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Background: Previous neuroimaging studies have described shared and distinct
neurobiological mechanisms between autism spectrum disorders (ASDs) and attention-
deficit/hyperactivity disorder (ADHD). However, little is known about the similarities and
differences in topologically structural connectivity patterns between the two disorders.

Methods: Diffusion tensor imaging (DTI) and deterministic tractography were used to
construct the brain white matter (WM) structural networks of children and adolescents
(age range, 6–16 years); 31 had ASD, 34 had ADHD, and 30 were age- and sex-
matched typically developing (TD) individuals. Then, graph theoretical analysis was
performed to investigate the alterations in the global and node-based properties of
the WM structural networks in these groups. Next, measures of ASD traits [Social
Responsiveness Scale (SRS)] and ADHD traits (Swanson, Nolan, and Pelham, version
IV scale, SNAP-IV) were correlated with the alterations to determine the functional
significance of such changes.

Results: First, there were no significant differences in the global network properties
among the three groups; moreover, compared with that of the TD group, nodal degree
(Ki) of the right amygdala (AMYG.R) and right parahippocampal gyrus (PHG.R) were
found in both the ASD and ADHD groups. Also, the ASD and ADHD groups shared
four additional hubs, including the left middle temporal gyrus (MTG.L), left superior
temporal gyrus (STG.L), left postcentral gyrus (PoCG.L), and right middle frontal gyrus
(MFG.R) compared with the TD group. Moreover, the ASD and ADHD groups exhibited
no significant differences regarding regional connectivity characteristics. Second, the
ADHD group showed significantly increased nodal betweenness centrality (Bi) of the left
hippocampus (HIP.L) compared with the ASD group; also, compared with the ADHD
group, the ASD group lacked the left anterior cingulate gyrus (ACG.L) as a hub. Last,
decreased nodal efficiency (Enodal) of the AMYG.R, Ki of the AMYG.R, and Ki of the
PHG.R were associated with higher SRS scores in the ASD group. Decreased Ki of the
PHG.R was associated with higher SRS scores in the full sample, whereas decreased
Bi of the PHG.R was associated with lower oppositional defiance subscale scores of the
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SNAP-IV in the ADHD group, and decreased Bi of the HIP.L was associated with lower
inattention subscale scores of the SNAP-IV in the full sample.

Conclusion: From the perspective of the topological properties of brain WM structural
networks, ADHD and ASD have both shared and distinct features. More interestingly,
some shared and distinct topological properties of WM structures are related to the
core symptoms of these disorders.

Keywords: Autism spectrum disorder, attention-deficit/hyperactivity disorder, diffusion tensor imaging, white
matter structural networks, topological properties

INTRODUCTION

Autism spectrum disorder (ASD) and attention-
deficit/hyperactivity disorder (ADHD) are both
neurodevelopmental disorders that manifest early in life.
ASD is defined by core symptoms of persistent and pervasive
deficits in social communication and interaction along with
repetitive behavioral patterns and restricted interests or activities.
ADHD is characterized by developmentally inappropriate
levels of inattention, impulsivity, and hyperactivity (American
Psychiatric Association, 2013).

Aside from distinctive features, overlaps in the clinical
symptoms and the genetic traits of ASD and ADHD are well
documented. First, in terms of clinical phenotypes, 30 to 80%
of all ASD children met the diagnostic criteria for ADHD, and
20 to 50% of children diagnosed with ADHD also met the
diagnostic criteria for ASD (Van der Meer et al., 2012). Second,
from a genetic point of view, genome-wide association studies
and linkage or candidate gene studies also identified a number of
genetic risk variants common to both disorders (Rommelse et al.,
2010; Stergiakouli et al., 2017; Gudmundsson et al., 2019).

Brain phenotypes serve as a bridge to understand the clinical
symptoms and biological mechanisms of disorders. Although
previous studies have endeavored to verify whether there are
similarities and differences in brain phenotypes between ASD and
ADHD, the results have been inconsistent. A newly published
study from 151 cohorts worldwide using structural T1-weighted
whole-brain magnetic resonance imaging (MRI) data revealed
ASD-specific cortical thickness differences in the frontal cortex
of adult patients and ADHD-specific subcortical differences in
children and adolescents; notably, the researchers did not find
shared differences across the two disorders (Boedhoe et al.,
2020). A diffusion tensor imaging (DTI) study applied tract-
based spatial statistics to a larger sample (n = 200) of school-
aged children with ASD and ADHD compared with typically
developing (TD) controls and found that decreased fractional
anisotropy (FA) within the splenium of the corpus callosum
was common among the three groups (Ameis et al., 2016).
Evidence from an functional MRI (fMRI) study (n = 1,305)
measuring functional connectivity of the brain network also
confirmed shared dysfunctional connectivity in the default
mode network, dorsal attention network, and salience network
of both ASD and ADHD patients between 7 and 21 years
of age (Kernbach et al., 2018). Interestingly, another fMRI
study of 56 children with ASD, 45 children with ADHD,

and 50 TD children exhibited shared and distinct intrinsic
functional network centrality between children with ASD and
children with ADHD. Some affected areas were common to
both groups, such as the precuneus; other affected areas were
disorder-specific and included ADHD-related increases in degree
centrality in the right striatum/pallidum, in contrast to ASD-
related increases in bilateral temporolimbic areas specifically (Di
Martino et al., 2013). Inconsistencies between previous findings
might be due to participant heterogeneity, statistical power,
or methods used.

