myalgia 45–61 32 11
Chills or rigors 15–73 87 NRb

Headache 20–56 11 8
Sore throat 13–25 14 5
Hemoptysis 0–1 17 5
Rhinorrhea 2–24 6 4
Diarrhea 20–25 26 2–3
Nausea and vomiting 20–35 21 1

aCI, confidence interval.
bNR, not reported.
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that the serum levels of lactate dehydrogenase (LDH), alanine aminotransferase (ALT),
aspartate aminotransferase (AST), and creatine kinase (CK) are elevated in patients with
fatal SARS and MERS (24, 25, 27, 28). Similar to SARS and MERS, the routine blood
studies on admission showed lymphopenia in 35% of SARS-CoV-2-infected cases. ALT,
AST, and LDH increased in 28% to 76% of patients. In severe SARS-CoV-2-infected cases,
the D-dimer level was markedly elevated, and lymphocytes showed a progressive
reduction. An estimated 63% of patients with COVID-19 had serum ferritin levels above
the normal range (6, 26), whereas the data on ferritin concentrations in patients with
SARS and MERS are unavailable. These laboratory features indicate that fatal corona-
virus infections lead to multiple-organ damage, including the hematology, hepatic, and
renal systems, among others.

Chest CT Findings in These Disorders

Pulmonary pathological types and imaging features among SARS, MERS, and
COVID-19 patients share similarities (Table 3). The most common chest computed
tomography (CT) imaging results for SARS are ground-glass opacification with or
without consolidation. Overall, 24% of patients had ground-glass opacification only,
36% had consolidation only, and 39% had both (27). The pulmonary lesions were
mainly located in the lower lobe and lateral belt of lungs with 30% being bilateral and
70% being unilateral (29). Multilobar involvement occurred in approximately half of the
patients (27). The prominent chest imaging result of MERS was also ground-glass
opacities, followed by consolidation. Moreover, MERS-CoV infection is more likely to
lead to lesions in the lower lobe rather than upper lobes, and the lesions progressed
more rapidly than those in SARS according to radiographic examination. The cardinal
feature was peripheral distribution, followed by central distribution and combined
distribution, and unifocal involvement was more common than multifocal involvement
(30).

TABLE 2 Comparison of laboratory features among SARS, MERS, and COVID-19 patients

Laboratory testa

% for disease (references)

SARS (27, 195, 196) MERS (25, 91) COVID-19 (6, 19, 26)

WBC (�4.0 � 109/liter) 25–35 14 25
LYM (�1.5 � 109/liter) 68–85 32 35
PLT (�140 � 109/liter) 40–45 36 12
ALT (�50 U/liter) 20–30 11 28
AST (�40 U/liter) 20–30 14 35
LDH (�250 U/liter) 50–71 48 76
aAbbreviations: WBC, leukocytes; LYM, lymphocytes; PLT, platelets; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; LDH, lactate dehydrogenase.

TABLE 3 Comparison of pulmonary pathological types and imaging features among SARS,
MERS, and COVID-19 patients

Feature

Value for disease (references)

SARS
(27, 29, 197–199)

MERS
(30, 170, 200)

COVID-19
(31, 32, 120, 201)

Pathologic types DADa DAD DAD?
Bilateral pneumonia 30% 85.7% 76%
Unilateral pneumonia 70% 14.3% 24%
Ground-glass opacity 63% 65.5% 86%
Peripheral distribution 75% 58% 86%
Lower lung zone 64.8% 79.1% 67% to �76%
Consolidations 36% 18.2% 29% to �55%
Unifocal involvement 54.6% 69% 29%
Multifocal involvement 45.4% 31% 71%
Pneumothorax 12% 16.4% 1%
aDAD, hyaline membrane formation was observed with exudate in the alveoli, and membranous organization
was seen with the occlusion of alveoli, dilation of the alveolar ducts and sacs, and collapsing of the alveoli.
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At the early stage of COVID-19, multiple small plaques were obvious in the sub-
pleural, extraneous, posterior basal segment and lower lobe of the lungs. Furthermore,
pulmonary multiple ground-glass shadows together with infiltration develop bilaterally;
lung consolidation was seen in severe cases, while pleural effusion rarely occurred (6).
Chest X-ray and CT findings show that 71% of patients had two or more lobes
distributed, and the lower lobes were involved in 67% to 76% of patients. The lesions
were distributed peripherally in 86% of patients, and 80% were located at the posterior
part of the lungs (31). Approximately three-quarters of cases have bilateral pneumonia,
and rest have unilateral pneumonia (32).

VIROLOGY

SARS-CoV, MERS-CoV, and SARS-CoV-2 belong to the Coronavirus genus in the
Coronaviridae family. The possible origins of the three coronaviruses have been dis-
cussed (7), while further clarification is needed for genomic organization, protein
domain composition, and cell entry receptors of these coronaviruses.

Genomic Organization and Protein Domain Composition of Coronavirus

Coronaviruses are the largest RNA viruses (100 to 160 nm in diameter) with envel-
oped and spherical particles. SARS-CoV and MERS-CoV contain a positive-sense, single-
stranded RNA genome with approximately 30,000 bases comprising 11 potential open
reading frames (ORFs). Among them, ORF1a and ORF1b encode nonstructural proteins
(NSPs), which function in genome transcription and replication. The remaining ORFs
encode major structural proteins spike (S), envelope (E), membrane (M), and nucleo-
capsid (N), which are related to cell invasion, virion formation, and release. These
coronaviruses also encode many accessory proteins that are interspersed throughout
the structural genes. Although these proteins are species specific, their functions are
poorly understood since they are not necessary for replication (33).

SARS-CoV-2, provisionally called 2019-nCoV, was identified in bronchoalveolar la-
vage fluid (BALF) samples from patients using next-generation sequencing (5). SARS-
CoV-2 is classified into subgenus Sarbecovirus of the genus Betacoronavirus according
to the phylogenetic analysis (Fig. 2A). SARS-CoV-2 possesses at least 12 coding regions,
including 1ab, S, 3, E, M, 7, 8, 9, 10b, N, 13, and 14, three (10b, 13, and 14) of which are
different from coding regions in SARS-CoV (Fig. 2B). As for the whole-genome se-
quence, SARS-CoV-2 is relatively closest to bat CoV RaTG13 and was distinct from
SARS-CoV, indicating the transmission mode of SARS-CoV-2 from animals to humans.

The SARS-CoV-2 genome was reported to encode 27 proteins: four structural
proteins (S, E, M, and N), eight accessory proteins (3a, 3b, p6, 7a, 7b, 8b, 9b, and orf14),
and 15 nonstructural proteins (nsp1 to -10 and nsp12 to -16) (7, 34). Among four major
structural proteins, the S protein of coronaviruses, a large class I fusion protein,
participates in receptor binding and membrane fusion and plays a crucial role in host
selection and transmissibility (7). Generally, S protein is divided into two parts: S1
domain, interacting with the host cell receptor, and S2 domain, mediating fusion with
the cellular membrane. The receptor-binding domain (RBD) of Betacoronaviruses is
located at the C-terminal end of the S1 domain consisting of one core surrounded by
an external subdomain. The crystal structure analysis of SARS-CoV-2 RBD demonstrated
the higher binding affinity to angiotensin-converting enzyme 2 (ACE2) receptor than
that of SARS-CoV RBD, which provides a possible explanation for SARS-CoV-2 having
strong infectivity (35, 36). The SARS-CoV-2 S protein has been extensively implicated in
the development of diagnostic kits, vaccines, and therapeutic antibodies (7, 37, 38).

