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Abstract

We present a fast mapping-based algorithm to compute the mappability of each region of a reference genome up to a
specified number of mismatches. Knowing the mappability of a genome is crucial for the interpretation of massively parallel
sequencing experiments. We investigate the properties of the mappability of eukaryotic DNA/RNA both as a whole and at
the level of the gene family, providing for various organisms tracks which allow the mappability information to be visually
explored. In addition, we show that mappability varies greatly between species and gene classes. Finally, we suggest several
practical applications where mappability can be used to refine the analysis of high-throughput sequencing data (SNP
calling, gene expression quantification and paired-end experiments). This work highlights mappability as an important
concept which deserves to be taken into full account, in particular when massively parallel sequencing technologies are
employed. The GEM mappability program belongs to the GEM (GEnome Multitool) suite of programs, which can be freely
downloaded for any use from its website (http://gemlibrary.sourceforge.net).
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Introduction

Dramatic advances in massively parallel sequencing technolo-

gies (also known as high-throughput sequencing, HTS or next-generation

sequencing, NGS) have extended the application of sequencing of

nucleic acid to many problems in genomics, epigenomics, and

transcriptomics. Whole or targeted genome sequencing and re-

sequencing, genome-wide profiling of chromatin status and

transcription factor binding through ChIPSeq, quantitative

estimation of transcriptome abundance through RNASeq, meta-

genomic and metatranscriptomic sequencing are a just a few

examples. HTS technologies typically produce huge amounts of

short sequences (sequence reads, or simply reads), with different

lengths and characteristics (qualities, error rates, structural designs,

etc.) depending on the technology employed. A fundamental step

of the post-sequencing protocol often consists in efficiently aligning

the sequence reads onto a genome used as reference. Numerous

short read aligners (or mappers) have been developed to achieve this

goal with suitable efficiency [1,2]. However, owing to the non-

random nature of genomes –which include a significant propor-

tion of structurally, evolutionary and functionally important

repetitive sequences [3,4]– one key part of the mapping step is

to discern reads that can be aligned to only one single location

(uniquely mapping reads) from reads matching multiple possible

locations in the reference (multiply mapping reads). The latter are

often interpreted differently by existing mappers, and sometimes

even altogether discarded during the analysis steps subsequent to

mapping. The specific interpretation of multiply mapping reads

may have implications on the outcome of downstream analysis, in

particular when reads are used to obtain quantitative estimates.

Typical examples are the determination of transcription factor

binding affinity (in ChIPSeq experiments) or transcript abundance

(in RNASeq experiments). Thus, for a given HTS run one would

aim at maximizing the number of unique mappings obtained, in

order to exploit most of the signal from the biological input.

For a given genome, the proportion of uniquely mapped reads

depends mostly on the length of the sequence reads produced by

the experiment, and on the number of mismatches allowed during

the mapping step [5]. Therefore, given the technical specifications

of the sequencing experiment it is possible to compute a priori the

mappability of the whole sequence, i.e., the inverse of the number

of times that a read originating from any position in the reference

genome maps to the genome itself – thus identifying, for instance,

the regions that are truly ‘‘mappable’’, that is those producing

reads which map back unambiguously to themselves. Regions with

high mappability will tend to produce unique mappings, while

regions with low mappability will tend to produce ambiguous

mappings. Mappability information can therefore be used a priori,

as a guide to fine-tune the design of an HTS experiment in order

to increase the number of uniquely mappable reads.

In addition, the mappability information is crucial when

quantitative estimates are produced. Indeed, mappability has

been originally introduced and used to carry out quantitative

studies of binding affinity from ChIPSeq experiments, where the

ratio of input versus control peaks cannot be exactly assessed

unless the proper normalization factor is known [6]. In these
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studies the mappability of various genomes has been investigated

without considering mismatches. However, one must make

provision for sequencing errors inherent to HTS technologies, as

well as for polymorphisms or variants between the individual

genome/transcriptome actually sequenced and the genome used

as a mapping reference. Therefore, it is customary to allow for

mismatches when mapping reads; the 0-mismatch mappability is

not sufficient in these cases. Unfortunately, computing the

mappability of a sequence up to even a few mismatches is usually

a task orders of magnitude more expensive than when no

mismatches are allowed, and hence not one routinely performed.

In this work, we introduce and describe a mapping-based

method to compute the mappability of an entire sequence of the

size of a mammalian genome up to an arbitrary number of

mismatches, which is guaranteed to be comparatively fast even for

short reads and very redundant sequences. The method produces

the exact mappability in the case of 0 mismatches, and a very good

approximation of it if a non-zero number of mismatches is

allowed. For different number of substitutions, we then examine

the genome-wide mappability profiles of four model organisms

(human, mouse, fly and nematode), for which we also produced

visualization schemes as part of the UCSC genome browser [7].

Second, we study the mappability of the transcribed genomic

regions. Since a high proportion of transcripts in a genome exhibit

repetitive sequences –such as repeated functional units or retro-

transposons (LINEs and SINEs)– which can influence their

mappability profiles, we use our mappability method to explore

the variations in mappability of different classes of transcripts,

taking the GENCODE annotation [8] as a reference. We show

that indeed mappability profiles vary greatly with the transcript

class (protein-coding genes, non coding RNAs, orthologous

families, etc). We thus propose an improved measure of RNA

quantification which takes into account the mappability at the

level of the single locus.

Third, we investigate how the use of paired-end sequencing or

mate-pair libraries relates to mappability. To this end, we predict

and quantify how many of the pairs obtained from a typical

DNASeq experiment can be rescued by taking advantage of the

uniqueness of one of its reads and of the distance information for

the pair.

In conclusion, we are able to precisely link our findings to the

design of a better experiment when the focus is on some particular

element in the genome. Our results suggest that the mappability is

an important concept to be taken into account when one is trying,

for instance, to re-sequence a particular genomic region, or to

produce quantitative estimates of transcript abundance from

RNASeq experiments.

Methods

Formally, our definition of the mappability is the following.