Independent studies of ADHD and ASD have increasingly
emphasized the role of dysconnectivity in large-scale networks in
both disorders (Konrad and Eickhoff, 2010; Travers et al., 2012).
As the brain is a complex network of structurally and functionally
interconnected regions (Bullmore and Sporns, 2009), evaluating
the brain as a whole and studying its networks can help us fully
delineate the organizational patterns of internal connectivity in
the human brain (Bullmore and Sporns, 2012).

Previous network studies have mainly focused on functional
networks, while functional connectivity opens the door to the
analysis of brain networks. We should not ignore that functional
connections need structural support to make sense. DTI can
help us map the structural connectivity between gray matter
(GM) regions using white matter (WM) tractography, providing
an avenue to probe structurally interconnected brain networks
(Hagmann et al., 2008).

Accordingly, in the present study, we analyzed DTI data from
95 children and adolescents aged 6 to 16 years with ASD, with
ADHD, and who were TD to map their WM structural networks.
First, we investigated the alterations in the global and regional
properties of the WM structural networks in these groups.
Second, we examined the relationship between the alterations and
measures of ASD traits, as well as ADHD traits, to determine the
functional significance of such changes. To our knowledge, no
previous studies have directly contrasted the global and regional
properties of WM structural networks in individuals with ASD,
individuals with ADHD, and TD controls. Our work might be an
important supplement to previous studies.

MATERIALS AND METHODS

Participants and Assessments
Patients were recruited via the Nanjing Brain Hospital affiliated
with Nanjing Medical University, and controls were volunteers
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recruited through advertising on the hospital website and
WeChat official account. In total, 95 participants aged 6 to
16 years were enrolled in our study, including 31 with ASD,
34 with ADHD, and 30 TD controls. Written informed consent
was obtained from all legal guardians. All participants were age
and sex matched. The intelligence quotient (IQ) scores of all
participants were evaluated using the Wechsler Intelligence Scale
for Children-IV (Feis, 2010), and those who scored less than 80
on the estimated full-scale IQ were excluded. The diagnoses for
ASD and ADHD were based on the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Text Revision (DSM-IV-
TR) diagnostic criteria supported by parent interviews, direct
observations, available teacher forms, and prior records. ASD
diagnosis was supported by standardized clinical assessments,
including the Autism Diagnostic Observation Scale (Lord et al.,
1989) and Autism Diagnostic Inventory – Revised (Lord et al.,
1994). TD controls had no developmental disorders and no
first-degree family history of such disorders. All participants
with any systemic diseases, with a family history of head
injury, with genetic syndromes, currently using antipsychotics, or
with neurological disorders or psychiatric illness were excluded
from the study. To discern brain–behavior relationships, we
used parent ratings of ASD traits indexed by the Social
Responsiveness Scale (SRS) (Constantino, 2013), which is a
65-item questionnaire covering each of the three DSM-IV
criterion domains (social; language; and repetitive, stereotypic
behaviors/restricted range of interest). ADHD traits were indexed
by Swanson, Nolan, and Pelham-IV (SNAP-IV) (Gau et al.,
2008), which is a widely used scale that measures the core
symptoms of ADHD.

Image Acquisition and Preprocessing
MRI data were acquired using the 3.0-T Verio MRI system
(Siemens Medical Systems, Germany) with a birdcage gradient
head coil. The head of each participant was gently restrained with
foam cushions to avoid the generation of motion artifacts during
the scan. High-resolution T1-weighted images were obtained
using a three-dimensional spoiled gradient recalled pulse
sequence with the following scanning parameters: repetition time
(TR) = 2,530 ms, echo time (TE) = 3.34 ms, flip angle = 7◦,
inversion time = 1,100 ms, field of view (FOV) = 256 × 256 mm,
matrix = 256 × 159, slice thickness = 1.33 mm, and total
scanning time = 8.7 min. Each participant’s head was positioned
parallel to the anterior commissure–posterior commissure plane.
DTI was performed with single-shot echo planar imaging
sequences with diffusion gradients applied in 30 non-collinear
directions and b = 1,000 s/mm2. The thickness of each slice
was 2.5 mm without a gap. The sequence parameters for
the DTI were as follows: TE = 104 ms, TR = 9,000 ms,
FOV = 230 × 230 mm2, and acquisition matrix = 128 × 128.
The total DTI scanning time was 5.1 min. Before preprocessing,
all the structural images were checked for artifacts. DWI
image data were screened for subject motion and common
artifacts related to diffusion sequences using PANDA (Cui
et al., 2013), a pipeline toolbox for analyzing brain diffusion
images. In brief, the overall preprocessing pipeline comprised
the following steps: converting DICOM files into NIfTI

images, estimating the brain mask (the b0 image without
diffusion weighting was used for the estimation), cropping
the raw images, correcting for the eddy-current effect, and
averaging multiple acquisitions, which are detailed in PANDA
(Cui et al., 2013).