Cellular Entry of Coronavirus

The S protein of SARS-CoV binds to ACE2 on the cell membrane and predominantly
infects ciliated bronchial epithelial cells and type I/type II pneumocytes (39–41). The
ACE2 protein is expressed in human type I and type II pneumocytes, the luminal surface
of ciliated bronchus cells of bronchus, enterocytes in the small intestine, the brush
border of the proximal tubular cells, the endothelial cells, and arterial smooth muscle
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FIG 2 (A) The phylogenetic tree of representative betacoronavirus. Colors indicate different types of coronavirus: SARS-CoV (red), MERS-CoV (green),
SARS-CoV-2 (blue), pangolin-CoV (yellow), bat CoV RaTG13 (purple). Whole-genome sequence was downloaded from NCBI and GISAID and underwent
maximum-likelihood phylogenetic analyses. (B) Genome organization of three highly pathogenic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2). The
genes encoding structural proteins (spike [S], envelope [E], membrane [M], and nucleocapsid [N]) are in green. ORF 1a and ORF 1b, which encode
nonstructural proteins, are in gray. The genes encoding accessory proteins are in blue.
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cells but is not expressed on T or B cells or macrophages in the spleen or lymphoid (42,
43). Although colonic enterocytes and liver cells lack the expression of ACE2 protein,
viruses have been found in the colon and hepatocytes (42, 44). In contrast, ACE2 is
present on the endothelial cells and the smooth muscle cells, but there is no evidence
of viral particles and viral genome in these cells (42). The binding of spike protein to
ACE2 resulted in the reduced expression of the receptor in the lungs and drove ALI
during SARS because the downregulation of ACE2 leads to the excessive production of
angiotensin II, which increases pulmonary vascular permeability (45, 46). The structural
similarity between the receptor-binding domains of SARS-CoV-2 and SARS-CoV sug-
gests that SARS-CoV-2 might use ACE2 as the receptor (2). SARS-CoV-2 was identified
to use the cell entry receptor ACE2 in the ACE2-expressing HeLa cells (47). Besides,
SARS-CoV was found to bind to dendritic cell (DC)-specific intercellular adhesion
molecule 3 grabbing nonintegrin (DC-SIGN) on the surface of dendritic cells (DCs) and
macrophages, which allows the cells to transfer infectious SARS-CoV to susceptible
target cells, such as pneumocytes and monocytes, but does not facilitate viral infection
of these cells (48). Liver/lymph node-specific ICAM-3-grabbing integrin (L-SIGN) can
bind to SARS-CoV S protein, mediating viral entry and thus serving as an alternate
receptor for SARS-CoV (49). MERS-CoV attaches to dipeptidyl peptidase 4 (DPP4; also
known as CD26) receptor and infects unciliated bronchial epithelial cells and type II
pneumocytes (50). The DPP4 highly expressed in the kidney accounts for common renal
dysfunction or failure in patients. A recent study reported that the spike protein of
SARS-CoV-2 bound to a novel receptor, CD147, and invaded the host cells, suggesting
alternative receptors involving the invasion of SARS-CoV-2 (51). Whether the key
residue variations in the receptor-binding region of SARS-CoV-2 affect ACE2 binding or
change receptor tropism requires further study (2).

IMMUNE RESPONSE ASSOCIATED WITH SECONDARY HEMOPHAGOCYTIC
LYMPHOHISTIOCYTOSIS IN FATAL CORONAVIRUS INFECTIONS

Immune response is essential to clear the coronavirus. After coronavirus invades the
human body, the innate immune system is activated, which recognizes coronavirus and
induces proinflammatory cytokines and chemokines. This process is followed by adap-
tive immune system activation, in which activated T cells directly kill virus-infected cells
and B cells produce pathogen-specific antibodies. Immune response is essential for
virus clearance, but it may also do harm to normal host tissues (52). Hyperinflammatory
states have been confirmed to develop in the three highly pathogenic coronavirus-
induced ARDS, and even death, which evoked considerable interest in cytokine-
directed therapeutics to mitigate against such excessive immune responses (53, 54).
The underlying mechanism of the exaggerated immune responses in fatal coronavirus
infections is not understood. The observed severe lymphopenia and various degrees of
pancytopenia, elevated ferritin, compromised liver function, abnormal clotting profiles,
hypertriglyceridemia, and hypercytokinemia indicate that secondary hemophagocytic
lymphohistiocytosis (sHLH) might play a crucial part in the pathogenesis of fatal
COVID-19, SARS, and MERS (6, 26), although few clinical and laboratory indices in sHLH
are distinct from fatal coronavirus infections (Table 4). The primary/familial or secondary
hemophagocytic lymphohistiocytosis (fHLH or sHLH), a life-threatening syndrome re-
lated to severe hypercytokinemia, is thought to result from uncontrolled hyperactiva-
tion of gamma interferon (IFN-�)-producing T cells and macrophages (55–57). The
predominant causes of secondary HLH are the virus, neoplasms, and autoinflammatory
and autoimmune diseases, whereas primary HLH is a typical autosomal recessive
phenotype caused by mutations in the genes related to NK and CD8� cytotoxic T cell
functions (58). The secondary HLH associated with rheumatic diseases is also known as
macrophage activation syndrome (MAS) (59). Infection-associated HLH has been re-
ported to cause death in patients with Epstein-Barr virus (EBV), herpesviruses, HIV,
influenza virus (H1N1 or H5N1), parvovirus, and hepatitis viruses (60). The cardinal
clinical features of HLH include fever, hepatosplenomegaly, pancytopenia, fibrinolytic
coagulopathy, hyperferritinemia, and hypohepatia, and the syndrome’s key immuno-
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logical features are characterized by low cytotoxic lymphocyte activity (perforin and
CD107a), increased T cell activation (soluble interleukin-2 receptor alpha chain, sCD25),
increased macrophage activation (soluble CD163, soluble CD206, ferritin), and he-
mophagocytic activity. Although HLH is recognized more frequently, it is challenging to
diagnose HLH due to strict criteria (61). In the following context, the role of NK, T
lymphocytes, and macrophages in the dysregulated innate and adaptive immune
responses associated with sHLH in severe coronavirus infection will be emphasized
(Fig. 3).

Innate Immune Response to Coronavirus

The innate immune response forms the first line of host defense against coronavirus
infection. It mainly consists of natural killer (NK) cells, macrophages, DCs, and molecules
such as type I interferon (IFN), chemokines, and cytokines.