Given some read length k, the k-frequency Fk(x) of a sequence at a

given position x corresponds to the number of times the k-mer

starting at position x appears in the sequence and in its reverse

complement, considering as equivalent all the k-mers which differ

by less than some predefined alignment score (like a given number

of mismatches–for the sake of simplicity, in the rest of this paper

we will assume a framework where only substitutions, and neither

insertions nor deletions, are allowed during alignment). For

instance, the 2-frequency up to 1 substitution of the string

TICTACTOE at positions 1 to 8 is given by the values

3,2,2,3,2,2,3,1. It is possible to define an analogous quantity, the

k-mappability or k-uniqueness Mk(x), as the inverse of the frequency:

Mk(x)~1=Fk(x). While the frequency usually varies by several

orders of magnitude, the mappability has the advantage of always

being a quantity between 0 and 1, and such that the highest

possible values of 1 correspond to uniquely mapping position

(here, and throughout all the paper, by ‘‘unique’’ we mean

‘‘unique up to the specified number of mismatches’’).

Various methods can be employed to compute the exact

frequency (and hence the mappability) of a sequence. The simplest

one is a brute-force approach, consisting in the explicit

enumeration and counting of all the k-mers present in the

sequence; it is practical only for very short strings. More

sophisticated strategies might rely on the traversal of some string

data structure –like a suffix tree, a suffix array or a hash table– to

directly obtain an enumeration of the k-mers together with their

counts; this is what has been used in [5,6]. All such approaches,

however, become problematic if mismatches are allowed: the

authors of [6] report for their method a slowdown of a factor of

400 when 2 substitutions are permitted, and they do not go further

than evaluating the mappability of just 1 Mb of the human

genome using such an edit distance.

In the case of mismatches, essentially, the problem of computing

the frequencies becomes equivalent to that of exhaustively

mapping all the positions in the sequence after a suitable choice

of the alignment parameters. At a first glance, this goal would

seem well within the range of existing high-performance mappers,

which may easily attain speeds of several tens of millions of

mapped reads per hour; assuming a mapping speed of 107 reads

per hour, for instance, it would appear possible to compute the

frequencies of the human genome in only about 300 hours, with

the additional possibility of distributing the computation among

different processors.

There are two algorithmic issues, however. The first one is that

most of the available mappers are not based on exhaustive

alignment algorithms; this fact implies that they are unable to

report the exact count of all the existing matches for a given

sequence (although they can usually return a more or less precise

approximation of such a quantity). The second problem concerns

performance: most mapping algorithms are usually optimized to

quickly report a few matches and most of them become (much)

slower when requested to perform full counting queries. In

practice, the speed of all implementations of mapping algorithms

always shows some dependency on the number of matches found

in the reference; this means that aligning one million reads which

all map to thousands of locations in the genome will be (much)

slower than aligning one million reads mapping uniquely.

Performance degradation may become very relevant in the case

of a brute-force enumeration of a sequence in a genome (for

instance, it is still possible to find in H.sapiens genomic locations

having 50-mappability as large as 10,000 when 2 substitutions are

allowed – like ACGGTGGCTCATGCCTGTAATCCCAGC-

ACTTTGGGAGGCCGAGGCGGGCG, which appears 15,323

times with less than 3 nucleotide substitutions). In general,

performance will be worse when the mappability of a transcrip-

tome is being evaluated, and dramatically worse when small values

for k are used, as in typical ChIPSeq or MNaseSeq experiments.

In our framework, the first problem is automatically taken care

of by our own genome indexing implementation, which provides

for fast exhaustive searches and counting queries [2]. We address

the second issue by noting that most of the degradation in

performance actually comes from the fraction of k-mers showing

high frequencies, where thousands of k-mers exist which are

equivalent within the specified number of mismatches; thus, most

of the computational time is actually spent mapping such set of k-

mers over and over again, each time any single element of the set is

mapped.

Fast Computation of Genome Mappability
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To avoid the latter problem at least in part, we perform the

following approximation: each time a k-mer is mapped within the

given number of mismatches to a set of positions S, one can

pretend that all the positions in S have already been mapped,

assign to them a frequency value equal to the number of elements

in S, and skip them altogether from that point on. Such a strategy

is not enough to completely factor the redundancy out –it is

effective in eliminating only the equivalent k-mers occurring in the

sequence after the k-mer being mapped–, and is only exact for k-

frequencies when no substitutions are allowed. From a practical

standpoint, however, the mappability computed in this way is a

good approximation of the exact mappability, and, more

importantly, is computationally feasible even when k is small.

The complete algorithm is as follows.

Algorithm 1 (Fast mappability computation) To compute

the k-frequencies of a sequence of length n up to m mismatches, given an

approximation parameter tw0:

1. initialize and zero an array F of n numbers

2. for all positions i in the sequence do

if F ið Þ~0 then

(a) take the k-mer S starting at position i

(b) compute all the positions P in the sequence to which S maps up to m

mismatches

(c) set F ið Þ : ~cardinality Pð Þ
(d) if cardinality Pð Þwt then

for all positions j in P do

if F jð Þ~0 then

set F jð Þ : ~cardinality Pð Þ
else

set F jð Þ : ~ max cardinality Pð Þ,F jð Þð Þ

3. output the array F .

When mw0, the proposed algorithm provides approximated

values for the frequency of positions which are not unique in the

sequence: this is due to the fact that, given two different k-mers K1

and K2, the set SK1
of locations equivalent to K1 up to the given

number of mismatches is in general different from the set of

locations SK2
equivalent to K2; hence, considering

cardinality SK1
ð Þ as the frequency of both K1 and K2 is an

approximation. However, as stated above the algorithm is

acceptable from a practical standpoint since:

1. it is exact for the whole sequence when m~0

2. when mw0 it still gives correct values for the frequency of the

k-mers that are unique within the specified number of

mismatches, as a k-mer Ki can belong to the set SKj
of

locations equivalent to a previously occurring k-mer Kj only if

it is not unique; in addition, the parameter t allows to

propagate an approximated frequency value only when it is

sufficiently large

3. the difference between approximated and real frequency can

be large in absolute terms, but in the majority of cases it

represents only a relatively small fraction of the correct value,

since the optimization affects the locations in proportion to

their redundancy.

Another important observation is about the presence of the

maximum function in the else branch of case (2d): this choice

regulates the case when a k-mer is hit more than once during the

mapping of other similar k-mers. Since the frequency of the k-mer

will not be directly recomputed due to the chosen optimization

strategy, the maximum of all the possibilities is taken as its value, to

make sure that an underestimation of the actual value is avoided as

much as possible.