Network Construction
Network Node Definition
Node definition is an important step in brain network
construction as the node is a vital element of a network (Sporns
et al., 2005). Typically, the entire brain is divided into multiple
regions using a prior GM atlas, where each region represents
a network node (Bullmore and Sporns, 2009). In the present
study, we used the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002) to parcellate the cerebral cortex
into 90 regions (45 for each hemisphere, see Table 1 for details),
and each region represents a node of the cortical network. As
the parcellation process was conducted in the DTI native space
for each subject, the individual FA image in native space was
coregistered to its corresponding T1-weighted image using an
affine transformation, and the individual resultant T1-weighted
image was then non-linearly registered to the ICBM152 template
in MNI space. Then, a prior atlas in standard space could be
inversely warped back to the individual native space by applying
the inverse warping transformation.

Network Edge Definition
Deterministic tractography was used to define the network edges
of the 90 regions. FA thresholding was set as 0.1–1, with an
interval of 0.1, and the turning angle threshold was set at 35.
In this study, we selected a threshold value of 3 (T = 3) for the
number of fiber bundles, meaning two regions were considered
structurally connected if at least three fibers with two endpoints
were located in these two regions. Such a threshold selection
was reported to reduce the risk of false-positive connections
due to noise or limitations in deterministic tractography (Shu
et al., 2011). After defining the network edges, PANDA was
used to calculate the fiber number (FN)–weighted WM network
for each participant, which was represented by a symmetric
90 × 90 matrix.

Network Analysis
We investigated the topological properties of the WM structural
networks at the global and nodal levels. Characteristic path
length (Lp), clustering coefficient (Cp), normalized shortest
path length (λ), normalized clustering coefficient (γ), small-
worldness σ (σ = λ/γ), local efficiency (Eloc), and global efficiency
(Eglob) of the whole brain network were calculated to quantify
the global network architecture. Also, we computed the local
efficiency of node i (Enodal), nodal degree of node i (Ki),
and betweenness centrality of node i (Bi) to determine the
nodal (regional) characteristics of the networks. In addition,
the normalized betweenness (bi) was used to identify the
most central nodes (hubs) of the networks. These measures
are detailed in the article by Rubinov and Sporns (2010).
Briefly, Lp is the average shortest path length between the
nodes that quantifies the ability of a network to propagate
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TABLE 1 | The regions are listed in terms of a prior template of the automated anatomical labeling atlas.

Index Regions Abbreviation Index Regions Abbreviation

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING

(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG

(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG

(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG

(9,10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG

(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG

(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG

(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL

(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG

(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG

(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN

(23,24) Superior frontal gyrus, media SFGmed (69,70) Paracentral lobule PCL

(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU

(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT

(29,30) Insula INS (75,76) Lenticular nucleus, pallidum PAL

(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA

(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES

(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG

(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup

(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG

(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid

(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG

The regions are listed in terms of a prior template of an automated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002).

parallel information, and Cp represents the fraction of the node’s
neighbors that are also neighbors of each other, λ = Lpreal/Lprand,
γ = Cpreal/Cprand, where Lprand and Cprand are the mean
shortest path length and the mean clustering coefficient of 100
matched random networks, respectively. Eloc is the mean of
the local efficiency of all the nodes in the graph. Eglob is
the average inverse shortest path length and can be used to
estimate the efficiency with which brain regions communicate.
Enodal represents the regional efficiency of a node. The degree
Ki is defined as the number of connections to that node, and
highly connected nodes have a large degree. Bi is defined as
the fraction of all the shortest paths in the network that pass
through a given node.

Statistical Analysis
The statistics of demographic and clinical characteristics were
conducted using Statistical Product and Service Solutions (SPSS,
version 22.0). Normality of the distributions was assessed by the
Shapiro–Wilk test. Categorical variables (sex) were investigated
with χ2 tests, whereas continuous variables, such as age, IQ,
clinical scale scores, and network properties, were investigated
with one-way analysis of variance (ANOVA), followed by
Bonferroni post hoc analysis. Effect size ηp

2 is reported for one-
way ANOVA tests, with 0.01, 0.06, and 0.14 representing small,
medium, and large effects, respectively.

To identify the hub regions of the networks between groups,
we first calculated the bi of all 90 regions for each subject
and then calculated the mean value of the bi for each region

according to the groups. If bi was greater than 1.5 times
the average betweenness (the mean value of bi for all 90
regions) of the network, the nodes were considered to be pivotal
nodes (i.e., hubs).

Network-based statistics (NBS) (Zalesky et al., 2010) is a
non-parametric method based on the principles of traditional
cluster-based thresholding of statistical parametric maps to
control the familywise error rate; hence, it can be used to
identify subnetworks of topologically connected suprathreshold
connections. We conducted an independent F test on every
connectivity value to compare the structural connectivity
differences between the ASD, ADHD, and TD groups. We
set the primary threshold at p = 0.001 for the resulting F
statistic matrix (based on a height threshold of F = 3.2 to
stringently control for type I errors). Next, the data across groups
were randomized 5,000 times to obtain the reference cluster
distribution. We used the maximum number of connections
across all clusters to form the reference distribution for each
randomization; cluster scores exceeding the 95th percentile
were considered significant (p < 0.05). For post hoc paired
comparisons (e.g., the ASD group vs. the ADHD group), the
procedure was similar.