Defective type I IFN response. Type I IFN, whose most important action is to inhibit
viral replication in both infected and uninfected cells, is a key component of the innate
immune response to combat the virus. Type I IFN is induced by several viral pathogen-
associated molecular patterns (PAMPs) that are mediated by pattern recognition
receptor (PRR), including endosomal Toll-like receptors (TLRs), cytoplasmic retinoic
acid-inducible gene I protein (RIG-I), and melanoma differentiation-associated protein 5
(MDA5) (52). Type I IFN facilitates virus clearance through several parallel antiviral
pathways (62). However, type I IFN was not detected in the lungs and serum of SARS
or MERS patients, as well as in in vitro experiments (63–65). Moreover, SARS-CoV
infection in vitro failed to activate nuclear transcriptional factor IFN regulatory factor 3
(IRF3) (66). In parallel, recent whole-blood transcriptome and serum cytokine profiles
indicated that interferon-stimulated genes (ISGs) were significantly downregulated and
type I IFN activity was low in severe COVID-19 patients, suggesting the impairment of
type I IFN antiviral response (67). But it is crucial to investigate whether the production
of IFN is delayed or decreased after a peak during the early onset of infection using
longitudinal sera. Indeed, the delayed type I IFN response and unrestrained viral
replication promote inflammatory responses and lung immunopathology in mice
infected with SARS-CoV (68). Dynamically monitoring type I IFN production and
interferon-stimulated gene expression in virus-susceptible cells or mice infected with
SARS-CoV-2 will help clarify the role of type I IFN antiviral immunity in the pathogenesis
of fatal cases.

The mechanism of the type I IFN defective response to SARS-CoV, MERS-CoV, and

TABLE 4 Clinical and laboratory differences between COVID-19 and sHLH patients

Finding

Value for disease (reference[s])a

S-COVID-19 (202) IAHS (203–205) MAS (202) MHLH (206)

Fever ��� ��� ��� ���
Hepatomegaly � ��� �� ���
Splenomegaly � ��� �� ���
Hemophagocytosis �/� ��� ��� ���
Lymphopenia �� ��� � ���
Anemia � ��� � ���
Low NK activity � � � NR
Elevated liver enzymes �� �� �� ���
Hypercytokinemia ��� ��� ��� NR
Hyperferritinemia �� ��� ��� NR
Elevated sCD25 � NR � NR
Hypertriglyceridemia �/� ��� �� NR
Hypofibrinogenemia �/� ��� �� ���
Coagulopathy �� ��� �� ���
Multiorgan failure ��� ��� � ���
ARDS ��� ��� � ���

aAbbreviations: S-COVID-19, severe COVID-19; IAHS, infection-associated hemophagocytic syndrome; MAS,
macrophage activation syndrome; MHLH, malignancy-associated HLH; NR, none reported; �, negative; �/�,
not essential; �, slight; �� moderate; ���, severe.
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FIG 3 A proposed model of the immunopathogenesis of human coronavirus-induced acute respiratory distress syndrome. In alveoli, coronavirus
primarily infects pneumocytes through binding to specific receptors (ACE2 for SARS/SARS-CoV-2, DPP4 for MERS). These coronaviruses repress the

(Continued on next page)
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SARS-CoV-2 is not fully understood, but many viral components have been proved to
participate in the process and help the virus escape the antiviral response. At least eight
proteins in SARS-CoV antagonize IFN and interferon-stimulated gene (ISG) responses
(69), and several proteins have been identified with similar functions in MERS-CoV (70).
NSP14 and NSP10-16 complex can cap viral mRNAs, thus preventing the SARS-CoV
mRNAs from being recognized by MDA5 and IFIT1 (70). The nucleocapsid protein of
SARS-CoV also has an inhibitory effect on IFN induction (71). SARS-CoV ORF3b inhibits
type I IFN by directly interfering in its production and indirectly preventing the
phosphorylation of IRF3 (72). The membrane protein of SARS-CoV represses type I IFN
production by preventing the formation of TRAF3 TANK/TBK1/IKK� complex, while
MERS-CoV M protein is able to inhibit the nuclear translocation of IRF3 and the
activation of type I IFN promoter (72). MERS-CoV ORF4a acts as an IFN suppressor by
binding double-stranded RNA (dsRNA) and subsequently inhibiting MDA5 (73, 74).
Moreover, MERS-CoV ORF4a, ORF4b, ORF5, and membrane protein all have an inhibi-
tory effect on nuclear trafficking of IRF3 and activation of the IFNB promoter (75).
Without adequate type I IFN, the highly pathogenic coronavirus replicates unre-
strainedly to a high titer in the target cell, especially in pneumocytes, which further
amplifies the aberrant inflammatory responses by increased viral PAMPs. The advanced
understanding of the fundamentals of defective IFN production in fatal coronavirus
infection will identify novel therapeutic targets.

NK cell cytotoxicity impairment in response to coronavirus. NK cells can suppress
viral replication by directly killing infected cells via releasing granules that contain
perforin and granzymes or indirectly activating macrophages with phagocytosed mi-
crobes via IFN-� release in the early course of infection (52). In addition, NK cells also
possess an immunoregulatory function of restraining the overactivation and expansion
of cytotoxic T lymphocytes to maintain immunological homeostasis. The role of NK cells
in the highly pathogenic coronavirus clearance has not been fully elucidated. To date,
only a few studies have shown a relationship between NK cell number reduction in the
peripheral blood from SARS patients and the severity of disease (76, 77). Accordingly,
recent data found that severe COVID-19 patients are characterized by depletion and
functional exhaustion of NK cells, especially CD107a� NK cells, perforin� NK cells, and
IFN-�� NK cells, which are possibly induced by the elevated inhibitory receptor NKG2A
(78, 79). An interesting finding is the exhaustion of NK cells recovered during the
convalescent stage after efficacious therapy in some patients.

The factors that trigger the exhaustion of NK cells in critical patients infected with
virulent coronavirus might be classified as genetic or acquired. The genetic factors
related to NK dysfunction in HLH mainly refer to the recessive hereditary defects in
several genes encoding packaging and trafficking components of NK cytolytic granules,
including perforin (PRF1), lysosomal-trafficking regulator (LYST), rab-27A (RAB27A),
Munc 13-4 (UNC13D), syntaxin-binding protein 2 (STXBP2), syntaxin 11 (STX11), and
adaptor-related protein complex 3 subunit beta 1 (AP3B1) in familial HLH. Thus, the
absent granule-mediated cytotoxicity of NK cells and the inability of NK cells to lyse
infected cells and eliminate pathogens do result in an uncontrolled but ineffective
immune response including persistent antigenemia, constant IFN-�-dependent stimu-