Finally, we emphasize that when the exact mappability is

needed the approximation can always be turned off by setting

t~?: this produces exact frequencies, albeit at the price of

possibly much longer running times if k is small and/or the

genome is very repetitive.

We made use of the latter property to test our approximation,

and assess how well it correlates with the exact results. To this end

we performed two runs for each example, one with the value of t
automatically selected by the program, and another with t~?;

we then compared the results thus obtained.

We applied such a procedure to both the complete genome of

C.elegans (using the default value of t~6 versus ?, see Figure 1)

and the chromosome 19 of H.sapiens (with the default t~7 versus

t~?, see Figure 2); being the richest of its genome in segmental

duplications and paralog genes (the 26% of the sequence, with

respect to a whole-genome 12% average), human chromosome 19
is particularly suited as a test on the scale of a mammalian

chromosome. In both cases we chose an intermediate k-mer size of

50 bp. Each panel of the aforementioned Figures focuses on a

different set of k-mers, all those belonging to the same frequency

bin in terms of our 8-bit reduced-precision representation of the

mappability (see next Section) when no approximation is applied.

In case of exact computation, such k-mers will all fall into one

single bin in their respective panel; when the approximation is

active, however, some k-mers will migrate to other bins of the

same panel, since their estimated frequency is now different from

the actual value – and the better the approximation, the more the

k-mers staying in their correct bin.

As expected, both Figures show that the approximation is good:

in each panel the distribution of k-mers is usually centered around

the correct frequency value, and the number of approximated

values which are very overestimated or very underestimated is

uniformly low. Furthermore, k-mers having frequencies of less

than t only appear in their respective bins, as they should after our

thresholding rule. However, one can better appreciate the value of

the approximation only taking into account another important

point: in general, the number of genome positions having a

frequency above the threshold t is very low (in the case of C.elegans,

less than 5%; less than 10% for human chromosome 19); hence,

the number of incorrectly estimated high-frequency genomic

locations will be even lower, and small in absolute terms. In the

case of human chromosome 19 and t~7 illustrated in Figure 2, for

instance, almost the 94% of the k-mers maintain their correct

frequency bin after approximation; and more than the 97% fall

within 3 bins of distance from the correct one. It should also be

mentioned that, being mappability defined as the inverse of the

frequency, an underestimation/overestimation of the frequency at

a very redundant genomic location will not result in large

differences in the value of the mappability for that location, since

both the true and the estimated value will be large. We concluded

that our approximation is sound for most practical uses.

Finally, it is evident that the proposed algorithm is still easily

distributable, in particular in a multi-threaded shared-memory

model (so far, a multi-core parallelization has proven sufficient for

all of our computations).

Implementation
The algorithm presented in the previous Section has been

implemented on top of the GEM (GEnome Multitool) library for

the indexing of HTS data [2]. The library provides a very fast C

mapping engine, based on the Burrows-Wheeler Transform [9]

and custom mapping algorithms (whose description is out of the

Fast Computation of Genome Mappability
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Figure 1. Effect of our approximation on the frequencies of the C.elegans genome, for k~50 and m~2. Both the exact and the
approximated data were obtained with gem-mappability, the former by setting the value of parameter t to ?, the latter with the default value of
t~6 automatically selected by the program after the length of the C.elegans genome. Each panel shows how our approximation scatters the k-mers
originally populating a non-approximate 8-bit frequence bin into more than one single approximate bin. Using the panel [9–10] as an example, one
can see that about 80% of the k-mers fall into the correct bin, while the remaining 20% is dispersed in bins from [7–8] to [24–28], with most of the k-
mers staying in bins close to the correct one. In addition, the color of the bins shows that such a 20% of k-mers corresponds in absolute terms to a
small number (in this example about the 90% of the k-mers of the genome is unique and hence falls into the [1–1] bin, which, as explained in the
text, is not perturbed by our approximation owing to the good properties of the latter).
doi:10.1371/journal.pone.0030377.g001
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Figure 2. Effect of our approximation on the frequencies of chromosome 19 of H.sapiens, for k~50 and m~2. Both the exact and the
approximated data were obtained with gem-mappability, the former by setting the value of parameter t to ?, the latter with the default value of
t~7 automatically selected by the program after the length of chromosome 19 of H.sapiens. Each panel shows how our approximation scatters the k-
mers originally populating a non-approximate 8-bit frequence bin into more than one single approximate bin.
doi:10.1371/journal.pone.0030377.g002
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scope of this paper, and will be presented elsewhere). The C

library can be accessed via various interfaces written in higher-

level programming languages, notably Objective Caml [10]; such

interfaces allow to prototype and implement new algorithms in a

concise way.

One relevant difference between the algorithm of last Section

and our implementation is that we chose to encode the frequency

array as reduced-precision 8-bit numbers, each one representing a

range of frequency values; low numbers encode a single value

(frequency equal to 1, 2, and so on) while higher numbers

represent larger and larger intervals. Although different choices

might have been possible, this solution has the clear advantage of

providing a consistent reduction in memory consumption. In

addition, storing the frequency values at full resolution is hardly

useful, since we are usually interested in knowing the exact

frequency only when it is small (typically values ranging from 1 to

10), while we can usually get by with its approximate value when it

is in the range of the hundreds, thousands or more. The results are

output as a pseudo-multi-FASTA file, where the frequency at each

position is encoded as a printable ASCII character.

Finally, we note that along with the mappability program we

also provide a fast retriever; such a program allows the user to pre-

index the obtained mappability files (which are huge), and to

subsequently query them in an efficient way.
Benchmarks. We evaluated the program on an Intel

machine with 8 Xeon X5570 CPU cores clocked at 3 GHz,

using 8 cores for all the tests. Such a number of processors has

been chosen to reduce the wall-clock running time as much as

possible; however, it is likely to be suboptimal, since due to the

competition in memory access the efficiency of shared-memory

distributed computation decreases when many threads are used.