Additionally, Pearson correlation analysis, performed in SPSS,
was used to examine correlations in the full sample, and post hoc
analyses examined Pearson correlations in the patient groups
to reveal the relationships between altered regional properties
and ASD traits, as well as between altered regional properties
and ADHD traits.
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RESULTS

Demographic and Clinical
Characteristics
One-way ANOVAs indicated that the three groups were matched
for age and sex but not matched for IQ (F = 4.979, p = 0.009,
ηp

2 = 0.098) (it should be noted that the IQ effect was removed
in all of the following network analyses). The ANOVAs showed
significant group effects on SRS total scores (F = 13.236, p = 0.000,
ηp

2 = 0.223) and SNAP-IV subscale scores, including inattention
(F = 65.038, p = 0.000, ηp

2 = 0.591), hyperactivity (F = 40.230,
p = 0.000, ηp

2 = 0.472), and oppositional defiance (F = 10.626,
p = 0.000, ηp

2 = 0.191). Specifically, for pairwise comparisons, the
ASD group showed greater social deficits than the ADHD and TD
groups; moreover, the ADHD group showed more severe ADHD
symptoms than the ASD and TD groups (see Table 2 for details).

Global Topological Properties of the WM
Structural Networks
Based on the constructed networks, we calculated the topological
properties (i.e., Lp, Cp, λ, γ, σ, Eloc, and Eglob) of the global
network for each participant and showed the mean values of
these properties of the three groups. Analyses of covariance
(ANCOVAs) on the global network properties showed no
significant group effects of all the global topological properties
(Lp: F = 1.625, p = 0.202, ηp

2 = 0.034; Cp: F = 0.666, p = 0.516,
ηp

2 = 0.014; λ: F = 0.583, p = 0.560, ηp
2 = 0.013; γ: F = 1.253,

p = 0.290, ηp
2 = 0.027; σ: F = 2.343, p = 0.078, ηp

2 = 0.072; Eloc:
F = 1.195, p = 0.308, ηp

2 = 0.025; and Eglob: F = 2.535, p = 0.085,
ηp

2 = 0.052) among the three groups.

Node-Based Analysis of the WM
Structural Networks
Identification of Regional Property Differences
Enodal, Ki, and Bi were calculated to identify the differences
in nodal properties in the participants. Among the three
groups, ANCOVAs showed that the regions with significant
group effects were distributed in the temporal [the left
amygdala (AMYG.L), right amygdala (AMYG.R), left
hippocampus (HIP.L), and right parahippocampal gyrus
(PHG.R)], and subcortical [the right insula (INS.R)] cortices
(see Table 3 for details). Post hoc tests showed that the
Ki values of the AMYG.R and PHG.R were significantly
decreased in both the ASD and ADHD groups compared
with the TD controls (i.e., ASD and ADHD shared deficits).
Only one region (i.e., the HIP.L) showed significant group
differences, with a higher Bi observed in the ADHD group
than in the ASD and TD groups (i.e., ADHD-specific
deficits) (Figure 1).

Identification of Hub Distributions
To identify the hub regions, we examined the Bi of each
node in all networks. In total, 23 hub regions were the same
for all of the groups, including 10 regions of the association
cortex [the left precuneus (PCUN.L), right precuneus (PCUN.R),
left fusiform gyrus (FFG.L), right fusiform gyrus (FFG.R),

left lingual gyrus (LING.L), right lingual gyrus (LING.R), left
dorsolateral superior frontal gyrus (SFGdor.L), right dorsolateral
superior frontal gyrus (SFGdor.R), left middle frontal gyrus
(MFG.L), and right rolandic operculum (ROL.R)], four regions of
subcortical structures [the left putamen (PUT.L), right putamen
(PUT.R), left caudate nucleus (CAU.L), and right caudate nucleus
(CAU.R)], four paralimbic regions [the left median cingulate
gyrus (DCG.L), right median cingulate gyrus (DCG.R), left
insula (INS.L), and INS.R], and five primary regions [the left
calcarine fissure (CAL.L), right calcarine fissure (CAL.R), left
precental gyrus (PreCG.L), right precental gyrus (PreCG.R),
and right postcentral gyrus (PoCG.R)]. The common hubs
identified for all of the groups were predominantly distributed
in the association cortices. Specially, the left anterior cingulate
gyrus (ACG.L) was identified as a hub in the ADHD and
TD groups but not in the ASD group, and both the ASD
and ADHD groups exhibited four additional hubs [the left
middle temporal gyrus (MTG.L), left superior temporal gyrus
(STG.L), left postcentral gyrus (PoCG.L), and right middle frontal
gyrus (MFG.R)] compared with TD controls (Table 4 and
Figure 2).

Connectivity-Based Analysis
We used the NBS method to identify the disrupted connected
components among the three groups, and we found that
a connected network with nine nodes and eight edges
was altered (p = 0.001, corrected). The involved nodal
regions were the PreCG.L, left middle frontal gyrus (MFG.L),
SFGdor.L, left inferior frontal gyrus, opercular part (IFGoperc.L),
left rolandic operculum (ROL.L), left middle occipital gyrus
(MOG.L), left paracentral lobule (PCL.L), PUT.L, and CAU.L.
However, no significant differences were found with respect
to connected components between the ASD and ADHD
groups (Figure 3).