FIG 3 Legend (Continued)
induction of type I IFN through inhibiting the nuclear activation and translocation of IRF3, which allows coronavirus to replicate unrestrainedly. Meanwhile,
pneumocytes produce proinflammatory cytokines and chemokines to mediate the recruitment of monocytes and lymphocytes. Usually, NK cells suppress
viral replication by directly killing infected cells via granule or indirectly activating the macrophages via IFN-� in the early phase of infection. However,
unknown genetic or acquired factors cause NK cell cytotoxicity impairment in coronavirus infection. Specialized cross-presenting DCs ingest and process
infected cells and present virus antigen to CD8� T lymphocytes. Functional CD8� CTLs then specifically destroy virus-infected cells through releasing
granule and IFN-�. Antigen or cytokine-induced T cell apoptosis might contribute to the lymphopenia observed in coronavirus infection. Alveolar
macrophages and recruited monocytes accumulate in the lung microvasculature and are activated by persistent virus antigen stimulation, IFN-�, or
oxidized phospholipids. IFN-� binds to IFNGR and subsequently induces the phosphorylation of STAT1 by JAK1/2 to promote the transcription of
IFN-stimulated genes and proinflammatory cytokines/chemokines. Activated macrophages mainly contribute to the cytokine storm and hemophagocy-
tosis, which might cause bone marrow hematopoietic inhibition and pancytopenia, and then lead to the inability of NK cells and cytolytic CD8� T cells
to lyse infected cells in the lung. Activated macrophages also release several toxic mediators inducing pneumocyte and lung endothelial cell apoptosis.
Stimulated by virus particles or cytokines, endothelial cells express cell adhesion molecules and promote leukocyte extravasation.
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lation, and prolonged innate cell and adaptive immune cell interactions. Such repeated
antigen stimulation and presentation, in turn, lead to persistent proliferation and
activation of T cells and excessive production of proinflammatory cytokines, especially
IFN-�, which can stimulate macrophages with a cytokine storm (80). Research has
demonstrated that MAS with rheumatoid disease had the defective NK cell number and
NK cell dysfunction, which are partially due to the rare biallelic protein-encoding or
intronic mutations, even heterozygous variants or functional single nucleotide poly-
morphism (SNP) in fHLH-related genes. Moreover, several fHLH-associated gene vari-
ants were identified in fatal cases of H1N1 influenza virus infection. It cannot be
excluded that some severe COVID-19 patients, especially those without comorbidity or
who are not elderly, possess the genetic susceptibility in NK function-related genes,
which remains to be elucidated, whereas NK functional impairment in most fatal
coronavirus infections might be associated with acquired factors including age, comor-
bidities, viral pathogens, and excessive cytokines. Although a subset of severe corona-
virus infection was reported to occur in youth without comorbidities, most deceased
COVID-19 patients are characterized by aging and underlying diseases, which might
indicate that disease- or age-related intrinsic NK cell impairments contribute to the
uncontrolled immune response. The immunosenescence process is known to be re-
lated to a decrease in the function of innate and adaptive immunity in the elderly (81).
The low proportion of perforin� NK cells in elderly persons leads to the early defect in
cytotoxic activity of NK cells in response to the virus (82). Therefore, aging and
comorbidities are regarded as risk factors for poor outcome in patients with COVID-19.
Evidence has shown that H1N1 influenza virions are capable of inhibiting the cytotox-
icity of NK cells by directly infecting NK cells and inducing their apoptosis (83). It is
unclear whether highly pathogenic coronavirus could enter into and replicate in NK
cells, contributing to their exhaustion. For most MAS patients without causative mu-
tations in cytotoxicity, elevated IL-6 under a hyperinflammatory milieu is thought to
transiently impair NK cell cytotoxic function, which could reverse upon inflammation
suppression. Other cytokines, such as IL-12 or IL-18, are also involved in NK cell
overactivation, inducing cell death or exhaustion (84). These data suggested that the
impairment of NK cell function might be attributed to hypercytokinemia in severe cases
of coronavirus infection.

Two subsets of NK cells are usually described in the peripheral blood. The major
subset is the CD56dim CD16bright population possessing cytolytic activity, whereas the
minor subset is the CD56bright CD16�/dim population responding to inflammatory
cytokines. During viral infection, NK cells express activating receptors for cytokines,
antibody-coated cells, induced-self ligands, and virus-encoded ligands, including IFN-�
receptors, interleukin-12 (IL-12) receptors, IL-18 receptors, CD16, NKG2D, DNAM-1
(CD226), and NKp46/NKp30, which are the surface markers for specific NK cell subsets
(85). The unresolved issue is that the subsets of reduced NK cells in fatal coronavirus
infection need further clarification since most studies assess the numbers and function
of NK cells in COVID-19 patients using CD56 surface marker. The further investigation
of the subsets, activation, and function of NK cells in the peripheral blood or postmor-
tem lung and lymphoid organs might explain dysregulated NK function in fatal
coronavirus infections.

Macrophage activation. As a vital component of the innate immune response,
macrophages engulf pathogens and infected cells and subsequently eliminate them
through respiratory burst. In the meantime, they also secrete cytokines that facilitate
the clearance of pathogens and promote tissue repair. Macrophages are commonly
classified into two subsets: classically activated (M1) and alternatively activated (M2)
macrophages. The former produce proinflammatory cytokines (e.g., IL-1�, IL-6, tumor
necrosis factor alpha [TNF-�]), while the latter secrete anti-inflammatory cytokines (e.g.,
IL-10 and transforming growth factor beta [TGF-�]) (86). Usually, macrophages first
exhibit the M1 phenotype to eliminate pathogens, and then there comes M2, which
suppresses the inflammation and promotes tissue repair. Indeed, multinucleate giant
macrophages are the prominent infiltrating leukocytes in pulmonary alveoli of severe
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SARS and COVID-19 cases (87–89). Also, RNA sequencing analysis found that mononu-
clear phagocyte (MNPs) consisted of 80% of total cells in the bronchoalveolar lavage
fluid (BALF) from severe COVID-19 patients and most MNPs in BALF were monocyte-
derived macrophages instead of alveolar macrophages (89), which indicates a possible
macrophage activation in these patients. In line with the prominent infiltration of
macrophages in the lung, dysregulated macrophage activation, which has been ob-
served during coronavirus infection, is thought to participate in the pathogenesis of
coronavirus-induced disease (90–92). High levels of ferritin and cytokine profiles in sera
of deceased COVID-19 patients similar to those seen in HLH suggest that the hyper-
activation of macrophages was highly involved in the disease progression, which has
been linked to the pathogenesis of HLH. It will be noteworthy to detect the levels of
soluble scavenger receptor (sCD163) and soluble mannose receptor (sCD206) in serum
or the proportion of CD163�/CD206� macrophages in the postmortem lung or lym-
phoid organs, which have been the indicators of macrophage activation observed
in HLH.

Several mechanisms including PAMPs (e.g., virus components) and damage-
associated molecular patterns (DAMPs) (e.g., cytokines, oxidative stress) may participate
in the hyperactivation of macrophages in highly pathogenic coronavirus infection.
Macrophages may not be the target cell for SARS-CoV, since monocyte-derived mac-
rophages and purified monocyte macrophages are only abortively infected by SARS-
CoV (93, 94). However, MERS-CoV replicates in monocyte-derived macrophages, stim-
ulating the expression of tumor necrosis factor alpha (TNF-�), IL-6, IL-12, IFN-�, and
chemokines (CCL2, CCL3, CXCL8, and CXCL10) (95). However, whether macrophages are
the target cell for SARS-CoV-2 remains elusive (92). Immunostaining analysis found that
ACE2-expressing macrophages located in lymph node and spleen contained SARS-
CoV-2 nucleoprotein (96), but this is more likely to be the result of other infected cells
taken up by macrophages rather than direct viral infection, since ACE2 is undetectable
on most tissue-resident macrophages from COVID-19 patients and viral gene expres-
sion had not been observed in peripheral blood mononuclear cells (PBMCs) from
COVID-19 patients (96, 97). Although DC-SIGN and CD147 on the surface of macro-
phages have been suggested to bind to coronavirus and mediate the virus entry (48,
51), there is insufficient evidence to support the direct infection of SARS-CoV-2 into
human macrophages.

