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Abstract: Modern industrialization has led to the creation of a wide range of organic chemicals,
especially in the form of multicomponent mixtures, thus making the evaluation of environmental
pollution more difficult by normal methods. In this paper, we attempt to use forward stepwise
multiple linear regression (MLR) and nonlinear radial basis function neural networks (RBFNN)
to establish quantitative structure-activity relationship models (QSARs) to predict the toxicity of
79 binary mixtures of aquatic organisms using different hypothetical descriptors. To search for the
proper mixture descriptors, 11 mixture rules were performed and tested based on preliminary
modeling results. The statistical parameters of the best derived MLR model were Ny, = 62,
R? =0.727, RMS = 0.494, F = 159.537, Q* 00 = 0.727, and Q?preq = 0.725 for the training set; and
Niest = 17, R2 = 0.721, RMS = 0.508, F = 38.773, and qzext = 0.720 for the external test set. The RBFNN
model gave the following statistical results: Ni,in = 62, R2 = 0.956, RMS = 0.199, F = 1279.919,
Q%Loo = 0.955, and Q% peq = 0.855 for the training set; and Niest = 17, R* = 0.880, RMS = 0.367,
F =110.980, and qext = 0.853 for the external test set. The quality of the models was assessed by
validating the relevant parameters, and the final results showed that the developed models are
predictive and can be used for the toxicity prediction of binary mixtures within their applicability
domain.

Keywords: toxicity assessment; mixture; quantitative structure-activity relationships (QSAR);
forward stepwise multiple linear regression (MLR); radial basis function neural networks (RBFNN)

1. Introduction

It has been widely recognized that toxic chemicals in the environment do not exist
individually but are mixtures of each other; thus, research on both single and mixed
toxic compounds is important [1,2]. Today, water system pollution is worthy of attention.
With modern industrial development, various water bodies suffer from damage due to
industrial wastewater discharge and the discharge of pesticides, organic chemicals, and
other pollutants from all walks of life, with the destruction of water bodies posing a great
threat to the ecological environment and human health [3,4]. In the aquatic world, water
pollutants hardly ever exist as a compound alone but rather contaminate water bodies as
a mixture. Under existing human risk assessment regulations, the toxicity performance
of toxic chemicals is simply assessed by information on the toxicity of their individual
compounds, whereas the fact is that the toxicity performance of an individual compound is
vastly divergent from that of a mixture and that interactions between the components of
a mixture can lead to synergistic and antagonistic reactions of an individual compound,
resulting in significant changes in the toxicity performance of a mixture compared to a
single one [5]. To address these issues, a risk assessment of the toxicity of mixtures seems
to be greatly important and thus necessary.
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For the combined effects of mixture toxicity evaluation, one can usually resort to two
types of models: concentration addition (CA) and independent action (IA) models. As we
know, the conventional CA is the most common additive toxicity model, which is based on
the assumption that although the components of a mixture have the same mechanism of
action with the same target on the basis, the components do not interact with each other and
the rule has been highly endorsed by the US National Environmental Protection Agency
and the European Commission [6-8]. The IA model, also termed the reaction-additive
approach, assumes that the mechanisms and targets of action vary widely among the
components of the mixture [9,10]. The two traditional models have their own limitations,
although several new approaches based on the CA model as well as the IA model have
been developed to overcome this shortcoming, e.g., the generalized concentration addition
(GCA) model. CA, IA, and their optimization models also have a flawed side; they should
only be used when there are no interactions between the mixture components and the
mechanism of action of each component is known [11].

Currently, more methods are commonly employed to evaluate the toxicity of mixtures.
Quantitative structure—activity relationship (QSAR) modeling is one of the methods used
to predict the toxicity of environmental contaminants and is applied to the risk assessment
of mixtures in various research fields, such as physical chemistry, medicinal chemistry, and
toxicology [12]. As a computational method, the primary purpose of this method involves
the use of data statistics, analysis, and other mathematical methods to correlate the activity,
properties, and toxicity of a compound with its structure [13].As a theoretical study, which
uses a relatively small number of compounds to establish mathematical relationships for
predicting the properties of unknown compounds that fit the relationship, it reduces the
burden of experimental studies and provides an alternative to animal studies [14]. The es-
tablishment of stable and reliable quantitative structure-activity relationship models relies
on the calculation and selection of molecular descriptors. Thus, choosing the appropriate
mixing rules of the mixing descriptors used in the models is particularly important for
model quality owing to the complexity of the mechanisms of toxicity present [15].