Correlation of Altered Regional
Properties With ASD and ADHD Traits
Correlation analysis between altered regional properties and
ASD traits and that between altered regional properties and
ADHD traits were examined in the full sample and in the
patient groups. For regional properties, we examined the nodes
with significant group effects that are listed in Table 3. In the
full sample, Bi of the PHG.R was significantly correlated with
SRS scores (r = −0.242, p = 0.018, r2 = 0.059), and Bi of
the HIP.L was significantly correlated with inattention subscale
scores of the SNAP-IV (r = 0.220, p = 0.034, r2 = 0.048).
In the ASD group, Enodal of the AMYG.R was significantly
correlated with SRS scores (r = −0.512, p = 0.003, r2 = 0.262;
also, Ki of the AMYG.R was significantly correlated with
SRS scores (r = −0.359, p = 0.005, r2 = 0.128), and Ki
of the PHG.R was significantly correlated with SRS scores
(r = −0.368, p = 0.004, r2 = 0.135). In the ADHD group,
Bi of the PHG.R was significantly correlated with oppositional
defiance subscale scores of the SNAP-IV (r = 0.374, p = 0.032,
r2 = 0.140) (Figure 4).
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TABLE 2 | The demographic and clinical characteristics of all participants.

ASD (n = 31) ADHD (n = 34) TD (n = 30) p valuea Pairwiseb

Gender: male/female 27/4 32/2 22/8 0.051 –

Age (std) 9.00 (1.92) 9.44 (1.67) 9.67 (2.88) 0.483 –

IQ (std) 102.26 (19.70) 104.09 (15.56) 107.07 (18.43) 0.009* ASD vs. ADHD, n.s. ASD vs. TD, p = 0.014 ADHD vs. TD, p = 0.036

SRS-totalc (std) 64.65 (15.77) 51.71 (13.60) 46.43 (8.54) 0.000* ASD vs. ADHD, p = 0.000* ASD vs. TD, p = 0.000* ADHD vs. TD, n.s.

SNAP-IVd subscales

Inattention (std) 9.35 (2.24) 17.06 (3.82) 7.24 (4.44) 0.000* ASD vs. ADHD, p = 0.000* ASD vs. TD, n.s. ADHD vs. TD, p = 0.000*

Hyperactivity (std) 6.97 (2.52) 12.58 (5.21) 3.79 (3.36) 0.000* ASD vs. ADHD, p = 0.000* ASD vs. TD, p = 0.007* ADHD vs. TD, p = 0.000*

Oppositional defiant (std) 4.13 (2.99) 8.55 (5.22) 5.31 (3.18) 0.000* ASD vs. ADHD, p = 0.000* ASD vs. TD, n.s. ADHD vs. TD, p = 0.006*

*p < 0.05. std: standard deviation; n.s.: no significance.
ap value for sex using the χ2test; other p values for the comparisons based on one-way ANOVA.
bPost hoc pairwise comparisons were then performed using the t test.
cTotal scores based on the Social Responsiveness Scale.
dSwanson, Nolan, and Pelham, version IV scale.

TABLE 3 | Regions showing significant differences in the nodal topological properties among the ASD, ADHD, and TD groups.

Nodal metrics ASD ADHD TD F p valuea ηp
2b

Mean std Mean std Mean std

Enodal_AMYG.R 10.31 1.98 10.44 2.01 11.73 2.44 3.266 0.025* 0.097

Ki_ PHG.R 326.5 50.39 331.6 71.76 373.2 75.50 3.684 0.015* 0.108

Ki_ AMYG.L 105.7 31.90 103.7 27.19 124.4 35.62 2.946 0.037* 0.089

Ki_ AMYG.R 99.71 34.90 98.26 31.62 124.3 41.42 5.278 0.002* 0.148

Bi_INS.R 611.20 206.30 528.80 228.40 482.50 157.90 2.914 0.039* 0.088

Bi_HIP.L 120.20 73.08 171.70 78.97 135.40 94.14 2.714 0.049* 0.082

Bi_PHG.R 134.60 59.08 143.50 98.06 196.30 113.20 2.890 0.040* 0.087

*p < 0.05. std: standard deviation; for the definitions of the abbreviations, see Table 1.
ap value for using one-way ANCOVA tests.
bηp

2: effect size for one-way ANCOVA tests.

FIGURE 1 | Shared and specific nodal topological properties in diagnostic groups. (A,B) represent the regions with shared deficits in ASD and ADHD topological
properties compared with the properties of TD controls, and (C) represents the region in which ADHD topological properties differ from both TD controls and
individuals with ASD by Bonferroni post hoc analysis; for the definitions of the abbreviations, see Table 1. For each node, the bar and error bar represent the mean
value and SD, respectively; a single asterisk (*) represents a significant group difference at p < 0.05; n.s. represents no significance.

DISCUSSION

The present study compared the global and regional properties
of the WM structural networks in children and adolescents
with ASD, ADHD, and TD controls; the findings suggest
shared and distinct features underlying neurobiological
mechanisms in ASD and ADHD children and adolescents from
a network perspective.