Macrophages mainly recognize RNA viruses through PRRs such as Toll-like receptors
(TLRs), retinoic acid-inducible gene I (RIG-I), and MDA5, which subsequently activate
downstream signaling pathway NF-�B and IRF3/7 and promote the production of
proinflammatory cytokines (98). It has been reported that coronavirus components
such as viroporin A, E protein, ORF3 protein, and SARS-CoV ORF8b activate NLRP3
inflammasomes in macrophages (99–101). Stimulating murine macrophages with S
protein of SARS-CoV in vitro induced an NF-�B-dependent production of proinflamma-
tory cytokines (IL-6 and TNF-�) (102). Considering the similarity between SARS-CoV and
SARS-CoV-2, genomic components and proteins of SARS-CoV-2 may also have a similar
function. The hyperactivation of macrophages during coronavirus infection may also be
due to the dysfunctional NK cell and cytotoxic T lymphocyte (CTL) response, which
results in an impaired virus clearance and excessive IFN-� production (103). Persistent
coronavirus stimulation promotes the production of chemokines by pneumocytes and
lung endothelial cells, which enhances the recruitment of monocytes in the lung; in
turn, monocyte-derived macrophages are stimulated by unrestrained virus replication
and secrete a large amount of cytokines. Recently, several studies have identified the
expansion of inflammatory monocytes in the peripheral blood of severe COVID-19
cases (104–106). In addition, IFN-� from dysfunctional NK cells and CTL cells binds the
IFNGR on the surface of macrophages and subsequently facilitates STAT1 phosphory-
lation through JAK1/2, which promote the transcription of IFN-stimulated genes
(CXCL10, CLXL9, and others) and proinflammatory cytokines. Macrophages engulf and
degrade erythrocytes (RBC), leukocytes (WBC), and platelets through either CD163 on
the surface or IFN-�-induced STAT1 activation, which leads to hyperferritinemia and
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high soluble CD163 levels. This is called hemophagocytosis, which has been reported
in the lung tissues from deceased SARS-CoV and COVID-19 patients (107, 108). Inter-
estingly, ferritin’s H-chain also activates macrophage (109, 110). Moreover, the anti-S
protein IgG and oxidized phospholipids (OxPLs) were also suggested to activate
macrophages through Fc� receptors (Fc�Rs) and Toll-like receptor 4 (TLR4)-TRIF sig-
naling, respectively (92, 111). The exact pathways that trigger the hyperactivation of
macrophages are not fully clarified, and further elucidation of other pathways involved
in macrophage activation is necessary to develop potential therapeutics.

Dysregulated Cellular Immune Response to Coronavirus

Most previous studies focused on the innate immune response to SARS-CoV or
MERS-CoV infection. Thus, the role that the adaptive cellular immune response plays in
the host response to these highly pathogenic coronaviruses is largely unexplored. The
cytotoxic T lymphocyte (CTL) is the key component of adaptive cellular immunity in
combating viral infection. During this process, specialized cross-presenting DCs ingest
infected cells in the lung and present the viral antigens to naive CD8� T cells in the
secondary lymphoid organs, resulting in the proliferation and differentiation of CD8�

T cells. Differentiated CD8� CTLs then migrate into the infection site under the
attraction of chemokine CXCL10 and specifically destroy virus-infected cells by releas-
ing perforin and granzymes. Meanwhile, CTLs secrete IFN-� at the site of infiltration,
mediating the activation of macrophages. In addition, CTLs kill the antigen-processing
DCs and limit sustained antigen presentation, thus suppressing the hyperactivation of
T cells.

Clinically, the global lymphopenia is distinctly observed in many SARS, MERS, and
COVID-19 patients, more prominently in fatal cases. However, it is controversial which
kind of T lymphocyte, CD4� or CD8�, has more pronouncedly reduced levels during
coronavirus infection (26, 112–114). The mechanism of lymphopenia in highly patho-
genic coronavirus infection is not known, but there are several possible explanations for
this phenomenon including chemokine-mediated redistribution, virus-induced destruc-
tion, bone marrow suppression, and apoptosis. Considering the antiviral defense role of
CTLs, it is reasonable to deduce that antigen-presenting cell (APC)-activating CTLs are
recruited to the lung and clear the infected cells. Unexpectedly, the lymphocytic
infiltration is scanty in the lung or bronchoalveolar lavage fluid in fatal SARS and
COVID-19 autopsies (89, 107), although CD8� T cells were abundant in the BALF from
mild COVID-19 patients. Due to the lack of autopsy results, the cellular infiltration in the
lungs of MERS patients is not available. These data might exclude the possibility that
chemokine-mediated redistribution led to lymphopenia and also partly explain the
unrestrained viral replication due to lack of CTL infiltration in the lung of severe
coronavirus infection patients. Furthermore, it is unclear whether the direct invasion of
T cells by coronavirus is linked to lymphopenia. In vitro experiments found that
MERS-CoV infected T cells and induced T cell apoptosis through both extrinsic and
intrinsic apoptosis pathways (115). In addition, SARS-CoV-2 was confirmed to abortively
infect T cells by binding to the ACE2 receptor and might cause T cell apoptosis,
although the level of ACE2 on the surface of T cells is low (116). Although there is no
evidence indicating the productive infection of T cells by SARS-CoV, the obvious
apoptosis of lymphocytes in peripheral lymphoid organs (spleen, lymph nodes, and
lymphoid tissues of the gut) was found in deceased SARS or COVID-19 patients (96,
117). Antigen stimulation or cytokine storm might induce the apoptosis of T cells in
secondary lymphoid organs. To date, excessive CXCL10 induced by viral infections has
been found to rapidly recruit activated T lymphocytes, followed by cell apoptosis (117).
Moreover, high levels of TNF-� and IFN-� and a large amount of histiocytosis result in
bone marrow hematopoietic inhibition and pancytopenia (80, 118). Myeloid-derived
suppressor cells (MDSCs) have been recognized to promote the apoptosis of T lym-
phocytes (119). Recent data identified the expansion of MDSCs paralleled by the
decrease of NK cell and T cells in COVID-19 patients, suggesting that the impairment of
cytotoxic function in fatal SARS-CoV-2 infection might be related to MDSCs (78). Further
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exploration to ascertain the triggers of MDSC expansion in SARS-CoV-2 infection may
be necessary.

In addition to the significant decrease in peripheral CD4� and CD8� T cell count, the
cytotoxic activity of CTLs has also been impaired during SARS-CoV-2 infection, as
represented by the decreased proportion of CD107a� and granzyme B� CD8� cells
(79). However, hyperactivation of T cells has been described in COVID-19 cases,
characterized by the increased percentage of CCR4� CCR6� Th17 cells and pathogenic
granulocyte-macrophage colony-stimulating factor-positive (GM-CSF�) IFN-�� Th1
cells in CD4 T cells (105, 120). In parallel, soluble IL-2 receptor (sCD25), a marker for T
cell activation in HLH, was markedly increased in most severe COVID-19 patients (114).
The possible explanation for T cell hyperactivation is likely related to the persistent
antigen stimulation and presentation caused by the exhaustion of NK cells and CTLs.
Regulatory T (Treg) cells might be another potential player in the T cell hyperactivation.
Treg cells have a unique suppressive function in the immune system and prevent
systemic inflammation. Recent data showed that COVID-19 patients have lower num-
bers of regulatory T cells, more pronounced in fatal infection (121). In an HLH mouse
model mimicked by lymphocytic choriomeningitis virus-triggered perforin-deficient
mice, increased IL-2 consumption by highly activated CD8� T cells together with low
IL-2 secretion by conventional CD4� T cells caused a collapse of the Treg cell numbers
and high sCD25 levels (122). Moreover, the patients experiencing HLH flares had low
Treg cell numbers (122). The dysregulation of the IL-2/CD25/Treg cell axis provides a
potential mechanistic explanation for uncontrolled immune response in HLH (123). The
relationship between the overactivation and decline of number or cytolytic function of
CTLs warrants further clarification. Dynamic monitoring and subsets of CD8� T cells
using single-cell RNA sequencing should clarify the critical role of CD8� T cells in the
dysregulated immune response in fatal coronavirus infection.

