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Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization, and protein interaction,

and their conservation across species suggests a common functional role. We computationally screened vertebrate

genomes for conserved RNA structures (CRSs), leveraging structure-based, rather than sequence-based, alignments.

After careful correction for sequence identity and GC content, we predict ∼516,000 human genomic regions con-

taining CRSs. We find that a substantial fraction of human–mouse CRS regions (1) colocalize consistently with binding

sites of the same RNA binding proteins (RBPs) or (2) are transcribed in corresponding tissues. Additionally, a

CaptureSeq experiment revealed expression of many of our CRS regions in human fetal brain, including 662 novel

ones. For selected human and mouse candidate pairs, qRT-PCR and in vitro RNA structure probing supported both

shared expression and shared structure despite low abundance and low sequence identity. About 30,000 CRS regions

are located near coding or long noncoding RNA genes or within enhancers. Structured (CRS overlapping) enhancer

RNAs and extended 3′ ends have significantly increased expression levels over their nonstructured counterparts.

Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated

functionality.

[Supplemental material is available for this article.]

Computational analyses have suggested many conserved struc-
tured RNAs in vertebrate genomes (Washietl et al. 2005; Torarins-
son et al. 2008; Parker et al. 2011; Smith et al. 2013). Recent
transcriptome-wide experiments also support a diverse RNA struc-
ture landscape (Ding et al. 2014; Rouskin et al. 2014; Wan et al.
2014; Aw et al. 2016; Lu et al. 2016; Sharma et al. 2016). These
experiments, however, do not broadly exploit the phylogenetic
context in which functionally important RNAs appear, especially
compensatory base-pair changes. Furthermore, previous com-
putational screens for conserved RNA structures (CRSs) have
focused on sequence-based alignments (Gorodkin et al. 2010),

although structural alignments more sensitively capture evolu-
tionarily CRSs (Wang et al. 2007). While structure is known to
be critical to the biogenesis or function of many noncoding
RNAs (ncRNAs), it remains unclear how ubiquitous a role con-
served structures play. For example, a recent experiment map-
ping RNA duplexes in living human and mouse cells (Lu et al.
2016) reported conserved structured RNA domains in several
long ncRNAs (lncRNAs), including XIST and MALAT1, while
in silico studies based on single sequence folding and sequence-
based alignments (Managadze et al. 2011) have indicated that
RNA secondary structures are depleted in lncRNAs (Ulitsky and
Bartel 2013). The low sequence conservation of most lncRNAs,
while complicating identification of CRSs, does not preclude
their existence, such as in telomerase RNA (structurally similar
across vertebrates despite human–mouse sequence identity [SI]
of ∼60%).
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Given these difficulties in detecting conserved structures, the
accuracy of computational screening methods is a prime concern.
Here, we present a carefully designed discovery pipeline and a sig-
nificantly improved scoring scheme, with careful control for tech-
nical factors such as dinucleotide composition and GC content,
with the goal of reducing the false-discovery rate (FDR) of the pre-
dicted CRSs.

Regulatory features of RNA structures have been extensively
studied in bacteria (Waters and Storz 2009), but the vast landscape
of RNA regulatory elements in vertebrates remains largely unchar-
acterized. Conservation, structural or otherwise, typically implies
function but does not tell us what function. RNA structures are
known to be involved in gene regulation through transcript stabi-
lization (Goodarzi et al. 2012), interaction with RNA binding pro-
teins (RBPs) (Ray et al. 2013), and other processes. While most
RBPs contain a few RNA binding domains, the contextual features
that regulate RBP binding are often of limited sequence specificity
and are not well known. Some RBPs specifically bind double-
stranded RNAs (dsRBPs); examples include DGCR8 and DICER1,
important in siRNA and microRNA biogenesis (Macias et al.
2012; Rybak-Wolf et al. 2014), and STAU1 in regulated RNA decay
(Kim et al. 2005). Other RBPs bind unpaired nucleotides exposed
in loops and additional secondary structure elements (Lunde
et al. 2007).

The complexity of the vertebrate transcriptome had been
underestimated for decades, but the advent of high-throughput
sequencing has enabled the identification of many new tran-
scripts. For example, expression upstream of promoters (Seila
et al. 2008; Preker et al. 2011) and RNAs transcribed from en-
hancers (eRNAs) (Andersson et al. 2014a; Arner et al. 2015)
have recently been recognized to be common, but are often
viewed as transcriptional by-products at accessible genomic sites,
especially because of generally rapid degradation by the nuclear
exosome (Almada et al. 2013; Jensen et al. 2013; Ntini et al.
2013). However, experimental data increasingly suggest func-
tional roles for these transcripts (Di Giammartino et al. 2011;
Rinn and Chang 2012; Li et al. 2013). As another example,
the majority of human genes are alternatively cleaved and poly-
adenylated, and these alternative isoforms differ in their stability,
localization, and translational efficiency (Elkon et al. 2013).
Many regulatory elements are located in untranslated regions of
mRNAs (UTRs) and recognized by RBPs (Berkovits and Mayr
2015). Many are structured, as indicated by the large repertoire
of RNA structure families in Rfam (Nawrocki et al. 2015). The
structures themselves might even affect alternative polyadenyla-
tion and stability (Di Giammartino et al. 2011) or coexist in
downstream independent transcripts, because RNA polymerase
II does not cease transcription at the poly(A) site (Glover-Cutter
et al. 2008).

In short, many noncoding genomic regions, including gene
regulatory regions, are transcribed and may host functionally im-
portant structures, but their superficial lack of sequence conserva-
tion might systematically bias against discovery of RNA
structures, thus motivating our main aim: genome-wide explora-
tion of CRSs based on structure-aware multispecies alignments. To
assess our in silico CRS predictions, we present extensive correla-
tions with public and novel experimental data in two directions.
The first assesses the accuracy of our computational predictions.
For example, we used RNA structure probing experiments to test
our predictions of structure conservation between human and
mouse and used RNA-seq and RT-qPCR to test human–mouse
coexpression. A second direction assesses potential CRS roles in

specific functions, for example, RBP interactions and enhancer
activity.

Results

Identification of CRSs by local structural alignments

To identify CRSs, we extracted sequences from MULTIZ align-
ments (MAs) from 17 vertebrates (hg18) (Blanchette et al. 2004),
collectively corresponding to ∼50% of the human genome
(Methods). RNA structure predictions weremade in these putative-
ly orthologous sequence sets by CMfinder, which locally and
structurally aligns a set of unaligned sequences, discarding appar-
ently irrelevant ones (Yao et al. 2006). CMfinder is not constrained
by the initial sequence-based alignment or by predefined window
sizes. It has been broadly successful, e.g., aiding in the discovery of
large bacterial ncRNAs (Weinberg et al. 2009) and of numerous ri-
bozymes and riboswitches (Weinberg et al. 2007). Predictions from
the 17-species analysis were extended to the 100-species tree
(hg38) (Methods).