QSAR methods have been used to evaluate the damage to aquatic ecosystems caused
by aquatic toxicants. For instance, in the article by Yagian Wang, seven phenolic and
four aliphatic phenolic derivatives, including 2,4,6-trihalophenol, 2,6-dilhalogenated-4-
nitrophenol, etc., in wastewater were studied by these methods [16]. In the work by
Stefano Cassani et al., QSAR models based on forward stepwise multiple linear regression
(MLR), partial least Squares regression (PLS), and associative neural network (ASNN)
methods were developed for triazoles and benzotriazoles, and the mixture toxicity between
them was predicted and analyzed [17]. In turn, the mixture effects of drug molecules on
aquatic ecosystems were studied by Kabiruddin Khan et al. [18]. An evaluation of the toxic
substances of interest, especially for the mixtures, is somewhat more useful.

The aim of this study was to develop stable QSAR models that can be used to predict
the toxicity of aquatic binary mixtures at the EC50 level. The models were developed by
a regression-based MLR modeling technique and a nonlinear-based radial basis function
neural networks (RBFNNs) modeling technique. In our work, to obtain the proper mixture
descriptors, multiple parameter combinations were used for preliminary modeling. Not
only were the parameter combinations considered as a simple CA, but additional 10
mixing rules were chosen for modeling comparisons. Finally, the best combination of
parameters was selected based on preliminary modeling results. A schematic diagram of
the entire approach is presented in Figure 1,and more details about the methods can be
found in Section 3).
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Figure 1. Schematic diagram of the entire approach involved in the development of the QSAR models.
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2. Results
2.1. Model Development for Individual Compounds

As shown in Figure 1, in the current study, 35 compounds present in the aqueous
environment were used for model development. First, a total of 614 descriptors were ob-
tained after molecular optimization. Then, 348 nonconforming descriptors were eliminated
after the CODESSA software heuristic method (HM), and 85 descriptors were pruned out
of the descriptor pool after descriptor relevance screening. Finally, 181 descriptors were
left to build the model. Through the forward stepwise multiple regression method, the
five representative descriptors were selected for the construction of both the MLR and the
RFBNNs models. (The total and the eliminated descriptor in this study are present in the
supplementary material.) To evaluate the models, the leave-out many cross-validation
(LOM) and Y randomization test methods were performed. For the individual groups, the
results are listed in Table 1.

Table 1. The 11 different mixing rules and statistic parameters of the individual compound model.

NO. Equation R? Rzad]- F Q%100
1 Dvix = D1+ XD, 0.730 0.711 39.395 0.731
2 Dyvix = (X3 D1 + X2D2)2 0.754 0.737 44.663 0.756
3 Dyvix = 4/ (Xq D1 + XzDz)z 0.735 0.716 40.419 0.805
4 Dyvix = vX1 D1+vXoDsy 0.525 0.493 16.145 0.498
5 Dyix = X1 2D1 + XDy 0.569 0.539 19.257 0.546
6 Dyix = X1 3D; + Xo3Dp 0.581 0.552 20.225 0.557
7 Dmix = v/ X1 3D1 + X23D, 0.561 0.531 18.681 0.541
8 Dyix = X1 D1? + XoDy? 0.734 0.716 40.304 0.737
9 Dyix = X1 D1 + XoD;® 0.726 0.707 38.665 0.727
10 Dvix = v/ X1 D13 + Xo D58 0.700 0.679 34.016 0.704
11 Dvix = v/ X1 D12 + Xp D52 0.715 0.696 36.689 0.719
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As seen from the table, five descriptors were chosen for the construction of the rela-
tionship through a forward stepwise multiple linear regression approach: (1) minimum
atomic state energy for a C atom (Min-C); (2) relative number of N atoms (Rn-N); (3) total
point charge component of the molecular dipole (Tot-pc); (4) maximum e-n attraction for a
C-H bond (Max- C-H); and (5) HOMO energy (HOMO). It is expressed by Equation (1):

pEC50 = 155.63—1.2453 x [Min-C]—7.7850 x [Rn-N] + 0.27723 x [Tot-pc]- O
0.33616 x [Max-C-H] + 0.23028 x [HOMO]

Nirain = 28, R? = 0.887, RMS = 0.398, F = 204.660, Q* 00 = 0.887, and R?,;eq = 0.938; and
Niest = 7, R2 = 0.987, RMS = 0.297, F = 374.332, and qzext =0.933. The statistical results
reveal that the model has excellent statistical reliability for the internal training set and
outstanding predictive power for the external test set (the minimum accepted value for
Q%1.00, Rzpred, and qzext is 0.5, and for R2 is 0.6; in addition, the smaller the RMS value, the
larger the F value, and the higher the quality of the model). In Table 2, the predicted pEC50
values, experimental pEC50 values, residual values, and individual compound names for
an individual compound by each of the two models are shown, along with figures depicting
the experimental and predicted value curves for the training and test sets under each of the
two models in Figure 2.

Table 2. Toxicity data of the individual compounds.