Typical running times and memory occupancy for various

genomes are shown in Table 1. When the approximation is active,

the whole-reference mappabillity can usually be computed within

a few hours. On the other hand, in the bottom-most panel one can

find the timings obtained when setting the parameter t to ?: this

has the effect of turning off our approximation, and is indeed

equivalent to performing a brute-force mapping of all the k-mers

in the genome. For the H.sapiens genome, such a method is several

times slower than the approximate one at k~100, and completely

unfeasible at kv30, thus confirming that the approximation is

necessary when k is small. On the other hand, a brute-force

approach might be practically feasible at large k, albeit at the price

of much longer running times.

Visualization of mappability. The mappability scores

produced by our program can be easily converted to other

formats, like those suitable for display in the UCSC genome

browser [7]. To this end, we just have to compute the mappability

at each position out of the corresponding frequency. We note

again that the mappability naturally lends itself to a good

visualization, since it always has a value between 0 and 1, with

the highest scores corresponding to uniquely mapping positions.

On the other hand, the direct visualization of frequency would be

problematic: its dynamic range is large –with values possibly

varying from 1 to millions–, but at the same time the most

interesting region is usually that of small values.

We have created mappability tracks for multiple genome species

and annotations, including human (both assembly versions Hg18

and Hg19/GRCH37) and mouse (mm9) genomes. At the time of

this writing such tracks are integrated in the official UCSC

genome browser (see Figure 3), and hence can be immediately

explored on-line without the need of any further preparation from

the user. For other organisms –mainly D.melanogaster (dm3) and

C.elegans (ce6)– we also generated additional tracks which are not

part of the UCSC genome browser; they can be obtained from the

authors upon request, and subsequently visualized as custom

tracks. In case no precomputed track is available for some

organism, the users can easily compute it on their own even on

modest hardware.

Results

The mappability of eukaryotic genomes
Given a random sequence of length ‘ drawn from an alphabet

of A symbols, we define its proper length ‘P as the shortest length

such that any string of length ‘P is expected to occur in the

sequence about once, that is ‘P : ~ logA ‘ð Þ. For instance, the

proper length for the human genome is 17 (since 416
v6Gbv417),

while that of D.melanogaster is 15, and ‘E:coli
P only 13. Hence, for any

sequencing read length &‘P (a condition already satisfied even by

‘‘short’’ sequence reads of 36 bp produced by early versions of

some HTS technologies) one would expect the genome mapp-

ability to be 1 almost everywhere – that is, that most reads map

uniquely.

Table 1. Performance of gem-mappability for different parameters and genome species.

t~7 D.melanogast. D.melanogast.

m = 2, k = 36 m = 3, k = 75

Time v8|12 mins v8|6 mins

Mem. 0:7 GB 0:7 GB

t~7 H.sapiens H.sapiens H.sapiens H.sapiens H.sapiens H.sapiens

m = 0, k = 36 m = 1, k = 24 m = 2, k = 36 m = 2, k = 50 m = 3, k = 75 m = 4, k = 100

Time v8|30 mins v8|4 1
4

hrs v8|5 1
2

hrs v8|2 1
4

hrs v8|3 hrs v8|2 3
4

hrs

Mem. 7 GB 7 GB 7 GB 7 GB 7 GB 7 GB

t~? H.sapiens H.sapiens H.sapiens

m = 2, k = 36 m = 2, k = 50 m = 4, k = 100

Time v8|8 days v8|1 day v8|8 hrs

Mem. 7 GB 7 GB 7 GB

We used 8 cores for all the tests. Wall-clock times are reported. In the lowest panel, the timings are those obtained when computing the exact mappability (i.e., with our
approximation switched off).
doi:10.1371/journal.pone.0030377.t001
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However, this is often not the case. There are two main reasons

for this deviation from the expected behavior:

1. genomes are far from being random; they are the result of a

long evolutionary history that includes frequent duplications,

involving the whole genome or specific regions [11]. The result

is a fractal-like structure with repetitions of different nature

[12] appearing at different levels of resolution [13] – from large

structural variants, including segmental duplications [14], to

copy number variations [15], long and short interspersed

repeats, paralogous gene families, pseudogenes, and modular

domains appearing within the sequence of functionally diverse

genes [16]

2. mismatches are often allowed when mapping HTS reads, and

hence in mappability computations. As a result, they lower the

number of unique k-mers in the genome.

Even relatively long sequences may map to multiple locations,

in particular when mismatches are allowed. Using our method, we

have sought to characterize the mappability profiles at a whole

genome level for four model organisms (human, mouse, fly,

nematode): in Table 2 we extend the results obtained in [6] –

where the mappability was computed with 0 mismatches– by

listing the number of uniquely mapping positions in the case of 2

substitutions for three arbitrarily defined read lengths (36, 50 and

75 bp) frequently used in HTS experiments. As expected,

mappability correlates with sequence length and number of

mismatches: the longer the reads and the smaller the number of

mismatches, the higher the uniqueness of the sequence reads. It is

interesting to note that with the parameters typically used in

ChIPSeq experiments (36-bp reads and two substitutions) a large

fraction of eukaryotic genomes is not uniquely mappable: in

principle, even exact sequence reads obtained from such loci

cannot be inequivocally assigned to their originating positions. As

we have already pointed out, this has obvious important

implications for quantitative estimates (for instance, transcription

factor binding affinity or intensity of chromatin modifications).

This fraction represents 30% of mammalian and insect genomes at

36 bp; extending the read length increases the uniquely mappable

fraction, but even with longer reads of 75 bp (and maintaining

constant the number of substitutions, that is effectively increasing

the stringency of the mapping) almost 20% of the human genome

remains unmappable. Even a very restrictive prescription which

requires exact mapping (0 mismatches) of 75-bp sequence reads

leaves *10% of the human genome unmappable.

While there is a negative correlation between the uniqueness of

the genome and its repetitive content, the relationship between

genome structure and mappability is more complex. For instance,

while the proportion of repeats in the D.melanogaster genome is

lower than that of mammalian genomes, the fraction of its

mappable genome is not larger. Interestingly, in the fly genome, in

contrast with the other genomes analyzed, uniqueness does not

seem to increase substantially with the read length when moving

from 36 to 75 bp. Indeed, with 75-bp reads and two substitutions,

about 20% of the mammalian genome remains unmappable, but

the proportion raises to 30% in the case of the fly genome. Even

after removing the heterochromatic fraction of the D.melanogaster

genome –which mainly corresponds to repetitive sequences and

could lead to an underestimation of the uniqueness of the

genome– the proportion of uniquely mappable positions in fly

remains lower if compared to other model genomes.