We predicted 773,850 CRSs (pscore≥ 50; Methods) covering
515,506 CRS regions (genomic regions of overlapping CRSs). We
estimated ourCRS FDR to be 14.1 ± 5.1%within themost common
GC-content range of 20%–65% (using a dinucleotide controlled
and GC-content-corrected phylogenetic null model) (Supplemen-
tal Methods), while the top 20% of CRSs ranked by pscore have an
estimated FDR < 10% (Fig. 1A; Supplemental Fig. S1). A GC-con-
tent-specific FDR is important because GC contents vary strongly
among CRSs and across different biotypes (genomic locations of
similar characteristics) (Fig. 1B).

Seventy-two percent of CMfinder-predicted base pairs agree
with an independent in vivo biological assessment by genome-
wide structure probing (Rouskin et al. 2014) (Methods). The even
higher agreement between our in silico predictions and their in vi-
tro data (Supplemental Fig. S2) further supports our methodology;
neither in siliconor in vitro considers the cellular environment, in-
cluding protein binding.

Predicted CRSs average 71 ± 46 bp in length and cover 36.5
million bases (∼2.6%) of the human input sequence. On average,
they are conserved in 45 ± 19 species of the 100-species tree (Fig.
1F,I) with deeper conservation in sncRNAs andmRNAs (coding se-
quences [CDS]). CRSs regions are mostly intronic or intergenic
(Fig. 1D; annotation sources are listed in Supplemental Material)
and are enriched for small ncRNAs (sncRNAs; including 230
precursor-microRNAs and 199 snoRNAs) and UTRs (Fig. 1C;
Supplemental Table S1). They overlap 36% of the 1067 structured
(base pair content >30%) Rfam (Burge et al. 2013) input sequences,
comprising mostly sncRNAs and cis-regulatory structures in
UTRs. The majority of lncRNAs lack CRSs (Fig. 1C; Supplemental
Fig. S3), consistent with previous observations (Ulitsky and
Bartel 2013). Nonetheless, in addition to known examples such
as tRNA-like structures in MALAT1 and NEAT1 (Supplemental
Fig. S4; Zhang et al. 2014), many lncRNAs host CRSs, including
22% of screened lncRNAs annotated in GENCODE v25 (Harrow
et al. 2012), 19% of lncRNAs annotated from RNA-seq data
(PLAR) (Hezroni et al. 2015), 31% of anti-sense ncRNAs, and
30% of processed pseudogenes. Within lncRNAs, CRS density
decreases from 5′ to 3′ (Fig. 1E). A small number of CRSs (13,535)
outside annotated coding sequences (GENCODE) hold coding
potential according to PhyloCSF (Lin et al. 2011). Although
167,000 CRSs (21.6%) overlap repeats flagged by RepeatMasker
v4.0.5 or TandemRepeatFinder v4.0.4 (Smit et al. 2013), almost
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all repeat families are depleted of CRSs (Supplemental Table
S2). SINE, LINE, and simple repeats comprise the majority of
CRS/repeat overlaps, including 1572 CRSs that overlap Alu
elements.

Evolutionary constraints on RNA structure do not necessarily
coincide with evolutionary constraints on sequence. In particular,
∼50% of CRSs fall outside of conserved elements identified by
phastCons (Siepel et al. 2005) in the 100-species alignment, and
CRS regions of low SI showed a higher degree of realignment
when structure was taken into account (Fig. 1G,H). CRS regions

within annotated coding sequences, UTRs, or targets of RNA-
and DNA-binding proteins (e.g., transcription factor [TF] binding
sites) generally show higher SI and less realignment. In contrast,
intronic CRS regions and ones within 2 kb upstream (“5′ exten-
sion”) or within 2 kb downstream (“3′ extension”) to mRNAs
and lncRNAs showed lower SI and significantly more realignment
(P < 10−6, t-test) (Fig. 1G,H). Expression extending beyond
annotated UTRs and lncRNAs was repeatedly observed in tran-
scriptomic data, which is addressed below. Lower SI in gene exten-
sions (∼64% SI) may indicate faster adaptation of these RNA

Figure 1. Performance assessment, genomic distribution, and conservation of CRS predictions. (A) Mean FDR of CRSs for different CMfinder score
(pscore) cutoffs and GC-content intervals. FDR calculation is based on SISSIz (Gesell and Washietl 2008) simulated alignments. The large decrease in
FDR observed between pscore cutoff 40 and 50 motivated us to base all further analyses on pscore≥ 50. The mean FDR covering all ranges of GC content
is 15.8. (B) GC content of CRS region alignments. (C ) Fold enrichment of CRS regions for biotypes and previous computational RNA structure screens in
vertebrates (blue). (D) Absolute CRS region coverage of biotypes. (E) Relative position of CRS regions over noncoding biotypes presented as fold enrich-
ment of CRS regions in bins, each 5% (considering only exons) of the feature’s (UTR or gene) length. The trend of decreasing number of structures from 5′
to 3′ is common to 5′ UTRs and lncRNAs. (F) Number of CRSs conserved in the 100-species tree. (G) Average pairwise sequence identity (SI) of CRS region
alignments over the 17 representative genomes in the phylogenetic tree. (H) Realignment (calculated as in Torarinsson et al. 2008) compares the 17-spe-
ciesMULTIZ alignment blocks (hg18) to corresponding structure-based alignments of CRS regions (17-way subalignments extracted fromour 100-species/
hg38 results, as described inMethods). (I) Species number of CRS region alignments. In B,G, and I, the CRSs of highest GC content, SI and species number,
respectively, are used as representatives of a CRS region, and in H the CRSs of lowest realignment are used as representatives. The biotypes inG, H, and I are
sorted by their median SI.

Structured RNAs and transcribed regulatory regions
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structures to novel functions than those in either lncRNAs (∼66%
SI) or mRNAs (CDSs and UTRs ∼70% SI).

Purifying selection

Despite their somewhat low SI, CRSs show signatures of purifying
selection. First, nucleotide distances between primates and rodents
are lower in CRSs than in nearby ancestral repeats (ARs) or inter-
genic loci (P < 10−12, two-sided Kolmogorov-Smirnov test)
(Supplemental Fig. S5A,B). Nucleotide substitution patterns for
∼62% of the 26,000 CRSs with orthologs and appropriate nearby
control sequences are improbable under neutralist models
(Methods). Second, CRSs are enriched within DNA that has been
subject to purifying selection with respect to indels (Lunter et al.
2006) (P < 10−10, one-sided Z-test, Benjamini-Hochberg [BH] cor-
rected; Supplemental Fig. S5D). Third, theminor allele frequencies
(MAFs) in a large human population (The 1000 Genomes Project
Consortium 2015) of 271,000 CRSs≥ 2 kb away from known
mRNAs are significantly lower than in regions 5 to 10 kb up- and
downstream (P < 10−16, Mann–Whitney U test) (Supplemental
Methods).