The role of cellular immune response in human coronavirus infection is also ex-
plored using animal models. Infecting young mice with MA15 virus (a SARS-CoV variant)
induced respiratory disease accompanied by inefficiently activated DCs and a subse-
quently barely detectable antivirus T cell response (124). Depleting CD4� T cells while
preserving CD8� T cells led to enhanced interstitial pneumonitis with delayed viral
clearance, diminished virus-specific antibody, decreased cytokines, and reduced pul-
monary recruitment of lymphocytes in SARS-CoV-infected mice (125). CD8� T cells were
proved to be necessary for MERS-CoV clearance in a mouse model (126, 127). Usually,
elderly individuals present worse outcomes after coronavirus infection. Age-related
increase in prostaglandin D (PGD) expression in the lungs impedes DCs migration,
causing attenuated T cell responses and more severe clinical symptoms in older mice
infected with respiratory viruses. PGD blockade accelerated DC migration, T cell re-
sponses, and survival (128). Details on the expansion, activation, and functions of CD4�

and CD8� T cells would facilitate our understanding of coronavirus pathogenesis. The
relationship between deficient NK cells and CTL functions and the proliferation and
hyperactivation of macrophages and T cells is not fully understood. To date, accumu-
lating evidence indicates that minor genetic predisposition and main acquired defect
associated with the interplay between virus and host immune system converge to a
hyperinflammatory state and death from coronavirus infection.

Cytokine Storm

Cytokine storm, a fatal systemic inflammatory response, refers to the rapid and
massive production of various cytokines after infection or autoimmune disease (129).
This excessive immune response promotes macrophage activation and aggregates the
inflammation, leading to severe pneumonia, multiple organ failure, or even death (6).
The activated macrophages secrete abundant proinflammatory cytokines (IL-1�, IL-6,
IL-18, and TNF-�), CXCL10, ISG, immunoreceptor tyrosine-based activation motif (ITAM),
and TRIF-related adaptor molecule (TRAM), which are thought to be the major sources
accounting for the cytokine storm (68, 86, 89, 92). It has been reported that approxi-
mately 30 kinds of cytokines were significantly increased in COVID-19 patients on
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admission (130). The serum level of IL-1�, IL-1RA, IL-6, IL-7, IL-8, IL-9, IL-10, basic
fibroblast growth factor, granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage CSF (GM-CSF), CXCL10, CCL2, CCL3, IFN-�, TNF-�, and vascular endothelial
growth factor (VEGF) is elevated in COVID-19 patients. Moreover, intensive care unit
(ICU) patients with COVID-19 had higher serum levels of IL-2R, IL-6, IL-7, IL-10,
interferon-inducible protein-10 (IP-10), monocyte chemotactic protein (MCP-1), macro-
phage inflammatory protein-1a (MIP-1A), TNF-�, CCL2, CCL3, and CXCL10 than did
non-ICU patients (26, 114, 131). Various cytokines, including IL-6 and IL-10, IP-10,
MCP-3, and MIP-1�, were implicated with disease severity (130, 132). A similar phe-
nomenon was also observed in SARS-CoV and MERS-CoV infection (Table 5) (133, 134),
indicating that cytokine storm may underlie the pathogenesis of the coronavirus-
induced disease. It is essential to ascertain the role of cytokine storm associated with
coronavirus infection to manage COVID-19 efficiently.

Among proinflammatory cytokines, IL-6 usually released by macrophages was
thought to be heavily involved in cytokine storm in COVID-19 patients (135–137), as
well as in MERS and SARS cases (133, 134). Increased IL-6 performs various pathological
functions that contribute to the development of COVID-19: (i) increasing vascular
permeability directly or via inducing VEGF, resulting in interstitial edema and vascular
leakage (138); (ii) weakening cytotoxicity of NK cells by downmodulating perforin and
granzyme B expression (136, 139); and (iii) triggering monocytes recruitment by
inducing the production of IL-8 and MCP-1 (140).

IFN-� was increased in the sera and BALF of COVID-19 patients (26, 114, 141, 142),
demonstrating the importance of IFN-� in coronavirus infection. IFN-� (type II IFN),
mainly produced by T cells and NK cells, binds the IFNGR on the surface of macro-
phages and subsequently facilitates STAT1 phosphorylation through JAK1/2 promoting
the transcription of IFN-stimulated genes (IP-10/CXCL10 and MIG/CXCL9, among oth-
ers), which contributes to the cytokine storm and hemophagocytosis (143). Intriguingly,
the level of IFN-� is lower in severe COVID-19 patients than in mild or moderate cases
(130, 132). A study showed that a high IL-6/IFN-� ratio was related to disease severity
(144). However, this could be the consequence of a decreased number of IFN-�-
expressing CD4� T cells and CD8� T cells in severe COVID-19 patients (114).

IL-1� and IL-18, members of the IL-1 family, are mainly cleaved and activated by
caspase-1, which is activated by NLRP3 inflammasome upon stimulation of the danger
signals (145). IL-1� is known for its proinflammatory property manifested as fever, pain,

TABLE 5 Comparison of serum levels of cytokines among SARS, MERS, and COVID-19
patientsa

Cytokine

Value for disease (references)

SARS (134, 207–210) MERS (133, 211) COVID-19 (26, 130–132, 150, 212)

IL-1� E/U U E/U
IL-2 E N E
IL-4 E/L N E
IL-6 E E E
IL-8 E N E
IL-10 E N/E E
IL-12 E N E
IL-18 E NR E
TNF-� N/E E E
IFN-� E E E/N
IP-10 N/E E E
MCP-1 E E E
MIP-1A NR NR E
M-CSF NR NR E
G-CSF NR NR E
aAbbreviations: NR, none reported; N, normal; E, elevated; L, lower; U, undetectable; IL, interleukin; TNF-�,
tumor necrosis factor alpha; IFN-�, interferon gamma; IP-10, interferon-inducible protein-10; MCP-1,
monocyte chemotactic protein 1; MIP-1A, macrophage inflammatory protein-1a; M-CSF, macrophage colony-
stimulating factor; G-CSF, granulocyte colony-stimulating factor.
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and vasodilatation, while IL-18 is able to induce IFN-� either with IL-12 or with IL-15 on
CD4� and CD8� T cells and NK cells, which further amplifies the activation of macro-
phages (145). Although a highly similar signal pathway is involved in the production of
IL-1� and IL-18, the levels of IL-1� and IL-18 in the sera and BALF were completely
different. IL-18 in the sera and BALF was significantly upregulated in COVID-19 patients
in different stages, while IL-1� was barely detectable, especially in severe cases (26, 97,
141, 146). However, despite the low level of IL-1�, the transcription of IL-1� and IL-1R1
genes is elevated, indicating a strong response of IL-1� (67). Therefore, more studies are
needed to ascertain whether IL-1� and IL-18 are increased in COVID-19 patients and to
explore the role of the inflammasome in the immunopathogenesis of fatal COVID-19.