One hypothesis which could explain, in part, the lower fraction

of uniquely mappable regions observed in D.melanogaster genome

might rely on the different nature and proportion of repetitive

elements. Indeed, among repeat elements of class I the fly genome

does not contain non-LTR retrotransposons such as SINEs [17],

whereas the proportion of LTR retrotransposons constitutes more

than one third of the total proportion of repeats (10:46% versus

26:50%; see Table 2). These LTR retrotransposons are found in

higher copy number than non-LTR retrotransposons. On the

opposite, most of the repetitive sequences in human correspond to

non-LTR retrotransposons (Alu sequences) which have a lower

number of copies. Thus, the high copy number of LTR

retrotransposons in D.melanogaster could lead to an over-represen-

tation of duplicated k-mers that may induce the lower uniqueness

observed in this genome.

Mappability and SNP calling
In this section we show that computing the mappability of a

given genomic region can be critical when inferring single

nucleotide variants from HTS data. In fact, these are called by

looking at the pileup over the same genomic position, i.e. at the set

Figure 3. Visualization of mappability on the UCSC browser [7]: the example of the human TK1 gene. Six mappability tracks (green) are
shown here corresponding to k-mer sizes 24, 36, 50, 75 and 100 bp (from top to bottom of the figure). Regions with low mappability score have high
frequencies, and conversely. This example illustrates that the uniqueness of the TK1 locus (especially within the introns) could be inversely correlated
with the presence of some repetitive elements as identified by RepeatMasker [37].
doi:10.1371/journal.pone.0030377.g003
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of symbols which are assigned (by the alignment algorithm) to that

position.

Before proceeding, we observe that our definition of mapp-

ability should be refined if we are to deal with pileups. This is

due to the fact that the number of possible k-mers covering a

particular position of the genome is equal to k, that is to the read

length used for sequencing. In other words, when considering a

position of the pileup we are not certain about the starting point

of the reads which are contributing to it; therefore, using for it

the value of mappability as it had been defined so far does not

appear to be the best possible strategy. Thus, to estimate how

much mappable a pileup position is when using single-end reads,

one could take into account the whole set of possible

contributing k-mers, and use the mean of their mappabilities

(Figure 4). From now on we will refer to this quantity as to the

pileup mappability.

In an ideal case, the pileup would either be composed of one

kind of nucleotide only, or it would split into two (roughly equal)

subsets, if that position corresponds to an heterozygous locus in a

diploid organism. In practice things often go differently, for at least

two reasons. First of all there are sequencing errors, which

introduce spurious nucleotides in the reads; customarily, one

dampens the effect of mis-sequencing by scrutinizing the quality

score associated to each letter. Futhermore, due to the fact that

Table 2. Relationship between the proportions/type of repeat elements and the proportion of k-mers having a mappability score
of 1 (i.e., uniquely mappable).

H.sapiens M.musculus D.melanogaster (dm3) C.elegans

(hg19) (mm9) with het. without het. (ce6)

Genome size (bp) 3,107,677,273 2,725,765,481 168,736,537 159,454,756 100,281,426

Repeat sequences (bp) 1,406,290,513 1,153,714,659 44,719,009 38,601,028 13,121,257

Proportion of repeats 45:25% 42:33% 26:50% 24:20% 13:08%

LTR 8:05% 10:56% 10:46% – 10:46%

Non-LTR SINEs 12:59% 7:39% 0:00% – 0:09%

LINEs 19:73% 19:66% 7:08% – 0:36%

Uniquely mapped positions (m~0)

k~36 2,489,885,654 2,178,433,024 119,915,412 116,918,511 92,332,303

(80:12%) (79:92%) (71:07%) (73,32%) (92:07%)

k~50 2,627,947,484 2,267,226,534 121,732,432 118,368,697 93,775,749

(84:56%) (83:18%) (72:14%) (74,23%) (93:51%)

k~75 2,729,902,459 2,349,591,487 124,087,375 120,329,119 95,226,461

(87:84%) (86:20%) (73:54%) (75,46%) (94:96%)

Uniquely mapped positions (m~2)

k~36 2,175,066,863 1,964,593,763 114,889,241 113,088,604 87,385,879

(69:99%) (72:07%) (68:09%) (70,92%) (87:14%)

k~50 2,380,109,920 2,100,436,231 117,178,560 114,915,550 90,050,144

(76:59%) (77:06%) (69:44%) (72,06%) (89:80%)

k~75 2,582,297,225 2,225,670,208 119,798,046 116,955,098 92,369,340

(83:09%) (81:65%) (71:00%) (73,35%) (92:11%)

Repeat elements have been identified and classified by the RepeatMasker program [37]. The mappability has been computed for k~36,50 and 75, with m~0 and 2.
doi:10.1371/journal.pone.0030377.t002

Figure 4. Pileup mappability. The number of all possible k-mers covering a particular position of the genome (corresponding to nucleotide C) is
equal to k (k~10 in this example). The average of the mappabilities of the k-mers can be taken as the pileup mappability. Such a quantity represents
how mappable would be this position in a pileup of a whole genome sequencing study with reads of length k.
doi:10.1371/journal.pone.0030377.g004
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genomes contains repeats, each alignment suffers from a certain,

unescapable, degree of ambiguity.

Namely, when two or more stretches of the sequence under

study are very similar to each other, it is not possible to exclude

that a read contributing to the pileup in a certain position actually

belongs to another portion of the molecule: this leads to occasional

mismatches in the alignment, which in turn imply variability in the

pileup. It is to quantify the above phenomenon that the concept of

(pileup) mappability turns out to be very useful. In fact, if we count

the number of symbols different from the reference in the pileup

over a certain region of the genome (normalized by the coverage),

we expect this quantity to be, on average, inversely related to its

uniqueness.

This is indeed what we observe in Figure 5. To generate it, we

considered a pileup computed via the SAMtools pileup utility [18]

from reads produced in-house and mapping uniquely to H.sapiens

chromosomes 15 and 17. We sampled uniformly 100000 positions

from each pileup. We then computed the mean heterozygosity

(number of symbols in the pileup different from the reference) as a

function of the pileup mappability of the position where the read is

mapped, grouping together positions with similar levels of

mappability.