The human brain is a complex system with an optimal
balance between local specialization and global integration (Shu
et al., 2011). In this study, we identified the global topological
properties of the WM networks in ASD and ADHD patients
and TD controls, exhibiting no significant differences among the
three groups. Our results are supported by a network study that
showed measures of structural Cp and Lp did not significantly
differ between children and adolescents with ASD and TD
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TABLE 4 | Hub distributions of the WM structural networks among the ASD,
ADHD, and TD groups.

ASD ADHD TD

Regions Classa Regions Classa Regions Classa

PCUN.R Association PCUN.R Association PCUN.R Association

DCG.L Paralimbic PCUN.L Association PCUN.L Association

PCUN.L Association DCG.L Paralimbic DCG.L Paralimbic

DCG.R Paralimbic INS.R Paralimbic DCG.R Paralimbic

INS.R Paralimbic DCG.R Paralimbic CAL.R Primary

INS.L Paralimbic INS.L Paralimbic INS.L Paralimbic

PoCG.R Primary PoCG.R Primary INS.R Paralimbic

PreCG.R Primary CAL.R Primary FFG.L Association

CAL.R Paralimbic CAL.L Primary CAL.L Primary

FFG.L Association CAU.L Subcortical FFG.R Association

PUT.R Paralimbic ROL.R Association PUT.R Subcortical

FFG.R Association MFG.L Association LING.L Association

CAL.L Primary PUT.R Subcortical PreCG.L Primary

CAU.R Primary PreCG.L Primary MFG.L Association

MFG.L Association SFGdor.L Association PoCG.R Primary

ROL.R Association FFG.L Association SFGdor.L Association

SFGdor.L Association CAU.R Subcortical LING.R Association

CAU.L Paralimbic FFG.R Association PreCG.R Primary

LING.R Association PUT.L Subcortical CAU.L Subcortical

PUT.L Paralimbic SFGdor.R Association PUT.L Subcortical

SFGdor.R Association MFG.R Association SFGdor.R Association

MTG.L Association LING.L Association CAU.R Subcortical

PreCG.L Primary ACG.L Paralimbic ROL.R Association

STG.L Association LING.R Association ACG.L Paralimbic

MFG.R Association PreCG.R Primary

LING.L Association MTG.L Association

PoCG.L Primary STG.L Association

PoCG.L Primary

For the definitions of the abbreviations, see Table 1.
aThe cortical regions are classified as primary, association, subcortical, limbic, and
paralimbic (Supekar et al., 2009).

controls (Rudie et al., 2013). However, a recent work exploring
the topologic architecture of WM connectivity networks in
preschool-aged children demonstrated that children with ASD
had shortened Lp and increased Eglob and Cp compared with the
TD children (Li et al., 2018). Another study focused on wiring
of the connectome in adults with high-functioning ASD showed
that Eglob was significantly decreased, and Lp was significantly
increased in subjects with ASD (Roine et al., 2015). In addition,
consistent with our results, Justina et al., in an investigation of the
organization of structural brain networks in adults with ADHD
and unaffected controls, also showed no significant differences in
global network metrics, including σ, Eglob, and Cp (Sidlauskaite
et al., 2015). However, Chen et al. (2019) demonstrated altered
topological characteristics of lower Eglob, lower Eloc, and longer
Lp of brain functional networks in drug-naive children with
ADHD, whereas in the other two studies using drug-treated
samples, no significant changes in Eglob in ADHD subjects
were found (Wang et al., 2009; Xia et al., 2014). Therefore, age
range and medication effects might contribute to the differences

in findings regarding the global topological properties of brain
networks in patients with ASD and those with ADHD.

Shared deficits of regional alterations were associated with a
tendency of decreased Ki of the AMYG.R and PHG.R in the ASD
and ADHD groups. Converging neuroscientific evidence has
suggested that the neuropathology of ASD is widely distributed,
involving impaired connectivity throughout the brain (Just
et al., 2004; Ameis and Catani, 2015). One region consistently
highlighted by structural MRI (Gibbard et al., 2017) and fMRI
(Guo et al., 2016; Odriozola et al., 2018; Iidaka et al., 2019)
studies is the amygdala. Abnormal amygdala structure and
function are correlated with alterations in the social–emotional
functions of ASD in rodents (Schoch et al., 2016) and in humans
(Gotts et al., 2012; Mundy, 2017). The commonality of amygdala
abnormalities has also been identified in ADHD (Posner et al.,
2011; Hulvershorn et al., 2014), and altered amygdala activation
and connectivity have been suggested to be related to dysfunction
of emotion regulation in ADHD (Christiansen et al., 2019, such
as facial and contextual emotion processing (Fonseca et al.,
2009; Miller et al., 2011). A recent structural neuroimaging
study directly comparing amygdala volumes and correlates
of social deficits showed that larger amygdala volumes were
associated with fewer social deficits in both ASD and ADHD
children, supporting a common underlying biology between
these disorders (Baribeau et al., 2019). Additionally, the PHG
is thought to be a structure of the default mode network (Fox
et al., 2005) known to be particularly active when participants
are at rest, and it has been identified as a key anatomical region
in the mesial temporal lobe associated with memory (Aggleton
et al., 2010; Catani et al., 2013). One study reported that the
PHG was involved in the involuntary reactivation of contextual
fear memory that results in avoidance (Paquette et al., 2003).
Moreover, it is a part of the limbic system, which was mentioned
as a socially related area of the brain (Pagani et al., 2012; Catani
et al., 2013). Several ASD (Monk et al., 2009; Weng et al., 2010;
Lee et al., 2016) and ADHD (Anderson et al., 2014) studies have
revealed altered functional connectivity between the PHG and
other brain regions compared with the functional connectivity of
TD controls. Our work suggests shared deficits ofKi in the PHG.R
in the ASD and ADHD groups.