Colocalization between CRSs and conserved RBP

binding sites

RNA targets from in vivo CLIP experiments for 67 human RBPs
overlap 102,000 CRS regions (Methods), which correlates with
CRS enrichment for binding sites of 76% of human RBPs after
stratifying for GC content and SI (P < 10−10, one-sided Z-test,
BH-corrected). For most RBPs, CRSs were enriched around binding
sites in regions having GC content >40% or high SI (Supplemental
Fig. S6). For some RBPs, CRSs were also enriched in low SI regions.
Examples include the IGF2 mRNA binding protein family
(IGF2BPs), whose three mammalian paralogs contain two RRM
and four KH domains, all putatively involved in RNA binding
with limited sequence specificity. Human–mouse conserved
CRSs associated to IGF2BP2 binding in human also showed RNA
binding in mouse, supporting their functional roles in binding

site recognition. More generally, seven of 10 studied RBP ortho-
logs in mouse (Methods), including IGF2BP2, are enriched for
binding sites overlapped by CRSs both in human and mouse (P
< 10−7, Fisher’s exact test [FET]) (Fig. 2A). Alternative splicing is
an example of RBP recruitment modulated by the kinetics and
thermodynamics of RNA structure (Raker et al. 2009), and in
our study, the binding sites for the splicing factors RBFOX2,
HNRNPA1, and PTBP1 were enriched for CRSs near splice sites
(P < 0.001, FET).

Conserved expression in human and mouse

Cross-species conserved transcriptional activity of CRSs can imply
conserved biological function. We selected closely matched hu-
man/mouse RNA-seq samples from 10 tissues (Supplemental
Methods; Supplemental Table S8). In both species, the highest ex-
pression levels of CRSs occurred within exons of mRNAs and
lncRNAs (Supplemental Fig. S7). Using an empirical P-value calcu-
lated frombackground expression (Methods), conserved transcrip-
tional activity (P < 0.01) was supported for ∼36% of the shared
human–mouse CRSs having concordant biotypes in both species
(Fig. 2B). This was dominated by CRSs of mRNAs and introns
(∼50%), but CRSs within enhancers, 5′ extensions, 3′ extensions,
and lncRNAs were also well represented (>20% of shared CRSs of
each biotype were coexpressed). This overlap in expression re-
mains evident in individual tissues; e.g., among CRSs expressed
in at least two tissues in both species, 23% showed strongly corre-
lated expression (Pearson’s correlation r≥ 0.8), including 164 from
lncRNAs, 788 from enhancers, and 780 intergenic CRSs (Methods)
(Fig. 2C; Supplemental Fig. S7G). Despite relatively small numbers,
CRSs within mRNAs, lncRNAs, sncRNAs, and 5′ and 3′ extensions
have significantly larger cross-species coexpression than back-
ground (P < 0.05, one-sided Mann–Whitney U test, BH-corrected).
For example, the lncRNA MIR22HG, hosting several CRS regions
in addition to the microRNA MIR22, is expressed in all tissues
considered here, and the noncoding testis development related 1
(TDRG1), exclusively expressed in testis of both human and

Figure 2. Human and mouse conservation of CRS regions is reflected by binding sites of RBPs and expression. (A) Seven of 10 RBPs display enrichment
of CRSs in conserved binding sites (P < 10−7, FET). Significant enrichments are colored dark blue; light blue were not significant. (B) A relatively large
number of CRSs (146,670) are expressed in both human and mouse (red bars) over four tissues (heart, liver, diencephalon/forebrain, and cerebellum/
hindbrain) with comparable total RNA-seq data (Methods). In total, 157,136 CRSs are expressed in both human and mouse in total RNA-seq or poly(A)
RNA-seq (Supplemental Fig. S7). CRSs with an empirical P-value < 0.01 were assigned an “expressed” state. We considered only 433,327 of 543,390
human–mouse conserved CRSs that have the same biotype in both species. Note that “5′ extension” and “3′ extension” refer to 2-kb regions upstream
of and downstream from UTRs and lncRNAs; UTRs themselves are included in “mRNA.” (C) Expression correlation between human and mouse for dif-
ferent biotypes was measured by Pearson’s correlation coefficient r of expression levels in poly(A) RNA-seq (six tissues: testis, liver, kidney, heart, cer-
ebellum, and brain). “Background” is sampled over the input MA blocks with human–mouse conservation not overlapping the other biotypes. The
number on the left of violin plots is total number of measured CRSs with expression in at least two tissues, and the number on the right side is number
of CRSs with r > 0.8.
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mouse, has a large CRS region of low SI (∼60%) extending beyond
its annotated 3′ end.

A CaptureSeq experiment detects weakly expressed

structured RNAs

Almost 50% of the CRS regions overlap with abundant transcrip-
tion in publicly available total RNA-seq and poly(A) RNA-seq
from 16 and 19 human tissues, respectively (empirical P-value <
0.01 and normalized count per million reads (CPM/RLE) >1 in
≥2 tissues; Methods). In standard RNA-seq experiments, however,
weakly expressed transcripts are undetectable or indistinguishable
from nonspecific transcription (Lin et al. 2014). To improve detec-
tion sensitivity,we designed capture probes for 77,320CRS regions
(Methods, Supplemental Methods) and coupled the capture with
an RNA-seq experiment (CaptureSeq). In Figure 3A (and Supple-
mental Fig. S8), we observe good agreement between the expres-
sion of the captured CRS regions and publicly available data. In
human fetal brain alone, 8385 CRS regions were significantly ex-
pressed (P < 0.1; Methods, Supplemental Methods), including
662 transcripts that were previously not detected in brain (less
than one CPM/RLE; Methods). The majority of these CRS regions
are located in UTRs or UTR extensions, another 115 CRS regions

fall in intergenic regions, 205 in lncRNAs and 50 in sncRNAs.
Many of these regions (1475) are weakly conserved in sequence
(SI < 60%). Examples include human–mouse CRSs that overlap
the known conserved stem loop in exon 4 of XIST (Fang et al.
2015), the highly structured telomerase RNA element, the brain-
specific MIR9-2 host gene LINC00461, and the SH3RF3 anti-sense
RNA 1 (SH3RF3-AS1).

qRT-PCR shows correlated expression profiles

in human and mouse

To further explore conserved expression between human and
mouse presented above, we compared the expression of selected
CRSs across seven tissues in both species via qRT-PCR. We studied
23 CRS regions of low to medium SI and with weak expression in
publicly available brain samples (Methods) covering five novel
transcripts, five transcripts close to annotatedmRNAs, eight recent-
ly annotated extensions of UTRs, and five lncRNAs (Supplemental
Table S3). These regions were detected in at least 80% of the
examined tissues despite low expression levels, and nine CRS re-
gions showed strong coexpression between human and mouse
(Pearson’s correlation r > 0.8) (Fig. 3B). For example, Figure 3C
shows a structure conserved in 59 species with SI of 75% that was