The figure clearly suggests that to obtain a set of bona fide diploid

SNPs it could be certainly worth excluding those coming from

regions of low pileup mappability.

Mappability of the projected transcriptome
As we have already pointed out, genome mappability is essential

when normalizing counts of reads mapping to the genome in order

to obtain quantitative estimates from ChIPSeq experiments.

Similarly, transcriptome mappability is also essential when

computing normalized counts of transcript abundances after an

RNASeq experiment. Here, we sought to apply our method in

order to investigate transcriptome mappability.

We use the term transcriptome in the sense being used in

RNASeq experiments: a transcript annotation of a reference

genome, that is a set of genomic coordinates specifying the exonic

structure of transcripts (ideally all known transcripts encoded in

the reference genome), or directly the sequence of such transcripts.

Most RNASeq protocols map reads to both the genome and the

transcriptome, since transcript sequences across splice junctions

are not represented in the sequence of the genome.

In this regard, mappability can be understood in two different

ways. First, we may compute frequencies by counting k-mers in all

transcript sequences. Given the high incidence of alternative

splicing in eukaryotic transcriptomes [19], mappability obtained in

this way is likely to be low. Indeed, exon sequences shared by

alternative splice forms will have, by definition, mappability less

than one. In fact, deconvolving the originating alternative

transcripts of RNASeq reads is one of the most important

challenges that need to be overcome to produce accurate

quantifications at the alternative transcript level, and a number

of methods are being explored towards that end [20,21].

Alternatively, we can compute frequencies, and from them the

mappability, by counting k-mers in a non-redundant transcrip-

tome in which transcript coordinates are projected onto the

genome, and each exon or exon fragment unique to a set of

transcripts is considered only once. This is the sense in which we

use mappability in our analysis here.

As a reference transcriptome dataset, we use the GENCODE

annotation of the human genome [8], the most complete

Figure 5. Relation between heterozygosity and pileup mappability. Low-pileup-mappability regions are more prone to show a high value of
heterozygosity than those with high mappability. This is due to the spurious contribution of reads which originate from similar regions belonging to
the same mappability group. This figure was obtained for H.sapiens chromosomes 15 and 17 out of an in-house experiment with average coverage
30|.
doi:10.1371/journal.pone.0030377.g005

Fast Computation of Genome Mappability

PLoS ONE | www.plosone.org 9 January 2012 | Volume 7 | Issue 1 | e30377



transcriptome annotation of this genome currently available. We

have partitioned the GENCODE annotated genes into functional

sub-classes: protein-coding RNAs (with the Olfactory Receptors,

OR, as representative of a superfamily of paralogous genes), long

non-coding RNAs (lncRNAs), ribosomal RNAs (rRNAs), pseudo-

genes, and small non-coding RNAs (considering separately

microRNA precursors, miRNAs, and small nuclear RNAs,

snRNAs). We have computed the mappability profiles within

each of these categories for multiple read lengths and substitution

values. Our results appear in Figure 6. For convenience, we

separately display the proportion of GENCODE projected exonic

k-mers having a frequency of one (unique mappings, maximum

mappability) from those having a frequency greater than one

(multiple mappings, low mappability) for each combination of the

tested parameters: 0 or 2 substitutions, and read lengths of 36, 40,

50, 75 and 100 nucleotides.

As expected, the mappability score of a particular k-mer in the

transcriptome never decreases when increasing the read length; on

the other hand, it always tends to decrease when increasing the

number of mismatches [22]. However, important differences can

Figure 6. Influence of mismatch values and read lengths on the mappability of the human projected transcriptome as defined by
GENCODE [8]. For simplicity, we display the proportion of k-mers having a frequency of 1 (i.e. uniquely mappable) and those having a frequency
w1 (ambiguous) on the first and second row, respectively. The influence of mismatch number and k-mer lengths are presented in the first and
second column, respectively.
doi:10.1371/journal.pone.0030377.g006
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be observed between gene classes. For instance, within a

mappability profile computed with at least 2 substitutions almost

90% of the protein-coding k-mer exons will be mapped uniquely,

even with short sequence reads of 36 bp, whereas this fraction is

only 20% for rRNAs, even with longer reads of 100 bp.

It is worth noting that, even if in general protein-coding genes

all share a high mappability, large paralogous families are likely to

originate smaller fractions of uniquely mappable reads. For

instance, the fraction of mappable reads for the roughly 900
olfactory receptors annotated in GENCODE is at least 10% less

than the average of protein-coding genes for all read lengths and

number of substitutions considered. This and similar cases will

originate a clear bias whenever transcript expression measure-

ments of paralog genes are attempted during RNASeq experi-

ments.

Pseudo-genes, which still share a relevant sequence similarity

with their parent genes, show an even lower mappable fraction.

Interestingly, the highest variation observed between the mapp-

ability computed with 0 and 2 substitutions concerns pseudogenes

(from 69% to 44%, respectively). This observation might be due to

the fact that duplicated pseudogenes present in many copies

escape purifying selection, and thus tend to accumulate more

mutations if compared to their parent genes.

The long non-coding RNAs (lncRNAs) [23,24] also seem to be

less unique than protein-coding sequences; interestingly, they

contain a significant proportion of nucleotide mapping more than

6-7 times in the genome, probably reflecting their tendency to be

enriched in repetitive elements such as SINEs or LINEs [25].

Finally, the short non-coding RNAs (separated into miRNAs and

snRNAs) present distinct mappability profiles which are directly

related to the presence of subfamilies and/or derived pseudo-

copies within each class. For instance, our manual investigation of

the peculiar peak in the proportion of rRNA k-mers that could be

mapped 16-20 times (see Figure 7) showed that the phenomenon is

due to a the sub-family of 5S rRNAs belonging to the large subunit

of the ribosome, clustered together on chromosome 1.