MLR RBENN
Nos Individual Compounds Toxicity (pEC50 (mol/L)) Toxicity (pEC50 (mol/L))
Experimental Predicted Residual  Experimental Predicted  Residual
1 Acetaldehyde 2.36 2.74 —0.38 2.36 2.7 —0.34
2 Propionaldehyde* 2.72 2.81 —0.09 2.72 2.74 —0.02
3 Butyraldehyde 3.25 2.82 0.43 3.25 2.76 0.49
4 Valeraldehyde 3.27 2.81 0.46 3.27 2.75 0.52
5 Benzaldehyde 3.43 427 —0.84 3.43 417 —0.74
6 p-Nitrobenzaldehyde 4.28 417 0.11 428 417 0.11
7 p-Terephthaldehyde 4.31 4.43 —0.12 431 4.27 0.04
8 p-Chlorobenzaldehyde* 4.25 4.25 0 4.25 4 0.25
9 p-Bromobenzaldehyde 43 431 —0.01 4.3 4.06 0.24
10 p-Hydrobenzaldehyde 4.54 4.09 0.45 4.54 3.98 0.56
11 p-Methylbenzaldehyde 3.82 3.93 —0.11 3.82 3.93 —0.11
12 p-Methoxybenzaldehyde 4.03 4.41 —0.38 4.03 431 —0.28
13 p-Dimethylaminobenzaldehyde 5.4 5.02 0.38 5.4 4.75 0.65
14 Malononitrile 2.55 2.16 0.39 2.55 2.13 0.42
15 Glycolonitrile 2.98 2.87 0.11 2.98 3.01 —0.03
16 a-Hydroxyisobutyronitrile 3.61 3.39 0.22 3.61 3.74 -0.13
17 Allyl cyanide* 1.45 2.14 —0.69 1.45 2.32 —0.87
18 Benzonitrile* 3.48 3.57 —0.09 3.48 3.69 —0.21
19 Benzyl cyanide 4.23 3.18 1.05 4.23 3.09 1.14
20 Acetonitrile 0.75 0.92 —0.17 0.75 0.92 —0.17
21 Acrylonitrile 151 1.68 —0.17 1.51 1.69 —0.18
22 Succinonitrile 0.36 0.85 —0.49 0.36 0.91 —0.55
23 Phthalonitrile 3.51 3.83 —0.32 3.51 4.05 —0.54
24 Lactonitrile* 2.01 2.36 —0.35 2.01 2.82 —0.81
25 Sulfamethazine 4.08 4.33 —0.25 4.08 4.37 —0.29
26 Sulfapyridine 3.84 4.52 —0.68 3.84 4.57 —0.73
27 Sulfamethoxazole 4.45 4.69 -0.24 4.45 47 —-0.25
28 Sulfadiazine 4.5 4.32 0.18 4.5 4.39 0.11
29 Sulfisoxazole 4.43 4.54 —0.11 4.43 4.57 —0.14
30 Sulfamonomethoxine 5.05 4.58 0.47 5.05 4.6 0.45
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Table 2. Cont.

MLR RBFNN
Nos. Individual Compounds Toxicity (pEC50 (mol/L)) Toxicity (pEC50 (mol/L))
Experimental Predicted Residual  Experimental Predicted  Residual
31 Sulfachloropyridazine 4.78 4.54 0.24 4.78 4.56 0.22
32 Sulfachinoxalin* 4.53 4.56 —0.03 453 4.58 —0.05
33 Sulfamethoxydiazine* 441 4.37 0.04 4.41 443 —0.02
34 Sulfamethoxypyridazine 4.36 4.4 —0.04 4.36 4.49 —-0.13
35 Trimethoprim 3.22 3.4 —0.18 3.22 3.58 —0.36
* Test set compound.
®  Training set
®  Training set 54
» = 2 m  Test set . é -n L
g m  Test set - g . = -’
? . u ] LY r.. I:;j N . . ’ .
E" i - EER L] .
‘,§ st = famom
; & ..éi 0. 929
R-Square 0. 899 14 0. 864
= Adj. R-Square 0.896 A = 0. 860
0 : 0 2 i 6
Experimental pEC50 value Experimental pEC50 value

Figure 2. Plot of the predicted versus experimental log (EC50), including the training and test sets,
from the MLR model and RBENN model.

An assessment of the correlation between the individual descriptors is necessary
for binary mixture descriptor generation, and when the pairwise correlation between
two individual descriptors fell below 0.8 [19], it was demonstrated that the individual
descriptors were highly independent of each other and were able to avoid chance correlation
effects due to interdependence, for which we examined the cross-correlation matrix of the
five descriptors, as shown in Table 3.

Table 3. Inter-correlation between the five descriptors.