Figure 3. CaptureSeq and qRT-PCR show conserved expression of CRSs. (A) ROC curve of CRS region detection in brain based on public poly(A) RNA-seq
defined by different CPM/RLE cutoffs (numbers on the curves) using the CRS region detection through CaptureSeq in fetal brain as the gold standard. (B)
Expression profiles of 23 CRS regions were measured with qRT-PCR (normalized by CRS regions) in seven tissues in both human and mouse. The CRS re-
gions have weakly conserved primary sequences and were expressed in the CaptureSeq (P < 0.1). The CRS regions are sorted by decreasing Pearson’s cor-
relation coefficients of expression profiles between human and mouse. (C) The CRS region C3381920 is located in the 3′ end of the lncRNA AC07304.25.
Despite no expression in brain in publicly available total and poly(A) RNA-seq data, it showed up in human brain in both CaptureSeq and qRT-PCR.
Common expression in human and mouse was observed in the gastrointestinal tract (small intestine and colon; see B). Region C3381920 contains the
CRS M0653745 whose structure is highly conserved between human and mouse. Color code in human and mouse structures is base-pair probabilities
calculated by the Vienna RNA package (Lorenz et al. 2011).
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predicted in the tissue-specific lncRNA AC073046.25. Thus, our
CaptureSeq strategy identified (and qRT-PCR partially validated)
conserved expression profiles of CRSs with low abundance and
low sequence conservation, leading to putative functional genes.

Structure probing shows CRSs in human and mouse

To investigatewhetherCRSs of low SIwere indeed structurally con-
served, we performed RNA structure probing (Methods) of homol-
ogous human and mouse sequences of 10 CRSs, selected based on
their low FDR (∼10%), low SI, and qRT-PCR–validated coexpres-
sion in human and mouse brain. In vitro transcription yielded
four CRS pairs suitable for structure probing as determined by na-
tive gel electrophoresis (Supplemental Table S4). In all four cases,
there was strong consistency between the predicted structures
and the experimental analyses (Fig. 4; Supplemental Fig. S9). The
CRSs originated from the 3′ end of the brain-specific mRNA
KCNG2, the short 5′ UTR of brain-specific EOMES, lncRNA
MIR4697HG (the hostedmicroRNAwas not probed), and CRS can-
didate M1695693, found downstream from the annotated 3′ end
of HOMER2 (a postsynaptic density scaffolding protein). Poly(A)
signals from RNA-seq (Gruber et al. 2016) supported an extended
3′ UTR of HOMER2 covering the CRS region (Fig. 4A). Despite
45% SI between human and mouse, the probing showed that
the twodissimilar sequences can fold into closely related structures
largely in agreement with the structural alignment (Fig. 4B,C).

RNA structures are enriched within gene regulatory regions

A substantial fraction (∼40%) of the 433,000 intergenic and
intronic CRS regions are located at TF binding sites, DNase hyper-
sensitive sites (DHSs), or loci exhibiting promoter- and enhancer-
specific chromatin marks, all suggesting regulatory activities. This
prompted a more detailed analysis of the approximately 30,000
CRS regions found within (1) 1 kb of enhancers, (2) 5′ extensions,
or (3) 3′ extensions of mRNAs and lncRNAs, collectively called
gene regulatory regions here. We attempted to control for several
potential confounding factors in these regions; e.g., their compar-
atively rapid evolution (lower SI than other CRSs (P < 10−7, two-
sided Mann–Whitney U test) (Fig. 1G) complicates the use of
phylogeneticmeasures (Ponting 2008), and the significantly high-
er GC content compared to other CRSs (P < 10−78, two-sided
Mann–Whitney U test) makes GC content correction especially
important. Since approximately half of these CRSs colocalize
with TF binding sites, we considered, but ruled out, the possibility
that palindromic DNA sequences of TF binding sites might give
rise to spuriousCRS predictions (Supplemental Fig. S10). Our study
nonetheless reveals not only structure conservation in these gene
regulatory regions but also shows CRSs to be sharply enriched (Fig.
5A,E,I; Supplemental Table S5), even after allowing for a slightly
higher GC-content-corrected FDR for predictions around TSSs
(Fig. 5E, lower subpanel).

To further preclude false signal fromDNAmotifs unrelated to
RNA structure, we analyzed in greater detail the subset of CRSs lo-
cated near experimentally determined but unannotated transcript
boundaries (TSSs and poly(A) sites). By using DHSs, CAGE mea-
sured TSSs, and characteristic chromatinmarks (Methods) (Supple-
mental Fig. S11), we found 10,110 enhancer transcripts of which
2862 contained CRSs (with >50% of their length downstream
from the TSS) (fold enrichment FE = 1.67, Z-test P < 10−185) (Fig.
5A). Figure 6A shows two putative eRNAs in a structured intergenic
region of low SI between two protein-coding genes involved in glu-
cose metabolism. We also found 1077 mRNAs and 129 lncRNAs

with transcripts upstream of and anti-sense to their annotated
TSS, of which 337 contained CRSs (FE = 1.83, Z-test P < 10−40)
(Fig. 5E). However, upstream sense TSSs (≤1300 bp from annotated
TSSs) (Supplemental Fig. S11) for a considerably larger number of
mRNAs (2530) and lncRNAs (519) plausibly reflect alternative
TSSs (unannotated in GENCODE), and 24% of these 5′ extensions
contained CRSs. In four instances, the CRS region overlapped pre-
miRNAs (MIR320A, MIR34B, MIR219A1, MIR4665), suggesting ex-
ploitation of TSS upstream transcripts (of either orientation) to co-
regulate multiple components of specific pathways. For example,
MIR320A is transcribed anti-sense to and located in the promoter
region of POLR3D and regulates TFs of POLR3D (Fig. 6B; Kim
et al. 2008). Figure 6C shows a bidirectionally transcribed locus
of unknown function at the promoter of a lncRNA. Active poly(A)
site data (Gruber et al. 2016) revealed 2885 mRNAs and 1260
lncRNAs with an alternative poly(A) site between 50 bp and 2 kb
downstream from the most distal GENCODE annotated 3′ end.
Of these, 543mRNAs and 203 lncRNAs had a predictedCRSwithin
their 3′ extension, reflecting a modest FE of CRSs in the mRNA ex-
tensions (FE = 1.15, Z-test P = 0.0001) (Fig. 5I). An example is CRS
M1695693, which is likely linked to HOMER2 as discussed above
and in Figure 4. In all three regulatory regions, we saw higher den-
sity of CRSs in loci supported by experimentally defined transcript
boundaries (Fig. 5A,E,I, “transcribed” curve).