Refining expression level measure derived from RNASeq
data

Transcriptome mappability can be used to produce more

accurate estimates of transcript abundances from RNASeq

experiments. As we have seen, some gene classes and families

are characterized by low sequence uniqueness, meaning that reads

mapping to their sequence are likely to map to (many) other

locations in the genome/transcriptome. Different RNASeq

mapping and quantification strategies deal with this issue in

different ways. They may simply ignore reads that either map to

multiple locations [26] or fall in low-mappability regions [27].

They may select one mapping location (or a few), either randomly

[28] or using additional context-based information – such as the

mapping of mate pairs in paired end sequencing, or the density of

mappings in the neighborhood [29,30]. Finally, some quantifica-

tion strategies keep all mapping locations (within the capacities of

the used mapping algorithm) and possibly, during the quantifica-

tion step, employ a statistical model (such as Poisson distribution,

Bayesian networks, maximum likelihood, etc.) to infer read counts

among all transcripts [1,20,31–33].

A widespread measure of exon, transcript and gene abundance

in RNASeq experiments is the so-called RPKM (Reads Per

Kilobase of exon per Million mapped reads) [30]. If reads

mapping to multiple locations are simply discarded, as it is often

the case, RPKM may underestimate the expression of genes

belonging to conserved paralogous families.

For instance, let us assume that two genes exist, both having

exactly the same length and originating exactly the same number

of reads, but the first being uniquely mappable on its entire length

(mappability equal to one everywhere), while the second is

uniquely mappabile only in half of its length. Insofar as non-

unique reads are ignored, if the two genes are equally expressed

the RPKM of the second one will artificially turn out to be the half

of that of the first one.

In fact, if reads mapping to multiple locations are discarded,

only locations with mappability of one can actually contribute to

the normalization of expression. In such a case, therefore, we

suggest to compute RPKM considering only the fraction of

uniquely mappable positions of the feature being quantified (exon,

transcript, gene). More specifically, we suggest to compute instead

the Reads Per Kilobase of Unique exon per Million mapped reads

(RPKUM). Figure 8 illustrates the comparison between RPKM

and RPKUM values for GENCODE protein-coding genes. Both

expression measures were computed using an RNASeq experi-

ment of the human brain transcriptome which produced 32-bp

reads [19]. In this analysis, we have mapped the reads to both

genome and transcriptome using GEM [2], and allowing for two

mismatches.

Separately, we produced the mappability profile of the human

genome with identical mapping parameters (k-mer length 32, and

at most 2 mismatches). Then, for each protein-coding gene

annotated by GENCODE, we computed the RPKM and the

RPKUM as defined previously. As one can readily observe, for a

substantial number of genes the RPKUM measure is significantly

higher than the corresponding RPKM, and for few of them the

differences may be of up to several orders of magnitude (Figure 8).

Clearly, genes exhibiting the highest difference between RPKM

and RPKUM typically belong to either of the following two

families:

Figure 7. Cluster of 5S rRNAs on human chr1 exhibiting a very low mappability profile. This locus explains the peaks observed for
annotated rRNAs in the frequency range 16-20.
doi:10.1371/journal.pone.0030377.g007
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1. genes partially or totally included a segmental duplication as

defined in [34] (top panel of Figure 8)

2. genes having at least one paralog (green dots) as identified by

the Ensembl Compara database [35].

A striking example is the HLA-A gene (Human Leucocyte

Antigen, class I, A) involved in the major histocompatibility

complex, which has many paralogs (Figure 9). More generally,

amongst the top 1000 genes exhibiting the highest variations

between RPKM and RPKUM, 741 (74,1%) have at least one

paralog gene.

It should be noted that the importance of computing the

uniquely mappable area of a transcript in order to refine its RNA

abundance quantification is gaining more and more attention: for

instance, a very sophisticated strategy to accurately perform this

task has been recently presented in [36]. However, such a strategy

does not rely on the explicit pre-computation of the mappability,

nor it takes mismatches into account when computing the length

of mappable regions: using our algorithm as the first step of that

method might lead to even better results.

If the chosen RNASeq mapping strategy consists of selecting

one mapping location among the many possible ones, mappability

can still be used as an additional criterion to help in the selection.

Finally, if the contribution of mapped reads to the quantification of

transcriptional features (exons, transcripts, genes, etc.) is weighted

by the number of mapping locations, the frequencies as computed

by our method may also be relevant. Indeed, being not exhaustive,

most mapping algorithms are unable to report the exact number of

existing matches, and hence the exact frequency value. Thus the

frequencies produced by our method (provided that a suitable

value for t is chosen, as explained in Section Methods) would

produce more accurate corrections.

Mapping and mappability: a complicated relation. One

fact in need of being emphasized is that, when mapping with

mismatches, the relation between mapping uniqueness and

mappability is rather complex. Given some edit distance greater

Figure 8. Comparison of Gencode protein-coding genes RPKM and RPKUM expression values as measured in brain tissue (data
from [19]). Both axis are log-scaled, and each dot represents a protein-coding gene with or without annotated paralogous genes (in green and red,
respectively). Protein coding genes totally or partially included in segmental duplications are presented in the top panel, whereas those not
overlapping segmental duplications are shown in the bottom panel. The figure illustrates the importance of taking into account the mappability
information in order not to underestimate expression level. Without mappability correction, two main reasons are shown to introduce a bias in the
quantification of expression levels: gene having paralogs, and genes overlapping segmental duplications.
doi:10.1371/journal.pone.0030377.g008
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than 0, indeed, some counterintuitive situations might arise, where

a read which does not occur in the genome maps uniquely (within

the specified edit distance) to a repetitive location having a low

mappability. This fact is illustrated with the toy example of

Figure 10, where one substitution is used as the maximum allowed

edit distance both for computing the mappability and for

mapping. With such a choice of parameters the read will map to

only one location; yet this position is not unique in the genome,

since it has a frequency of 2 (or, equivalently, a mappability score

of 1=2). A similar phenomenon happens each time the placement

of sequencing errors present in the read forbids the mapping to all

copies of a repeated region but one.

In conclusion, knowing that a read maps uniquely to a location

is in general not enough to establish, when mismatches are

considered, that such a location is unique. In this case, a better

indicator for the ‘‘uniqueness of the read’’ is likely to be the

theoretical mappability of the region, which has to have been

computed separately. The existence of this problem is often

overlooked.