Rn-N HOMO Tot-pc Min-C Max-C-H
Rn-N +1.000
HOMO —0.297 +1.000
Tot-pc +0.217 +0.630 +1.000
Min-C —0.049 —0.622 —0.696 +1.000
Max-C-H —0.423 +0.311 +0.197 —0.145 +1.000

2.2. Model Development for Binary Mixture Compounds

In the following, five descriptors were chosen to build the mixture compound models.
Regarding the generation of binary mixture descriptors, although it has been shown that
descriptors are generated simply by addition [20], which is not the case, it is based on
this that 11 different mixing rules (Table 1) were applied to generate the binary mixture
descriptors. Not only was the choice of the hybrid rule compared in terms of the evaluation
of the model quality, but also the ninth hybrid rule was more dominant in terms of the
contribution of the descriptors to the molar ratio [11], and thus this hybrid rule was finally
used for the construction of the hybrid model. The equation for this is

Daix = X1 Di° + XoD)® )
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In addition, it will allow molecules with larger descriptor values to be more dominant
in the case of large differences between the component descriptors.

Finally, the MLR for the mixture in which the equation expression is constructed based
on the mixing rules and the selected descriptors is as follows:

pEC50 = 93.276 + 6.874 x [DRn-N] + 0.003 x [DHOMO] — 0.011 x [DTot-pc]- 3
0.0000779 x [DMin-C] — 0.00001334 x [D Max-C-H]

Nirain = 62, R* = 0.727, RMS = 0.494, F = 159.537, Q* 00 = 0.727, and Q?p,;eq = 0.725; and
Niest = 17, R? = 0.721, RMS = 0.508, F = 38.773, and q?ext = 0.720.

When looking at the values of the statistical parameters for the internal validation, it
can be demonstrated that the model has good robustness in conjunction with statistical
reliability, while the external validation parameters of the model also indicate that the
model has a better predictive power. Furthermore, one has a higher requirement for the
model with the statistical covariates presented in Table 4. In a standard comparison of the
statistical parameters (R2> 0.6, qzext > 0.5, and k ~ 1 (k is the slope of the regression line
through the origin)), the quality of the model is in line with the requirements.

Table 4. The statistical results of the external test set for the MLR and RBFNNs models.

MLR RBFNN
R? 0.721 0.880
F 38.773 110.980
K 0.999 1.030

RMS 0.508 0.367

QPext 0.720 0.853

The set of relevant statistics predicted by the mixtures under each of the two models is
shown in Table 5; the graphs of the experimental and predicted values for the training set
as well as the test set are shown in Figure 3. Moreover, Figure 4 shows the scatter plots of
the residuals for all data under both models.

Table 5. The number of chemicals in the mixtures, ratio of toxic unit, experimental pEC50 mix,
predicted pEC50 mix, and their corresponding residuals.

MLR RBFNN
Mixture Chemicals in The Ratio of EXperifnentai/ Toxicity (pEC50 (mol/L)) Toxicity (pEC50 (mol/L))
No. the Mixture Toxic Unit PEC50 Mix (mol/L) Predicted Residual Predicted Residual
1* 1\14 1\1 244 2.1 0.34 2.75 —0.31
2 2\14 1\1 2.63 2.1 0.53 2.71 —0.08
3 3\14 1\1 2.77 2.1 0.67 2.72 0.05
4 4\14 1\1 2.78 2.09 0.69 2.72 0.06
5 5\14 1\1 2.8 3.1 -0.3 2.9 -0.1
6% 6\14 1\1 2.84 2.56 0.28 2.76 0.08
7 7\14 1\1 2.84 2.92 —0.08 2.86 —0.02
8 8\14 1\1 2.83 3.26 —0.43 2.71 0.12
9 9\14 1\1 2.84 3.22 —0.38 2.7 0.14
10* 10\14 1\1 2.85 3.34 —0.49 2.87 —0.02
11 11\14 1\1 2.83 3.03 —-0.2 2.99 —0.16
12 % 12\14 1\1 2.84 3.15 —0.31 3 —0.16
13 13\14 1\1 2.85 3.53 —0.68 2.86 —0.01
14 5\15 1\1 3.15 3.16 —0.01 3.22 —0.07
15 6\15 1\1 3.26 2.62 0.64 34 —0.14
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Table 5. Cont.