CRSs impact transcription of enhancers and 3′ extensions

We then explored whether the observed enrichment of predicted
CRSs in regulatory regions can be linked to transcription, focusing
on regions with experimentally defined transcript boundaries.
Note, however, that regulatory programs are highly tissue specific,
emphasizing that our conservative candidate list may only repre-
sent a subset of the transcriptomic landscape. Specifically, we ex-
amined total RNA-seq and poly(A) RNA-seq of 19 and 16 tissues,
respectively (Methods). For (1) transcription around enhancers,
(2) TSS-upstream transcription, and (3) transcription of 3′ exten-
sions, CRS-overlapping (“structured”) transcripts show signifi-
cantly higher expression levels in all tested tissues compared
unstructured ones (P < 0.001, one-sided Mann–Whitney U test,
BH-corrected) (Fig. 5B,F,J). However, we also observed that GC
content and SI were increased in structured versus unstructured
transcribed regions (Fig. 5C,G,K; Supplemental Fig. S12). To ac-
count for this potential confounder, we ran enrichment tests for
different ranges of GC content and phastCons score and observed
the following (P < 0.05, one-sided Mann–Whitney U test, BH-cor-
rected) (Supplemental Table S6): Expression of eRNAs and 3′ exten-
sions overlapping CRSs with GC content between 25% and 75% is
significantly increased in most tissues, whereas TSS-upstream
(sense and anti-sense) transcription is rarely linked to CRS overlap.
The data show that conserved structure predictions add significant
information for distinguishing transcriptionally active regulatory
sites from silent ones despite the impact of GC content and se-
quence conservation.

The positive correlation of CRSs and expression might be
due to enhanced transcription and/or increased stability (slower
degradation). To disambiguate these alternatives, we examined
CAGE data for transcription initiation at DHSs in control versus
exosome-depleted HeLa cells (Andersson et al. 2014b). Defining
“stability” based on the change of expression level after exosome
depletion (Methods), we find that stable eRNAs of preferentially
unidirectional transcription were enriched for transcripts con-
taining CRS regions (P = 0.002, FET, BH-corrected) (Fig. 5D). (We
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cannot rule out some impact of GC content and sequence conser-
vation since the small sample size precludes GC-content-specific
enrichment tests.) An example of a unidirectional stable eRNA is

depicted in Figure 6D. The relationship between transcript stability
and CRS presence in eRNAs may point to RNA structure alone as a
contributor to stability, but the association of CRSs to stable TSS-

Figure 4. In vitro RNA structure probing in human and mouse shows conserved structure of CRS M1695693. FDR is 11.0% and SI of the nine-species
(filtered from the 17-species tree) structural alignment is 48% (45% between human and mouse). The CRS is located between the 3′ UTRs of HOMER2
(minus strand) andWHAMM (plus strand; Chr 15: 8284671–82846804). It overlaps a DNase hypersensitive site (DHS) (ENCODE) and has the typical chro-
matin signatures of enhancers, namely, enrichment of H3K4me1 and reduced enrichment of H3K4me3, all indicators for a transcribed regulatory region.
However, CAGE data from FANTOM5 did not support this hypothesis; instead, poly(A) site clusters (Gruber et al. 2016) suggest an extended 3′ UTR of
HOMER2. (A) Genomic tracks. (B) Structure probing results in human and mouse, where red marks base-paired nucleotides (ds), and green and blue
mark single-stranded nucleotides (ss). (C) CMfinder’s structural alignment, predicted consensus RNA secondary structure, and predicted individual struc-
tures in human and mouse as dot-bracket notation. The probing results are overlapped with the in silico predictions by their color code.
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upstream transcripts was not significant (Fig. 5H), implying that
structure per se does not confer a stability advantage. We also
note that thousands of CRS regions overlap RBP binding sites in
promoter and enhancer regions (Supplemental Fig. S13), raising
the possibility that CRSs mediate transcript stability by protein
recruitment.

Discussion

Although the RNA structure landscape is recognized as an impor-
tant feature of the transcriptome, a global analysis of its functional
impact in vertebrates is still missing. In our study, we present a
comprehensive screen for CRSs based on local structural align-
ments of human and other vertebrate genomes. In general and
in agreement with observations by Torarinsson et al. (2008), our
approach substantially realigned many sets of orthologous se-
quences, exposing well-defined structures with lower SI than the

input, but phylogenetically broader scope than was visible using
earlier purely sequence-based approaches. Of the 774,000 CRSs
covering 516,000 contiguous genomic regions, 276,000 showed
an average pairwise SI below 60% over the 17 representative ge-
nomes in the phylogenetic tree. The CRSs were enriched in a spec-
trum of known functional elements, supporting their global
functional importance. Clustering CRSsmay help identify and dis-
sect common RNA structures shared across multiple classes of
RNAs (Parker et al. 2011; Miladi et al. 2017) that may have com-
mon functionality, such as specific protein–RNA binding sites.

Most CRSs may be weakly or narrowly expressed, hence not
easily detectable by ordinary transcriptome-wide RNA-seq. We de-
signed a custom capture chip to study them further and found
8385 CRS regions expressed in human fetal brain of which 662
were not in the publicly available brain data sets thatwe examined.
The qRT-PCR and in vitro structure probing in human and mouse
of a small but diverse subset of CRS regions revealed tissue-specific

Figure 5. Coverage and expression of CRS regions in gene regulatory regions. The figure’s three rows describe regions surrounding (1) enhancers (A–D),
(2) most distal TSS of mRNAs/lncRNAs (E–H), and (3) most distal 3′ end of mRNAs/lncRNAs (I–K ), respectively. (A,E,I ) Plot density of CRS regions near those
features: counts in 50-bp windows normalized by the number of features. “Predicted” curves (orange) reflect all CRS regions; “transcribed” curves (blue)
reflect the subset supported by unannotated transcription boundaries. Lower subpanels show estimated FDRs (mean, SD) of those predictions. All other
panels are based on the “transcribed” subset; for details, see Methods section “Definition of Gene Regulatory Regions” and Supplemental Figure S11.
In summary, expression is based on the following: (B,C) CAGE TSS near enhancers, (F,G) CAGE TSS upstream anti-sense w.r.t. mRNA/lncRNA, and (J,K )
active poly(A) sites downstream sense w.r.t. mRNA/lncRNA. “Structured”/“CRS” denote regions that overlap CRSs; “unstructured”/“no CRS” do not.
(B,C,F,G) Total RNA-seq in fetal human cerebellum (technical replicate two of experiment ENCSR000AEW; ENCODE Phase 3). (J,K) Poly(A) RNA-seq of hu-
man brain (HBM). (B,F,J) Expression levels are in counts per million after cross-experiment relative log expression normalization (CPM/RLE). (C,G,K ) GC
content and phastCons (from 100-species MULTIZ alignments) of expressed structured (CRS) versus unstructured regions (no CRS). Expressed regions
were defined by empirical P-value < 0.01 and CPM/RLE≥ 1. (D,H) Transcript stability at ENCODE HeLa DHSs, as described in Andersson et al. (2014b),
and GC content of structured (CRS) and unstructured regions (no CRS). Odds ratios quantify how strongly stability is associated with CRS overlap.
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expression profiles and conserved secondary structures. These
results support both our in silico predictions and CaptureSeq
strategy for de novo discovery of structured RNA. Overall, our
CaptureSeq detected expression for >10% of the approximately
77,000 probed CRS regions, of which ∼1% were novel expressed
CRSs in just a single tissue, human fetal brain, demonstrating
the concept. Our CaptureSeq strategy aims to detect novel RNAs
on a transcriptome-wide scale. Similar approaches that tile entire
genes (Mercer et al. 2014) are nicely complementary, as subse-
quent tiling around newly discovered expressed CRSs would
meaningfully extend our knowledge about these transcripts.