A novel finding in this study was the identification of an
increased tendency of Bi of the HIP.L in the ADHD group
compared with the ASD and TD groups. Studies from animal
models of ADHD have suggested abnormalities in neuronal
signaling systems within the hippocampus (Medin et al., 2013;
Sterley et al., 2013). A multimodal MRI study in children
with ADHD showed that hippocampal volumes were reduced
in children with ADHD and that hippocampal–orbitofrontal
cortex connectivity was also reduced in children with ADHD
(Posner et al., 2014). Another study also confirmed reduced
hippocampal volume in children with ADHD (Hoogman et al.,
2017). Furthermore, a study showed that synaptic plasticity of
neurons in the hippocampus may contribute to learning and
memory processes (Filippo et al., 2009), and dysfunction of
the hippocampus could affect learning processes and further
result in ADHD symptoms. However, in terms of ASD, Groen
et al. (2010) showed that the HIP.L was significantly enlarged in
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FIGURE 2 | Comparisons of hub distributions among the ASD, ADHD, and TD groups. (A) ASD hub distributions, (B) ADHD hub distributions, (C) TD hub
distributions; for the definitions of the abbreviations, see Table 1; regions in the black circle including the MTG.L, STG.L, PoCG.L, and MFG.R were additional hubs
of both the ASD and ADHD groups compared with the TD controls. In addition, the ACG.L in the black rectangle was identified as a hub in the ADHD and TD groups
but not in the ASD group. The regions were mapped onto the cortical surfaces using BrainNet viewer software (www.nitrc.org/projects/bnv/). Note that the
FN-weighted WM network for each participant was constructed using the AAL template.

FIGURE 3 | Structural connectivity (SC) differences. (A) The structural connectome network differences among ASD, ADHD, and TD groups identified by NBS; these
connections formed a single connected network with nine nodes and eight connections (p = 0.001, corrected). (B) Similar to A but between ASD and ADHD groups,
no connected components with significant differences were found. For the definitions of the abbreviations, see Table 1. The nodes and connections were mapped
onto the cortical surfaces using BrainNet viewer software (www.nitrc.org/projects/bnv/). Note that the FN-weighted WM network for each participant was
constructed using the AAL template.

adolescents with autism compared with that of the control group.
Schumann et al. (2004) also revealed enlarged hippocampi,
especially in a high-functioning autism group of 7.5- to 12.5-
year-olds. In agreement with previous studies showing structural
differences of the hippocampus between ADHD and ASD
patients, our findings suggest that regional characteristics of the
hippocampus might be a valuable brain network marker for
distinguishing ADHD from ASD.

In terms of hubs, we used the index of Bi to identify the hub
regions of the WM networks in the present study. Surprisingly,

the distributions of hubs in the ASD and ADHD groups were
almost the same. We found that most of the hubs were located
in the association cortex, which plays a central role in receiving
convergent inputs from multiple cortical regions (Mesulam,
1998). These findings are in accordance with several previous
studies of ASD (Takashi et al., 2014; Qian et al., 2018) and
ADHD (Sidlauskaite et al., 2015), which identified the association
cortex a critical node in both structural and functional brain
networks. Moreover, compared with the TD control group,
both the ASD and ADHD groups exhibited common alterations
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FIGURE 4 | Significant correlation of altered regional properties with ASD and ADHD traits. (A) Bi of the PHG.R was significantly correlated with SRS scores in the
full sample; (B) Bi of the HIP.L was significantly correlated with inattention subscale scores of the SNAP-IV in the full sample; (C) Enodal of the AMYG.R was
significantly correlated with SRS scores in the ASD group; (D) Ki of the AMYG.R was significantly correlated with SRS scores in the ASD group; (E) Ki of the PHG.R
was significantly correlated with SRS scores in the ASD group, and (F) Bi of the PHG.R was significantly correlated with oppositional defiance subscale scores of the
SNAP-IV in the ADHD group.