TNF-�, a potent inflammatory cytokine, is mainly produced by macrophages/mono-
cytes leading to necrosis or apoptosis (147, 148). TNF-� is detectable in the blood from
COVID-19 patients, and its levels are even higher in severe cases (26, 114, 121, 149).
TNF-� has also been implicated in the severe immune-based pulmonary injury in
SARS-CoV-infected patients (150). Moreover, the S protein of SARS-CoV induced TNF-�
production by modulating TNF-�-converting enzyme (TACE or ADAM17) (151). Rather
than resisting infection, highly expressed TNF-� leads to pathological complications
(152). Most importantly, TNF-� can accentuate T cell apoptosis (153), which partially
explains decreased T cell numbers.

In addition to proinflammatory cytokines, chemokines also play a crucial role in
cytokine storm induced by coronavirus infection. COVID-19 patients have a high serum
level of CXCL10, CCL2, and CCL3 (26, 97, 141). Neutrophil-recruiting attractants (CXCL1,
CXCL2, CXCL8, CXCL10, CCL2, and CCL7) and monocyte attractants (CXCL6, CXCL11,
CCL2, CCL3, CCL4, CCL7, CCL8, and CCL20) were also increased in the BALFs of
COVID-19 patients (141), which is consistent with autopsy findings that monocytes and
macrophages were the prominent infiltrating leukocytes in alveoli of COVID-19 patients
(88, 154). Chemokines expression was also increased in SARS (CCL2, CXCL8/IL-8, CXCL9,
and CXCL10) and MERS (CXCL10, CCL2, and CCL5) patients (65, 112, 155–158). Increased
chemokines promote leukocyte infiltration and further aggravate disease severity,
which is responsible for the development of pulmonary-centric disease in COVID-19
patients.

In summary, although these proinflammatory cytokines could be potential targets
and have already prompted many clinical trials for COVID-19 using cytokine blockades,
there is insufficient evidence for now demonstrating that using anticytokine therapies
(IL-1�, IL-6, IL-18, and TNF-�) to treat COVID-19 patients is effective (159, 160). Blocking
proinflammatory cytokines not only suppresses hyperinflammation but also hinders
virus clearance. Therefore, when and how to use cytokine inhibitors affect patient
outcomes.

Humoral Immune Response to Coronavirus

Adaptive humoral immunity acts through antibodies which can prevent the virus
from binding and invading into cells. The most effective antibodies are high-affinity
antibodies produced in T-dependent germinal center reactions. A limitation of anti-
bodies is that they can work only before virus enters cells. Once viruses enter cells and
begin to replicate intracellularly, they are inaccessible to antibodies (52). Neutralizing
antibodies and immunoglobulin G (IgG) against S protein or N protein of SARS-CoV,
MERS-CoV, and SARS-CoV-2 were present in infected patients during disease course
(161, 162). Among four structural proteins of coronavirus, S protein was identified as
the only active antigen which can induce the production of neutralizing antibodies
(163). A number of virus-specific neutralizing monoclonal antibodies (MAbs) or related
fragments targeted to S protein have been developed in SARS-CoV and MERS-CoV, but
almost none of them have been assessed in clinical trials (164). So far, there are no
available SARS-CoV-2-neutralizing MAbs for human use. It is urgent to figure out
whether SARS-CoV-neutralizing MAbs show potential cross-neutralizing activity against
S protein of SARS-CoV-2 and make it possible to prevent SARS-CoV-2 spread.
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PATHOGENESIS OF ARDS

ARDS, a leading cause of respiratory failure, is theoretically characterized by severe
impairment of gas exchange that may eventually lead to severe progressive hypoxemia,
dyspnea, and impaired carbon dioxide excretion with a PaO2/FiO2 ratio (the ratio of
arterial oxygen partial pressure to fractional inspired oxygen) less than 200 (165). The
clinical features of SARS, MERS, and COVID-19 are markedly similar regardless of their
subtle differences. These coronaviruses predominantly infect lower airways (terminal
bronchus and pulmonary alveoli) and cause fatal pneumonia that may result in ALI and
ARDS with high mortality. Since SARS-CoV-2 is insufficiently researched, the pathogen-
esis of the virus-induced ARDS remains unclear. However, these highly pathogenic
coronaviruses may have a similar mechanism for inducing ARDS (Fig. 3).

Pathology of DAD

Diffuse alveolar damage (DAD), a characteristic pathological hallmark of the acute phase
of ARDS, is roughly divided into two phases: the acute phase with hyaline membrane
formation, acute interstitial inflammation, and edema and the organizing phase with
loosely organized fibrosis and type II pneumocyte hyperplasia (166). DAD has been iden-
tified in SARS, MERS, and COVID-19 patients. Moreover, there is little difference in histo-
pathological changes of DAD among these three different coronavirus infections.

The patients with SARS at the onset of illness generally showed DAD in the acute
phase, including hyaline membrane formation, extensive edema, alveolus collapse, and
pneumocyte desquamation (107, 167). Proliferative or organizing alteration with pro-
gression to fibrosis was present in the lung beyond day 10 (168, 169). Of note,
macrophages are the primary cellular agent instead of neutrophils and fibroblasts in
the alveoli of SARS patients with severe symptoms, even in the early stages of the
disease (107). As for MERS-CoV infection, only one human autopsy is available, and the
main histopathologic feature in the lung is DAD (alveolar fibrin deposits, type 2
pneumocyte hyperplasia, and thickened alveolar septa) accompanied by neutrophils
and macrophage infiltration (170). In patients infected with COVID-19, similar histo-
pathological changes of DAD with mononuclear inflammatory infiltrates were observed
(171). In addition, alveolar septal vascular hyperemia, edema, and intravascular trans-
parent thrombosis indicate the injury of lung endothelial cell (172).

Pneumocyte Injury

Both type I and II pneumocytes are crucial components of the epithelial-endothelial
barrier that help to prevent pulmonary edema by limiting protein and ion transport
(173). Pneumocytes not only participate in gas exchange but also are the target cells for
coronavirus. After entering the alveolus, coronavirus first encounters pneumocytes
which possess receptors for SARS-CoV/MERS-CoV/SARS-CoV-2 (47, 50, 174, 175), and
then these viruses invade the pneumocytes mediated by receptors. The autopsies of
SARS-CoV-infected patients identified the presence of the viral RNA and proteins in
type II pneumocytes. In the aged macaque model of SARS, both types of pneumocytes
were infected by coronaviruses (28, 39). However, SARS-CoV replication was observed
only in primary human type II pneumocytes and not in type I-like cells in vitro (176).
Similarly, MERS-CoV was predominantly located in pneumocytes and epithelial cells of
terminal bronchioles in both patients and human lung tissue culture (95, 170). SARS-
CoV-2 particles were also found in type II pneumocytes and macrophages (172). These
results together suggest that pneumocytes, especially type II pneumocytes, play an
essential role in mediating lung pathology and host susceptibility.