We found CRS regions to significantly overlap functional
elements, such as binding sites for RBPs (102,000), eRNAs
(15,000), extended 3′ ends (8000), and extended 5′ ends (8000).
Widespread enhancer- and TSS-upstream-anti-sense transcription
are a still-recent observation from high-throughput sequencing;
whether these transcripts have functional roles or are just noise
remains controversial. Sometimes these transcripts produce
lncRNAs that may contribute to the regulatory function of the ge-
nomic site (Rinn and Chang 2012). One crucial role of bidirection-
ally transcribed promoters and enhancers may be in transcript
stabilization (Goodarzi et al. 2012). This process is relatively inde-
pendent from the primary sequence and instead may be linked to
RNAstructure, e.g., throughproteinbinding. Basedonouranalyses
we conclude that (1) CRSs are associated with increased stability in
certain genomic contexts, which at least partially explains higher
abundance of structured elements seen in RNA-seq, but (2) the
more general observation of greater abundance of structured ele-
ments (for a large range of GC contents) suggests that CRSs have
functional roles above and beyond modulating stability.

In further support for functional roles of the CRSs, we ob-
served that a substantial fraction of CRSs (∼36% of the 433,000

tested) were coexpressed in human and mouse, including CRSs
in transcribed regulatory regions. Although the fraction of CRSs
coexpressed in corresponding human and mouse tissues was
low, it was significant for CRSs of several biotypes. Furthermore,
it is likely that we underestimated this overlap because of low ex-
pression levels, differences in the biological material (tissues),
and cross-platform differences between the experiments, which
complicate all cross-species expression analyses.

The presence of structured RNAs of relatively low sequence
conservation in lncRNAs (Fig. 1F) agrees with the observation
that lncRNAs appeared recently in evolution (Rands et al. 2014;
Washietl et al. 2014). A similar search, e.g., by FOLDALIGN
(Sundfeld et al. 2016), in primates or other closely related species
will likely elucidate more novel CRSs in lncRNA. Lower CRS se-
quence identities than in lncRNAs were observed in intergenic re-
gions with signatures specific for active regulatory elements,
supporting the idea that such structures play a role in ongoing evo-
lution of transcriptional regulation.

Our computational screen complements large-scale experi-
mental efforts to probe for RNA structures (Rouskin et al. 2014;
Wan et al. 2014). These experimental approaches are limited to
elucidating the structure propensity of single nucleotides and do
not provide evidence for the base interaction map. Base interac-
tions in human andmouse could potentially complement existing
sequence alignments to build a base-interactome map (Lu et al.
2016). The substantial fraction of long-range interaction from
such experiments could complement the short-range interactions
from CRSs and thus together provide a more complete picture of
the RNA structurome.

To conclude, our CRS screen is to our knowledge the first ge-
nome-wide screen in vertebrates explicitly based on local struc-
tural alignments that does not make rigid use of pregenerated

Figure 6. Example CRSs in gene regulatory regions are supported by unannotated transcript boundaries. (A) Two intergenic enhancers in a highly struc-
tured region of low SI (CRS M1293227 is only conserved in primates) between two gene 3′ ends. (B)MIR320A is upstream of POLR3D TSS. (C ) Anti-sense
transcription at the promoter of the lncRNA LINC01132 has enhancer-like chromatin signatures. (D) Intergenic enhancer with unidirectional stable tran-
scription from the minus strand as measured by control and exosome-depleted HeLa cells (Andersson et al. 2014b). Color code in consensus structures is
the level of base-pair conservation in the structure-based alignments.
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sequence-based alignments. In combination with CaptureSeq, it
has revealed RNAs not detectable by standard RNA-seq experi-
ments and has the potential to reveal many more when repeated
in other tissues and biological conditions. The CRSs themselves
show evidence for purifying selection and colocalize with a range
of known functional elements, especially in enhancers and near
annotated gene boundaries. Similarly, we found CRSs overlapping
numerous RBP binding sites for which RNA structures have not
previously been reported. Thus, our study provides support for
the existence and widespread functional importance of a broad
landscape of novel RNA structure candidates widely conserved in
vertebrates. Fully elucidating their roles will entail significant fol-
low-on work.

Methods

Genome-wide screen for CRSs

CMfinder (Yao et al. 2006) locally aligns, folds, and describes pre-
dicted CRSs through covariance models using an expectation-
maximization style learning procedure. To predict CRSs anchored
in the human genome, hg38, we carried out the following steps:
(1) filtered human-based 17-species MA from UCSC (http://
hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz17way) for
length ≥60-bp blocks containing human and three or more non-
primates, resulting in 8,131,488 MA blocks covering 46% of the
human genome; (2) realigned and predicted shared structure in
these blocks using CMfinder (version 0.2.1 and 0.3 for pscore
calculation for the vertebrate tree) with default parameters (maxi-
mal base-pair span of 100 bp: -M 100) in both reading directions;
(3) used UCSC liftOver (http://hgdownload-test.soe.ucsc.edu/
goldenPath/hg38/liftOver/) across genome builds to map coordi-
nates of high-scoring (see next section) human CRSs from hg18
to hg38; (4) used liftOver across species to map human hg38 coor-
dinates to orthologous regions in each of the other 99 vertebrate
genomes in UCSC’s 100-species alignment; (5) searched each
such sequence (extended 50 bp up- and downstream) for hits using
the CRS covariance models with Infernal cmsearch (Nawrocki and
Eddy 2013); and (6) aligned these hits to the CRS covariancemodel
with Infernal cmalign. Step 2 of the screen alone took >150 CPU
years on a Linux cluster (each node with two Intel Xeon E5649
2.53 GHz - Westmere -EP and 24 GB memory). See Supplemental
Methods for our rationale in choosing this strategy.