in hub distributions with four additional regions, including
the MTG.L, STG.L, PoCG.L, and MFG.R. ASD subjects were
found to have similar hub alterations comparable with ADHD
subjects, particularly in the frontal and temporal regions, which
is in accordance with the results of previous meta-analyses
and mega-analyses (Van Rooij et al., 2018; Hoogman et al.,
2019). According to the hub results, we found that the ASD
group lacked one hub region of the ACG.L compared with
the ADHD and TD groups. As hub regions are believed to
handle multimodal or integrative functions, damage to these
regions could dramatically affect the stability and efficiency
of the network (Achard et al., 2006). A 4-year longitudinal
study in healthy control participants reported that greater
age-related thinning of the left anterior cingulate cortex was
associated with less reduction in effortful control and in turn
is associated with improvements in socioemotional functioning
(Vijayakumar et al., 2014). Moreover, many studies performed
in both humans and rodents have shown that the ACG is
anatomically and functionally connected to a broad set of
regions engaged in social information processing (Chang et al.,
2012; Apps et al., 2016) and therefore is likely to represent an
information hub for the social network (Guo et al., 2019). In
addition, the ACG is part of the default mode network and
is a primary node of the salience network; both networks are
strongly implicated in autism (Zielinski et al., 2012). Although
the exact etiopathogenesis of ASD remains unclear, a consistent
biomarker could estimate patient impairment and guide tailored
rehabilitation. Our study reveals that the hubness of the ACG
might be a potential biomarker for the diagnosis of ASD,
distinguishing it from ADHD and neurotypical development.
Moreover, despite shared regional characteristics, we found

common structural connectivity patterns of both the ASD and
ADHD groups by NBS. We assumed that this might be partly
related to the common distribution of hubs between the two
groups. Evidence from Kernbach et al. (2018) also showed shared
dysfunctional connectivity in the default mode network, dorsal
attention network, and salience network in ASD and ADHD
subjects, which is consistent with our work.

Numerous prior studies have addressed the relationship
between the amygdala and autistic symptoms in ASD patients
(Gotts et al., 2012; Mundy, 2017). Our correlation results were
in accordance with previous studies revealing decreased Ki and
Enodal of the AMYG.R that was associated with severe autistic
symptoms in the ASD group. However, our correlation results
failed to exhibit a significant association between the regional
properties of the AMYG.R and SRS scores in the ADHD group.
This outcome might be because ADHD subjects in our study
showed no deficits that are considered ASD traits measured by
the SRS. Moreover, our correlation results showed a decreased
Bi of the PHG.R and Ki of the PHG.R; these values were also
significantly correlated with severe autistic symptoms in the full
sample and the ASD group, respectively. This common tendency
is consistent with the findings of a previous study, which showed
that the greater the degree of social impairment, the weaker the
connectivity between the PHG and other brain regions (Weng
et al., 2010). Notably, decreased Bi of the PHG.R was associated
with better performance on the oppositional defiance subscale in
the ADHD group, which might be an important complement to
previous studies. Notably, our results revealed that abnormal Bi
of the HIP.L was an ADHD-specific region in the brain network,
and our correlation analysis further showed the relationship
between altered Bi of the HIP.L and ADHD core symptoms
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(i.e., inattention) in the full sample; these findings suggest the
unique role of the HIP.L in the pathogenesis of ADHD.

In conclusion, our findings demonstrate that Bi of the
HIP.L and hubness of the ACG.L might be valuable markers
for distinguishing ASD from ADHD. While disorder-specific
abnormalities are present, overlapping results are consistent with
the growing clinical, molecular, and neuroimaging evidence of
commonalities (Rommelse et al., 2011). In the present study,
we found shared Ki alterations of the AMYG.R and PHG.R,
as well as shared global network properties, hub distributions,
and regional connectivity in the ASD and ADHD groups. In
addition, altered Enodal of the AMYG.R, Ki of the AMYG.R,
Bi of the PHG.R, and Ki of the PHG.R were associated with
autistic symptoms, and altered Bi of the PHG.R and Bi of
the HIP.L were associated with ADHD symptoms. Several
aspects of our study are intriguing. First, no previous studies
have concentrated on comparing topological properties of
WM structural networks in individuals with ASD, individuals
with ADHD, and TD controls concurrently. Our study is an
important complement to previous studies. Second, our study
analyzed different domains of topological properties, including
global-based and node-based (e.g., regional properties, hub
distributions, and regional connectivity) properties, providing
comprehensive evidence for both shared and distinct underlying
mechanisms in ASD and ADHD children and adolescents.
Third, identifying and validating the similarities and differences
of brain-based endophenotypes in the two disorders may be
beneficial for personalized medicine (Collins and Varmus, 2015).

LIMITATIONS

There are several limitations that should be addressed. First, as
mentioned previously, ASD and ADHD are neurodevelopmental
disorders with overlapping clinical presentations (Van der
Meer et al., 2012), while individuals without comorbid ADHD
symptoms were included as ASD subjects in our study. Future
analyses are required to explore the extent to which ADHD-
like comorbidities in ASD share common neural correlates with
ADHD. Second, this study used a deterministic tractography
tracking procedure that produces more image noise and is of
low resolution, making fiber tracking more error-prone because
of the “fiber crossing” problem (Mori and van Zijl, 2002). The
use of probabilistic tractography to define network edges could
be helpful in addressing this issue (Iturria-Medina et al., 2008).
Third, although the three groups did not differ significantly in sex

distribution, most participants were male, reflecting the higher
prevalence of boys with ASD and ADHD. Thus, our results may
not generalize to girls, and future studies can enroll more female
participants to further reveal sex differences in WM topological
properties. Finally, the present participants were not matched for
IQ; although the IQ effect was removed in all of the network
analyses, these data should be interpreted with caution.
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