MLR RBFNN
Mixture Chemicals in The Ratio of gxperifnentall/ Toxicity (pEC50 (mol/L)) Toxicity (pEC50 (mol/L))
No. the Mixture Toxic Unit PEC50 Mix (mol/L) Predicted Residual Predicted Residual
16 7\15 1\1 3.25 297 0.28 3.34 —0.09
17 8\15 1\1 3.24 3.31 —0.07 3.28 —0.04
18 9\15 1\1 3.26 3.28 —0.02 3.29 —0.03
19 10\15 1\1 3.27 3.39 —0.12 3.01 0.26
20 11\15 1\1 3.22 3.09 0.13 2.64 0.58
21* 13\15 1\1 3.28 3.58 -0.3 2.58 0.7
22% 1\16 1\1 2.64 2.82 —0.18 3.34 -0.7
23 2\16 1\1 2.97 2.82 0.15 3.23 —0.26
24 3\16 1\1 3.39 2.82 0.57 322 0.17
25% 5\16 1\1 3.51 3.82 —0.31 3.84 —0.33
26 6\16 1\1 3.83 3.28 0.55 3.84 —0.01
27 7\16 1\1 3.78 3.064 0.14 3.83 —0.05
28 8\16 1\1 3.75 3.98 —0.23 3.86 —0.11
29 9\16 1\1 3.83 3.94 —0.11 3.83 0
30% 10\16 1\1 3.86 4.06 —0.2 391 —0.05
31 11\16 1\1 3.7 3.75 —0.05 3.73 —0.03
32 12\16 1\1 3.77 3.87 —0.1 3.61 0.16
33* 13\16 1\1 3.9 4.25 —0.35 4.45 —0.55
34 1\17 1\1 2.18 2.08 0.1 2.16 0.02
35 3\17 1\1 2.33 2.09 0.24 2.05 0.28
36* 4\17 1\1 2.34 2.08 0.26 2.06 0.28
37 5\17 1\1 2.34 3.09 —0.75 27 —0.36
38 6\17 1\1 2.36 2.55 —0.19 248 —0.12
39 7\17 1\1 2.36 29 —0.54 2.67 —0.31
40 * 8\17 1\1 2.36 3.25 —0.89 2.95 —0.59
41 10\17 1\1 2.36 3.32 —0.96 2.82 —0.46
42 11\17 1\1 2.35 3.02 —0.67 232 0.03
43 12\17 1\1 2.35 3.14 —0.79 2.37 —0.02
44 13\17 1\1 2.36 3.51 -1.15 2.45 —0.09
45 5\18 1\1 3.45 3.87 —0.42 3.7 —-0.25
46 * 6\18 1\1 3.72 3.33 0.39 3.83 —0.11
47 7\18 1\1 3.68 3.68 0 3.82 —0.14
48 8\18 1\1 3.66 4.03 —-0.37 3.88 —-0.22
49 * 10\18 1\1 3.74 41 —0.36 3.66 0.08
50 11\18 1\1 3.62 3.8 —0.18 3.15 047
51 12\18 1\1 3.67 3.92 —0.25 3.51 0.16
52 13\18 1\1 3.78 4.29 —0.51 3.84 —0.06
53 5\19 1\1 3.67 3.56 0.11 391 —0.24
54 6\19 1\1 425 3.02 1.23 3.88 0.37
55 % 7\19 1\1 4.14 3.38 0.76 3.95 0.19
56 8\19 1\1 4.08 3.72 0.36 4.06 0.02
57 9\19 1\1 426 3.68 0.58 4.08 0.18
58 10\19 1\1 4.36 3.8 0.56 3.95 0.41
59 13\19 1\1 4.5 3.99 0.51 4.49 0.01
60 25\35 1\1 5.08 4.42 0.66 51 —0.02
61 26\35 1\1 4.85 4.75 0.1 5.31 —0.46
62 27\35 1\1 55 4.75 0.75 5.5 0
63 28\35 1\1 5.42 4.58 0.84 524 0.18
64 * 29\35 1\1 5.45 4.85 0.6 5.96 —0.51
65 30\35 1\1 6.01 4.75 1.26 5.69 0.32
66 * 31\35 1\1 5.73 4.66 1.07 5.66 0.07
67 27\35 13396\1 3.49 3.94 —0.45 3.58 —0.09
68 27\35 8587\1 3.49 3.94 —0.45 3.58 —0.09
69 27\35 2747\1 3.49 3.94 —0.45 3.59 —0.1
70* 27\35 858\ 1 3.51 3.94 —0.43 3.59 —0.08

71 27\35 274\1 3.55 3.95 —-04 3.6 —0.05
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Table 5. Cont.

MLR RBFNN
Mixture Chemicals in The Ratio of gxperifnentall/ Toxicity (pEC50 (mol/L)) Toxicity (pEC50 (mol/L))
No. the Mixture Toxic Unit PEC50 Mix (mol/L) Predicted Residual Predicted Residual
72 27\35 85\1 3.67 3.96 —0.29 3.65 0.02
73 27\35 27\1 3.92 4 —0.08 3.77 0.15
74 27\35 15\1 4.08 4.04 0.04 3.91 0.17
75 27\35 4\1 4.52 4.26 0.26 4.57 —0.05
76 27\35 1\6 5.34 5.32 0.02 5.58 —0.24
77 27\35 1\21 5.43 5.48 —0.05 5.42 0.01
78 27\35 1\37 5.45 5.51 —0.06 5.38 0.07
79 27\35 1\116 5.46 5.54 —0.08 5.34 0.12

* Test set compounds; * A set: 1,6,11,16,21,26,31,36,41,46,51,56,61,66,71,76; * B set: 2,7,12,17,22,27,32,
37,42,47,52,57,62,67,72,77; * C set: 3,8,13,18,23,28,33,38,43,48,53,58,63,68,73,78; * D set: 4,9,14,19,24,29,
34,39,44,49,54,59,64,69,74,79; * D set: 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75.
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Figure 3. Plot of the predicted versus experimental log (EC50), including the training and test sets,
from the MLR model and RBENN model.