Scoring scheme

The probabilistic ranking statistic, pscore, extends the phylo-SCFG
approach of EvoFold (Pedersen et al. 2006). Like EvoFold, it con-
tains both a single-nucleotide model (a general time-reversible
model of sequence evolution on the four RNA bases) and a struc-
tured RNA model (analogous, on the 16 potential base pairs). A
third model, also single nucleotide, captures poorly conserved
(neutral or misaligned) regions. We predict structures where the
structured RNA model outscores both unstructured alternatives.
(Vertebrate genomes are heterogeneous mixtures of well- and
poorly conserved regions. Including the third model avoids
many potential false positives where poorly conserved regions
score poorly, but by chance the structured model happens to out-
score the unstructured-but-conserved model.) We also signifi-
cantly revised EvoFold’s parameterization of noncanonical base
pairs, added a quasi-stationary model of base-pair indels and other
gaps, and reduced the number of free parameters (22 versus
EvoFold’s 32). Parameters were trained on structure-annotated
alignments (Wang et al. 2007). All threemodels are scored bymax-
imum likelihood (Felsenstein 1981) on the 17-species vertebrate

tree learned by phastCons (Siepel et al. 2005). Incorporation of
folding energy is the final significant departure from EvoFold.
Weighting SCFG posteriors by the thermodynamic partition func-
tion emphasizes covarying columns in structurally stable versus
unstable contexts. Overall, this approach decreases the GC con-
tent bias seen in Torarinsson et al. (2008) and sharply reduces esti-
mated FDR compared to that approach, to RNAz, and to EvoFold,
as seen in the benchmarks reported in Yao (2008), chapter 4. See
also Supplemental Methods.

Mapping of genome-wide structure probing

We retrieved the data series GSE45803 (Rouskin et al. 2014) from
the NCBI Gene Expression Omnibus (GEO), trimmed adapters
and low-quality 3′ ends (Phred33 < 20) using the FASTX-toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/), and filtered for length
≥20 nt and average Phred33 > 20. Preprocessed reads were mapped
to hg38 using BWA-MEM (Li 2013), disallowing 5′ soft-trimming
(bwa mem -L 10000,5). The number of mapped reads initiating 1
nucleotide (nt) 3′ of each base position of the reference was calcu-
lated for the respective termination assays of the dimethyl sulfate
(DMS) reaction of native RNA and denatured RNA. Read counts
were normalized to sequencing depth, and the log-fold change
was calculated using a pseudo-count of five to regularize low cov-
erage regions: [log2(denature+5)− log2(native+5)]. Positions dis-
playing a log-fold change larger than one were considered to be
paired nucleotides. The CRS consensus structures were evaluated
at nucleotide resolution using this genome-wide structure probing
as a gold standard. See Supplemental Methods.

Annotation enrichment corrected for SI and GC content

Statistical significance tests of CRS (CRS region) enrichment for
genomic features reflect only the part of the genome correspond-
ing to the MA input set and reflect careful control for GC content
and SI. A normal approximation to the binomial distribution
(one-sided Z-test, BH-corrected, “pnorm” function in R) (R Core
Team 2016), N[μ = np, σ2 = np(1− p)], was used to estimate a
P-value based on the observed overlap count q (between middle
coordinate of CRS and genomic feature, ignoring strand informa-
tion), where p is the probability that a CRS overlaps a feature and
n is the number of CRSs. The statistic was only calculated if the
genome (bin) covered by the feature totaled at least 1 kb. We
studied the CRS enrichment binned by GC content and by SI
(denominator is gap-included alignment length; or phastCons)
where each was calculated for 100-bp windows of concatenated
MA blocks. Enrichment tests were repeated for CRSs filtered to re-
move repeat and (semi-)inverted repeat sequences resulting in
the same conclusions.

Evolutionary selection analysis

Selection in CRSs was tested in three ways. First, we estimated pair-
wise base distance (Ponjavic et al. 2007) between human, mouse,
and macaque sequences using baseml (http://abacus.gene.ucl.ac.
uk/software/paml.html) with model REV/GTR for CRSs (dCRS),
ARs (dAR), and intergenic loci (dInter) after removing gap columns
in CRS alignments and 17-species MAs (ARs, intergenic).
Purifying selection was defined as both selection ratios dCRS/dAR
and dCRS/dInter being smaller than 0.95 (15,131 CRSs). Second,
CRSs enrichment inside indel-purified segments (IPSs) (Lunter
et al. 2006) was conducted as described in Methods section
“Annotation Enrichment Corrected for SI and GC Content.”
Third, using whole-genome sequencing data from phase 3 of the
1000 Genome Project (The 1000 Genomes Project Consortium
2015), we analyzed the MAFs of polymorphisms in CRSs (low
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coverage .vcf from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
release/20130502/). See Supplemental Methods and Supple-
mental Figure S5.

CLIP-seq analysis

CLIP data for 67 humanRBPs and 10mouse orthologswere collect-
ed from public databases (Supplemental Table S7). Reads were
preprocessed using cutadapt v1.2.1 (Martin 2011) and mapped
to hg38 or mm10 with Bowtie 2 (Langmead and Salzberg
2012). PCR duplicates were removed using Picard v.197 (http://
broadinstitute.github.io/picard/) and peaks called (P < 0.01) using
Piranha v1.2 (Uren et al. 2012). Enrichment studies for CRSs in hu-
man RBP binding sites were conducted as described in Methods
section “Annotation Enrichment Corrected for SI and GC
content.” Enrichment for CRSs in human–mouse conserved RBP
binding sites was tested using FET (contingency table: CRS conser-
vation versus RBP binding site conservation). A mouse RBP bind-
ing site falling within 50 bp of the human counterpart after
liftover from mm10 to hg38 was considered conserved.

Expression analysis

Premapped reads (.bam) to the human genome (hg38) were ana-
lyzed from publicly available total RNA-seq libraries of 19 tissues
(ENCODE phase 3 [The ENCODE Project Consortium 2012]) and
poly(A) RNA-seq libraries of 16 tissues (Illumina Human Body
Map 2.0 [HBM]). All libraries are listed in Supplemental Table S8.
Uniquely mapped reads were counted for overlap with CRS re-
gions (201-bp window around the center of CRS region) using
featureCounts v1.5.0-p1 (parameters -s 0 -T 8 -Q 10 -p -P -d 50 -D
300 -C -B - -read2pos 5) (Liao et al. 2014). To define library-specific
cutoffs for expression, we calculated an empirical P-value based on
the read count distribution of random genomic loci (201-bp win-
dow) from the MA input set. Regions whose read counts have P <
0.01 were considered to be expressed. Read counts were converted
to count permillionmapped reads (CPM) andnormalized between
libraries using the relative log expression (RLE) normalization pro-
cedure in edgeR (Robinson et al. 2010). In case of replicates, we cal-
culated mean values for normalized read counts for each tissue.