In coronavirus infection, injury to pneumocytes is an essential step in protein-rich
alveolar edema via the destruction of the physical alveolar epithelial layer. The mechanisms
responsible for pneumocytes injury in coronavirus infection are incompletely understood.
However, rapid virus replication and macrophage hyperactivation were found to induce
pneumocyte apoptosis during influenza virus infection. Lung-recruited exudate macro-
phages express and release IFN-�, which contributes to pneumocyte apoptosis by inducing
TNF-related apoptosis inducing ligand (TRAIL) (177–179). Although type I IFN response is
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deficient in coronavirus infection patients, monocyte transepithelial migration and overac-
tivated macrophages together with their products are likely to be the primary cause of
pneumocyte injury in patients with ALI/ARDS induced by coronavirus infection. CCL2-
mediated monocyte transepithelial migration has been shown to increase pneumocytes
and endothelial permeability (180). Macrophage-producing reactive oxygen species (ROS)
modify cellular proteins, lipids, and DNA in pneumocytes, impairing pneumocytes via either
apoptotic or necrotic pathways (181). IFN-� from hyperactivated T cells enhanced chemo-
kine expression on pneumocytes, leading to the recruitment of inflammatory cells into
alveoli and aggravating ALI following influenza virus infection (182, 183). In addition, the
viral RNA genome can lead to cell death. After entering pneumocytes, SARS-CoV open
reading frame 8b (ORF8b) forms insoluble intracellular aggregates that induce the death of
epithelial cells (101). This could be due to the cytotoxicity of abnormal intracellular protein
aggregation.

Since pneumocytes are indispensable in the gas-exchange barrier, the loss of epithelial
cells has a considerable effect on lung architecture. After infection, pneumocytes produce
proinflammatory cytokines and chemokines that can subsequently contribute to DAD (28,
39, 184). The infection of primary human type II pneumocytes with SARS-CoV in vitro
induced markedly elevated levels of the mRNAs encoding type I and type III IFN (39). In
addition, after SARS-CoV infection, type II pneumocytes generate a marked increase in
chemokines (CCL5, CXCL8, CXCL10, and CXCL11) that can promote inflammatory cell
recruitment (28). Infecting human airway epithelial cells with MERS-CoV induced a con-
spicuous but delayed proinflammatory cytokine response manifested as an increase of
IL-1�, IL-6, and IL-8 (185). Among them, IL-1� decreases amiloride-sensitive epithelial
sodium channel (ENaC) expression and activity via the p38 mitogen-activated protein
kinase (MAPK)-dependent signaling pathway (186). Therefore, the osmotic gradient created
by Na� in the interstitium is insufficient to remove water from the alveolar lumen into
alveolar epithelial cells, which may lead to alveolar edema in ALI (173, 187).

Macrophages in Lung

The macrophage is also important in the pathogenesis of ARDS in coronavirus
patients (90–92). As previously mentioned, macrophages are the prominent infiltrating
leukocytes in alveoli of severe SARS and COVID-19 patients, which indicates the
importance of macrophages in the pathogenesis of ARDS during coronavirus infection.
Macrophages in the patient’s lung tissue are potent producers of proinflammatory
cytokines (68, 107). Mice infected with SARS-CoV showed delayed IFN-�/� response
with pathogenic inflammatory monocyte-macrophage (IMM) influx. Signal transducer
and activator of transcription 1 (STAT1) has been identified to regulate the perivascular
infiltration of selectively activated macrophages in the lung and restrain fibrin depo-
sition and alveolar collapse in SARS-CoV-challenged mice (28, 168, 188). These recruited
macrophages produce and release proinflammatory cytokines (TNF-�, IL-6, and IL-1�)
(68). Moreover, under the stimulation of IFN-�/�, accumulated IMMs produce mono-
cyte chemokines such as CCL2, CCL7, and CCL12 (28). These monocyte chemoattrac-
tants promote macrophage infiltration, which further aggravates disease severity.

Lung Endothelial Cell Injury

In the alveoli, endothelial cells are closely apposed to epithelial cells on their
basolateral side and directly contact circulating blood on their apical side (189). Due to
this structure, lung endothelial cells are susceptible to cytokines in blood or alveoli that
may cause lung endothelial cell injury and subsequently contribute to pulmonary
edema and inflammatory cell infiltration.

Damage to lung endothelial cells, which may be the initial cause of DAD in patients
with ALI/ARDS, can occur through several mechanisms. Neutrophils usually play a key
role in endothelial cell injury by releasing several toxic mediators (190, 191). However,
in coronavirus infection, it is macrophages instead of neutrophils that are the major
cause of lung endothelial cell injury. Mechanistically, macrophages accumulated in the
lung become activated and secrete several toxic agents, including proinflammatory
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cytokines (TNF, IL-6, and IL-1�) and ROS, which can promote lung endothelial cell
apoptosis (28, 158, 192, 193). Coronavirus might also trigger endothelial cell death by
direct infection, which damages the gas-exchange barrier. Receptors for SARS-CoV/
MERS-CoV/SARS-CoV-2 are present on endothelial cells. Thus, lung endothelial cells
could be the potential target for coronaviruses (95). Unfortunately, little evidence
suggests the infection of endothelium with coronavirus.

Either directly or indirectly, coronaviruses induce lung endothelial cell injury, which leads
to increased vascular permeability and alveolar edema, ultimately resulting in hypoxia. But
it needs to be noted that lung endothelial injury is usually insufficient to cause pulmonary
edema in the absence of pneumocyte injury (194), which indicates that pneumocyte injury
is more important than endothelial injury in the development of ARDS. In addition,
endothelial cells may promote leukocyte extravasation by expressing adhesion molecules,
which facilitates infiltration of leukocytes, especially macrophages.

CONCLUSIONS

In the 21st century, three highly pathogenic coronaviruses have led to global
emerging respiratory infectious diseases, indicating that these coronaviruses may cause
additional outbreaks in the future. Although the epidemiology, transmission, patho-
genesis, and treatment of these three coronavirus infections remain undiscovered,
virus-induced ARDS is the most common cause of death and results in high mortality.
Several studies provided evidence that DAD is a pathological feature characterized by
the prominent infiltration of multinucleate giant macrophages in coronavirus-induced
ARDS. The various degrees of cytopenia, hypohepatia, abnormal clotting profiles,
hypercytokinemia, hyperferritinemia, and high predisposition of the elderly or those
with comorbid conditions suggest the possible links between fatal coronavirus infec-
tion and secondary HLH. The pathophysiology of HLH remains elusive, but the cross talk
among NK cells, lymphocytes, and macrophages is attracting increasing attention. The
roles of the innate and adaptive cell-mediated immune response to these highly
pathogenic coronaviruses are not entirely understood; however, the defect or delay of
type I IFN response and exhaustion of NK cells and CTLs might lead to persistent
antigenemia, enhanced antigen presentation, and prolonged innate-adaptive immune
cell interactions, which induce the cytokine storms derived from uncontrolled hyper-
activation of T cells and macrophages. Further studies on evaluating cytotoxic lympho-
cyte function, macrophage activation marker, and T cell activation marker and clarifying
the related mechanism are needed to better explain exuberant immune responses in
patients with coronavirus-induced ARDS. ROS, nitric oxide (NO), and cytokines medi-
ated the damage of pneumocytes and lung endothelial cells, contributing to increased
vascular permeability and alveolar edema. Therefore, interventions targeting specific
cytokines to attenuate undesirable inflammatory responses in HLH might be useful
strategies in patients with fatal coronavirus infection in the era of biologic therapy, but
when and how to use cytokine-directed therapeutics remain challenging.
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