2.3. RBENN Results Analysis

Generally, nonlinear models have outstanding predictive power compared to linear
ones. In the current work, an RBFNN model was constructed using the same descriptors
as those used to construct the MLR model, and the quality of the model was evaluated by
randomly dividing the training set as well as the test set. In the construction of the RBFNN
model, the structure of the three-layer network was constructed as 5-nk-1, denoting the
number of cells in the input, hidden, and output layers. For the radial basis function (RBF),
the width (r) range was controlled by starting at 0.1 in increments of 0.1 until increasing to
4. The optimal width value found for the individual compound RBFNN model was r = 4,
and the optimal width value for the mixture was r = 1.6.
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Figure 4. Residuals of the training and test sets by MLR and RBFNN.

The prediction data of the RBFNN models for the individual compound and the
binary mixture are shown in Tables 1 and 2, respectively, and the plots of the experimental
and predicted values for the training set and the test set are shown in Figures 2 and 3,
respectively. In addition, the scatter plots of the residuals of the two models are also shown
in Figure 4. The statistical parameters for the group of the individual compounds were
Nirain = 28, R? = 0.864, RMS = 0.436, F = 165.309, Q*L 00 = 0.864, and R?,q = 0.847 for the
training set, and Niest = 7, R? = 0.941, RMS = 0.466, F = 79.300, and q?ext = 0.834 for the test
set, and it is apparent from the observations that the model exhibits superior reliability as
well as predictiveness. The statistical parameters of the nonlinear model for the mixture
were NIt = 62, R? = 0.956, RMS = 0.199, F = 1279.919, Q* 00 = 0.955, and Q?p;eq = 0.855
for the training set; and Niest = 17, R2 = 0.880, RMS = 0.367, F = 110.980, and qzext =0.853
for the test set. Analysis of the statistical results shows that the robustness of the model
as well as its predictive power is somewhat enhanced compared to the MLR modeling. In
addition, the other parameters of the model quality were calculated as shown in Table 4.

2.4. Validation of the Models

Y randomization tests are typically applied to confirm the degree of chance correlation
of regression models. In the current work, 10 tests were conducted for each of the two
models, and the amount of parameter validation for both models is shown in Table 6. As
seen from the table, the low R? and RMS, along with the high MAE values (see below),
indicated that the chance correlation of the models will barely exist [21].
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Table 6. The R2, RMS, and MAE values of 10 Y-randomization tests.

MLR RBFNN

R? RMS MAE R? RMS MAE
0.027 1.347 1.130 0.139 1.549 1.258
0.013 1.318 1.130 0.117 1.531 1.226
0.077 1.410 1.212 0.120 1.533 1.226
0.089 1.421 1.153 0.149 1.556 1.282
0.071 1.404 1.155 0.141 1.550 1.258
0.001 1.263 1.101 0.139 1.549 1.247
0.057 1.388 1.136 0.174 1.573 1.325
0.084 1.416 1.187 0.170 1.571 1.267
0.061 1.392 1.146 0.145 1.553 1.258
0.040 1.367 1.156 0.167 1.569 1.280

The expression for MAE is

MAE = (4)

where 7 is the number of the example, y@ is the experimental value of a single example,
and 7(?) is the predicted value of a single example.

In the following, a fivefold cross-validation algorithm was applied to assess the
robustness of the models built. The validation parameters, including R?, F, and RMS, were
used to evaluate the two models, as shown in Tables 7 and 8. According to the statistical
results, it is evident that the average training quality (MLR: R? = 0.727, F = 163.334, and
RMS = 0.496; and RBENN: R? = 0.935, F = 881.963, and RMS = 0.237) of both models together
with the average predictive quality (MLR: R? = 0.737, F = 41.147, and RMS = 0.494; and
RBENN: R? = 0.939, F = 233.952, and RMS = 0.243) has a good presentation, indicating that
both models have relatively robust properties.

Table 7. Validation of the MLR model.

Training Set R? F RMS Test Set R? F RMS
B+C+D+T 0.711 150.419 0.506 A 0.790 52.605 0.458
A+C+D+T 0.712 150.482 0.513 B 0.799 55.744 0.426
A+B+D+T 0.723 158.899 0.506 C 0.752 42.370 0.456
A+B+C+T 0.743 176.638 0.478 D 0.674 28.902 0.563
A+B+C+D 0.744 180.233 0.479 T 0.674 26.113 0.566

Average 0.727 163.334 0.496 0.737 41.147 0.494

Table 8. Validation of the RBFNN model.