CaptureSeq experiment

We designed 125,000 probes, each 60 bp long, covering both
strands, more than three mismatches to their closest genomic
paralog, representing 77,320 CRS regions with largest pscores and
conservation between human and mouse. More than 70% of
probedCRS regionswere intronicor intergenic. Total RNAfromhu-
man fetal brain (Clontech) was DNase I treated (Invitrogen), rRNA
was depleted using RiboMinus (Invitrogen) according to the
manufacturer’s recommendations, cleaned on Microcon YM-30
columns (Millipore), chemically fragmented, and cleaned on
Microcon YM-10 columns (Millipore). Fragmented RNA was re-
verse transcribed using a random hexamer with an attached adap-
tor. Following reverse transcription, second-strand synthesis was
performed, blunt ended, and adaptor ligated. The library was
size-selected; 100–200 bp were excised and cleaned. Excised frag-
ments were enriched by 18 cycles of PCR and cleaned (Qiagen).
The library was split into two equally sized sublibraries for investi-
gating two different annealing temperatures to optimize the hy-
bridization step of potentially self-folded RNA probes. The dried
library wasmixed with hybridization buffer and denatured, imme-
diately loaded onto the custom chip (NimbleGen), and incubated
for 3d at70°C.The slidewaseluted according to themanufacturer’s
protocol (NimbleGen Arrays User’s Guide, sequence capture array
delivery, version 3.2). Following elution, the samples were en-

riched by 19 cycles of PCR and cleaned (Qiagen). The chip was
stripped and rehybridized with the second half of the library for 3
d at 42°C. The eluate was washed and enriched as described above.

Analysis of CaptureSeq

Reads (.fastq) were trimmed for low-quality 3′ ends (Phred33 <
30) and adapters, and trimmed reads shorter than 40 nt were
discarded using cutadapt v1.8.3. Cleaned reads were aligned
to the human genome (hg38) using STAR 2.5.2a (default
parameters) (Dobin et al. 2013) and alignments of ≤2 mismatches
were reported (- -outFilterMismatchNoverLmax 0.03). The follow-
ing strategydefined read islands, their readcounts, andsignificance
of RNA probe-assigned read islands (on-targets): (1) filter uniquely
mapped reads and remove simple repeats (≥50% overlap); (2) ex-
tend reads to 150 nt in reading direction (unified reads) and define
a regionofoverlappingunified readsas a read island; (3) count reads
inside a read island; (4) intersect read islands with RNA probes
(overlap ≥1 nt); and (5) calculate empirical P-value for read counts
of RNA probe-assigned read islands. The empirical P-value is based
on the read count distribution of off-targets (read islands that are
not assigned to RNA probes), and we selected P < 0.1 for expressed
RNA probes (Supplemental Fig. S8A).

qRT-PCR

The tissue-specific expression profiles of 23 selected CRS regions
(CaptureSeq P < 0.1) were determined by qRT-PCR using purified
total RNA from seven different tissues (brain, colon, heart, kidney,
liver, small intestines, and testis) in human andmouse. Human to-
tal RNA from these seven tissues (plus fetal brain) were ordered
(Clontech). The same tissues were isolated from 30-d-old male
mice (Balbc/J), and total RNA was extracted using a modified
miRNeasy protocol (Qiagen). See Supplemental Methods.

RNA structure probing

CRS sequences from human andmouse were selected for structure
probingbasedon lowFDRs, lowSI betweenhumanandmouse, and
expression in human andmouse brain as determined by qRT-PCR.
Templates were made by PCR on gDNA templates and designed to
include flanking sequences to the extent that it would facilitate the
predicted structures upon folding (Hecker et al. 2015). CRS in vitro
transcripts were screened by native gel electrophoresis, and pairs
that yielded single bands were subjected to structure probing using
RNaseV1 and S1nuclease or Pb2+ for demonstrationof double- and
single-stranded regions, respectively. See Supplemental Methods.

Definition of gene regulatory regions

Initially, we defined enhancers through ENCODE chromatin seg-
mentation states (classes E or WE in ≥2 of 6 human cell lines;
length 100 bp to 1 kb) (Hoffman et al. 2013), loci upstream (−2
kb to −100 bp) of TSSs, and loci downstream (+1 bp to +2 kb) of
3′ ends of mRNAs and lncRNAs annotated in GENCODE. We con-
sidered only genes of >10 kb away from their adjacent annotated
genes (∼13,000 genes). For more stringent definition of regulatory
regions, taking experimentally measured transcript boundaries
into account, we used the following data: DNase I hypersensitivity
peak clusters from ENCODE (95 cell types) (The ENCODE Project
Consortium 2009), CAGE expression of robust (>10 TPM) peaks
(length ≤200 bp) from FANTOM5 Phase 2.0 (Andersson et al.
2014a), ENCODE chromatin segmentation states, GENCODE
gene/TSS annotation of mRNAs and lncRNAs, and polyadenyla-
tion signals (Gruber et al. 2016). TSS upstream transcription and
enhancers were defined by CAGE peaks, DHSs, and chromatin
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states. Alternative 3′ ends were defined by poly(A) signals. See
Supplemental Material and Supplemental Figure S11.

Expression of structured and unstructured gene

regulatory regions

Differences in expression level in tissues between structured (ones
overlappingCRSs) and unstructured regulatory regions in different
GC content or phastCons score bins were tested by one-sided
Mann–Whitney U test, BH-corrected, and considered significant
if P < 0.05 in all replicates. Uniquely mapped reads from
ENCODE phase 3 and E-MTAB-513 (Supplemental Table S8) were
counted for overlap with regulatory regions using featureCounts
v1.5.0-p1 (parameters -s 0 -T 8 -Q 10 -p -P -d 50 -D 2000 -C -B
- -read2pos 5). Read counts were normalized to CPM/RLE before
hypothesis testing. GC content and phastCons were measured
from regulatory regions.

Transcript stability

To test for stability of transcripts, we analyzed triplicate published
CAGE libraries from hRRP40 (exosome) depleted and EGFP deplet-
ed (control) HeLa cells (Andersson et al. 2014b). We got pre-
mapped 5′ ends of sequenced capped RNAs for all six libraries
from the investigators (.bed). Exosome sensitivity was calculated
as described previously (Andersson et al. 2014b) for both strands
by max[(Eexo− Ectr)/Eexo, 0], with Eexo and Ectr denoting the expres-
sion level after exosome depletion and in control HeLa cells, re-
spectively. We used thresholds of ≤0.25 and ≥0.75 to identify
highly stable and highly unstable RNAs emanating from tran-
scribed DHSs. See Supplemental Methods.

Statistics and visualization

Statistical analyses and visualization were performed with R (R
Core Team 2016), feature distances were calculated using
BEDTools (Quinlan and Hall 2010), genomic views were from
UCSC Genome Browser (Rosenbloom et al. 2015), and struc-
tures/alignments were drawn with Vienna RNA Package tools
(Lorenz et al. 2011).

Data access

The CaptureSeq data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE87214. The list of
CRSs, CRS alignments, CRS annotation, and on-target expressed
(P < 0.1) regions found by CaptureSeq are provided as Supplemen-
tal Data. Our catalog of predicted CRSs, Supplemental Data, and a
UCSC track hub of CRSs are available at http://rth.dk/resources/
rnannotator/crs/vert.
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