Training Set R? F RMS Test Set R? F RMS
B+C+D+T 0.937 912.852 0.237 A 0.931 187.779 0.277
A+C+D+T 0.932 837.216 0.212 B 0.956 306.656 0.216
A+B+D+T 0.933 845.700 0.252 C 0.944 235.582 0.218
A+B+C+T 0.929 799.833 0.254 D 0.958 317,511 0.207
A+B+C+D 0.942 1014.217 0.231 T 0.904 122.236 0.298

Average 0.935 881.963 0.237 0.939 233.952 0.243

2.5. Model Applicability Domain Analysis

In the present study, the visual application domains of the models that can typically
be observed and analyzed using Williams plots are shown in Figure 5, where the horizontal
coordinate is the leverage value, the vertical coordinate is the standardized cross-validation
residual, the outlier criterion (read line) for the x coordinate is set to 3 m/n (m is the number
of 5 descriptors chosen and n is the number of 62 compounds used as the training set),
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and the outlier criterion (read line) for the y coordinate is specified as £ 30 (o = 0.967). In
Figure 5, it can be clearly observed that both the training set compounds and the test set
compounds are within the domain, indicating that a reasonably close relationship can be
established between the selected descriptors and the toxicity of the compounds, and within
the domain, the model is able to fit the relevant mixture toxicity predictions.
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Figure 5. The Williams plot of the training and external test sets.

2.6. Discussion of Selected Descriptors

In the present work, the built model can be used to predict the compounds, includ-
ing aldehydes (AHS), cyanides (CGS), sulfonamides (SAS), and methomyl (TMP). These
substances contain the C, H, O, N, and S atoms. Five descriptors, namely, HOMO, Rn-N,
Tot-pc, Max-C-H, and Min-C, were used to construct the QSAR model. HOMO and Rn-N
have a positive effect on the increase in toxicity, and Tot-pc, Max e-n, and Min-C-H have
a negative effect on the increase in toxicity. Rn-N is a constitutional descriptor, which, in
the present work, mainly concerning organic molecules containing cyano and nitrogen-
containing heterocycles in the compounds, is positively correlated with the increase in
toxicity. HOMO, Tot-pc, Max-C-H, and Min-C are quantum-chemical descriptors; HOMO
has the property of being an electron donor in a chemical reaction, and the higher the energy
is, the higher the toxicity value. Tot-pc is a class of descriptors describing the polarity of a
molecule, where the size of the molecular dipole depends on the distribution of the point
charges. MAX-C-H describes the electron-to-charge attraction of two atoms in a C-H bond.
When a bond is formed, more electronegative atoms participate in the bonding orbitals to
gain some of the electrons, and the electron-to-charge attraction decreases, resulting in a
decrease in electronegativity, which has a positive effect on the decrease in toxicity. Min-C
is a calculation of the energy of the ground state of the C atom; the lower the energy is, the
more stable and the lower the toxicity value.

3. Materials and Methods
3.1. Datasets

In the present work, 35 compounds widely present in aqueous environments, in-
cluding 13 aldehydes (AHS), 11 cyanides (CGS), 10 sulfonamides (SAS), and 1 methomyl
(TMP), were obtained from Mainak Chatterjee et al. [22]. In an aqueous environment, the
above compounds can cause damage to the environment in the form of either individual
compounds or in mixtures, which directly or indirectly have an impact on human health.
The names of the individual compounds, the experimental, predicted, and residual values
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(pEC50) by the MLR model and the RBFNN model are presented in Table 2 (pEC50 units
are in moles per liter).

Additionally, the data in Table 2 were randomly divided into 28 training sets as well
as 7 test sets (marked with asterisk) to assess the performance of the individual compound
models. The selection of molecular descriptors highly correlated with single toxicity in the
whole dataset.

Seventy-nine binary mixtures are listed in Table 5 along with the values obtained
by each of the two modeling techniques. Toxicity ratios for the binary mixtures of two
individual compounds and compositional information are also listed in this table. As
the QSAR studies usually did, binary mixtures of 79 species were randomly divided into
62 training sets as well as 17 test sets (marked with an asterisk) for assessing the quality of
the binary mixture models.

3.2. Molecular Descriptors Generation and Selection

In this study, the molecular descriptors were employed as quantitative representations
of the molecular structural features and were then used to build the relationship between
the representative descriptors and the target of the toxicity or activity. The process is
as follows: the structures of the individual compounds were first drawn by Chemdraw
(PerkinElmer Informatics, Inc: Massachusetts, MA, USA) [23], followed by preliminary
molecular optimization in the HyperChem 6.0 program (Hypercube, Inc., Waterloo, ON,
Canada) [24] software through molecular mechanics MM+ force fields. Then, the pre-
liminary optimized molecular structures were further optimized using the semiempirical
AM1 method in the Polak-Ribiere algorithm until the root mean square gradient reached
0.001 kcal/mol. Last, the molecular structures were optimized in the MOPAC 6.0 software
package (Indiana University: Bloomington, IN, USA) [25], and the structure files derived
from HyperChem and MOPAC were selected for structural descriptors, geometric descrip-
tors, electrostatic descriptors, quantum chemical descriptors, and topological descriptors
using the CODESSA 2.63 program (University of Florida, Gainesville, FL, USA) [26] af-
ter optimization with the same root-mean-square gradient. Furthermore, 7 of the other
descriptors obtained from HyperChem (including logP) were added to the descriptor pool.

Doing this, we needed to find the representative descriptors that are more related to
the toxicity of the single compounds. Thus, a heuristic method in CODESSA software was
employed, which can be used to calculate a pool of relevant descriptors and subsequent
determinations of the most suitable descriptors for the construction of the model.

The generalization of the descriptors for the toxicity assessment of the binary mixtures
is a challenge compared to the generation of descriptors for individual compounds. Nor-
mally, the approach applied to generating mixture descriptors is the weighted descriptor
generation approach [27]. Supposing that the hypothetical descriptors do not follow the
simple addition, other calculation rules have been performed [11,28-31], from which the
optimal mixture rule was determined based on the preliminary modeling results. For each
mixing rule, the selection standard was considered in terms of the reliability and robustness
of the model quality (R? (correlation coefficient), RZad]- (adjusted correlation coefficient), F
(Fisher test), and Q%1 oo (leave-one-out correlation coefficient)), and the expression of the
equation, as shown in Table 1.

3.3. Model Building Technique
3.3.1. Multiple Linear Regressions

As the easiest model-building statistical technique, MLR has been commonly imple-
mented in quantitative constructive relationship models to solve regression analysis prob-
lems. It can predict the values of two or more explanatory variables from the corresponding
variables, and it is essentially an extension of ordinary least squares (OLS) regression
involving two and more explanatory variables as a mathematical statistical technique.
Typically, multiple linear regression uses molecular descriptors as X variables to establish
a mathematical relationship with the desired activity value Y (pEC50), which involves
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dividing the overall dataset into a test set and a training set. In a regression model, the
regression coefficient bn and the intercept by of the model have the following relationship:

Y =bo+byxy +boxp+ - -+ byxy (5)

Regularly for the model, reliability and predictiveness are generally assessed using
statistical parameters, including R?, RMS, F, Q*1.00, Rzpred/ qzext, etc. For the development
of the MLR model, we have chosen to do this in the CODESSA 2.63 program (University of
Florida, Gainesville, FL, USA).

3.3.2. Radial Basis Function Neural Networks (RBFNN)

During the construction of the QSAR, one can consider not only the best multivariate
linear model available by constructing the molecular descriptor versus the desired activity
value (pEC50) but also some nonlinear models to establish the relationship, such as the
RBFNN. The specifics of radial basis function neural networks have been described in
several papers [32,33]. Briefly, a radial basis function neural network consists of an input
layer, a hidden layer and an output layer. The input layer is virtually just an input vector
and does not involve the processing of information; the hidden layer consists of k radial
basis function (RBF) units; and the output layer is composed of linear neurons (LNS) [32,34].
In general, the radial basis function (RBF) serves as a Gaussian function defined by the
center (Cj) and the width (Rj). The radial basis function (RBF) implements the nonlinear
transformation by measuring the Euclidean distance between the input vector (X) and the
center of the radial basis function (Cj):

hj = exp(— | X —cj|l 2/712) (6)
yi(X) = ) wiihi(X) + by @)
=

where y stands for the kg, output unit of the input vector X, wy; for the weight relationship
between the ky, output unit and the jy, implied layer unit, and by, for the respective bias.

The determination of centers and width plays a decisive role in model development.
Multiple methods are used to select centers. In the current study, we chose to employ a for-
ward subset selection routine to select the centers from the training set samples. Regarding
the width selection, the width range was from 0.1 to 4, in increments of 0.1, and the best
width was ultimately selected. Afterwards, the connection weights between the hidden
and output layers were selected using the least squares method. For the development
of the RBFNN model, we have chosen to do this in MATLAB software (Online access:
https:/ /www.mathworks.com/products/matlab.html, access on 25 November 2021).

The RBENN model was evaluated using the same statistical parameters as the MLR model.

4. Conclusions

Toxicity estimation of 79 aquatic mixtures was performed by quantitative constitutive
relationship modeling through MLR and RBFENN methods. Eleven different mixing rules
of the hypothetical descriptors were considered to obtain the proper models. Statistical
results show that the developed MLR models are more robust as well as predictive, while
the RBENN models have a better model quality compared to the former. Furthermore, the
statistical results show that the developed descriptors have excellent performance for the
toxicity of mixtures wirhin the applicability domain range. We conclude that the models
can be effective for the toxicity prediction of aquatic contaminants and have practical value
for ecological assessment.
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