Strictly speaking, this not-so-straightforward connection also

complicates the (re)definition of expression measures able to take

correctly into account the reduced number of unique reads in

repetitive loci; however, neither this observation diminishes the

need for such measures, nor it makes less natural and appealing

the definition of the RPKUM measure previously presented

earlier.

Mappability of paired-end reads
In this last section, we examine how the mappability

information can be used together with paired-end/mate-pair

sequencing to improve the design of an HTS experiment. In

particular, we show that when the mappability is known it is

possible to tune the insert size in order to maximize the number of

sequencing pairs which one will be able to rescue by resorting to

the uniqueness of either end.

When using paired-end reads (or mate-pairs), the mapping

information of one end can be used to discard spurious mapping

positions of the other end if one takes into account the expected

distance between ends imposed by the library size used for

sequencing. In consequence, when sequencing with a paired-end

type strategy, the paired-end mappability of a position p will be

function of both its own single-end mappability and the

mappabilities of the positions located at p+(l{k), being l the

library size (see Figure 11).

To facilitate the analysis, we have assumed that the standard

deviation of the fragment size in each library is zero (that is, all the

fragments in the library are having exactly the same size, and

hence all the pairs the same distance).

Given the assumptions just presented, it is straightforward to

conclude that exactly three cases are possible, as follows (in

Figure 11 we illustrate them for the case of paired-end pileup

mappability):

1. the single-end mappability of the target position is bigger than,

or equal to, the mappabilities of the two possible pairs: the

paired-end mappability is not affected by the mappability of

the pairs

2. the single-end mappability of the target position is smaller than

the mappabilities of one of the pairs: as the new mappability of

the target, one can take the average of the single-end

mappability of the target and the single-end mappability of

that pair

3. the single-end mappability of the target positon is smaller than

the mappabilities of the two possible pairs: as the new

Figure 9. Influence of paralogous genes on the mappability scores: the example of the HLA-A gene. The HLA-A gene is part of the Major
Histocompatibility Complex (MHC) involving a large gene family with numerous paralogs. This screenshot of the UCSC genome browser (with the six
mappability tracks in green) illustrates the low uniqueness of the HLA-A gene (especially, its exon 4) which could render its targeting by RNASeq
difficult (if only uniquely mapping reads are considered).
doi:10.1371/journal.pone.0030377.g009

Figure 10. Read mapping and mappability are different
concepts: there is no straightforward relation between the
number of times a read matches the genome and the
mappability of the regions it maps to. Within an edit distance of
1 mismatch, the sequence IMG maps uniquely to location ING in the
schematic genome ‘‘......PING-PONG.....’’. However, the matched position
is not unique in the genome, since considering 1 mismatch it has a
frequency of 2 due to location ONG.
doi:10.1371/journal.pone.0030377.g010
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Figure 11. Schematic representation of the computation of the paired-end mappability. In this example the average of the single-end
mappabilities at the target position (base C) is bigger than the average of the single-end mappabilities at one of the pairs (base A). Hence the
resulting paired-end mappability will be the average of the mean mappabilities at C and A.
doi:10.1371/journal.pone.0030377.g011

Figure 12. Behavior of pileup single-end and paired-end mappabilities at different loci of human chromosome 1 (HSA1). Parameters
used to generate this example were: k-mer length 100, 2 mismatches and a library size of 800 bases. Top left: Heatmap of the number of locations in
HSA1 as a function of their single-end and paired-end mappabilities. Bottom left: Histogram of the number of locations in HSA1 that show different
single-end and paired-end mappabilities, plotted versus their position along the chromosome. Top right: Heatmap of the number of locations in
HSA1 as a function of their single-end mappability and their position along the chromosome. Bottom right: Heatmap of the number of locations in
HSA1 as a function of their paired-end mappability and their position along the chromosome.
doi:10.1371/journal.pone.0030377.g012
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mappability of the target, one can take the average of the

single-end mappabilities of the two possible pairs.

The latter two cases might allow –depending on the single-end

mappability of the various loci– to rescue reads which are not by

themselves uniquely mappable.

It should be noted that in our calculations we did not take into

account paired-end configurations which, while not being unique

at any of the pairs, could be still rescued due to the fact that only

one of the possible matches for the pair is having the expected

insert size. On the contrary, we might be overestimating the

mappability of the flanks of regions having long series of tandem

repeats: in such a case, a big standard deviation in the sizes of the

fragments belonging to a library would complicate the process of

identifying a single compatible pair by the expected size of the

insert region between the ends, as the problematic reads will have

alternative mapping positions very close to each other.

In Figure 12 we present the results of a comparison of single-end

and paired-end mappabilities for human chromosome 1 (HSA1)

when using a library size of 800 bp. On the heatmap plots one can

spot that even when using 100-bp reads the increase in unique

mappability can be considerable if the pair information is

integrated. Another interesting feature is the distribution of the

positions of HSA1 having different single- and paired-end

mappabilities: we can clearly identify the centromere position as

the one where both mappabilities are the same (and close to zero).

Additionally, in order to evaluate the importance of using

paired-end information when processing the results of read

mapping, we have estimated the single- and paired-end mapp-

ability of 100-bp reads for a set of library sizes (300, 400, 500, 600,

700, 800, 900, 1000, 1500, 2000, 4000, 6000, 8000 and 10000 bp)

along the whole human genome. To this end, we have estimated

which proportion of positions having a non-1 single-end mapp-

ability can be rescued completely owing to the fact that both

possible pairs in a paired-end experiment are unique. Figure 13

clearly shows that when increasing the library size also the

proportion of reads rescued with this method increases; for large

library sizes and some chromosomes (e.g. 3, 4 or 6), such

proportion can be higher than 50%.

Remarkably, at small library sizes (v1000 bp) the fraction of

rescued reads increases very fast with the distance between the

ends. At this scale, the improvement in uniqueness is expected to

happen in short regions of the genome (like transposons) which can

be seen as unique if they are smaller than the library size, and such

that the sequence context around them is itself unique. On the

contrary, while for bigger library sizes the percentage of rescued

reads keeps growing, the slope of the improvement is much

smaller. This result would seem to indicate that in the latter case

the repetitive regions we are trying to rescue are much bigger (for

instance, this could be the predominant situation for chromosome

Y, where the advantage given by such a rescuing strategy turns out

to be minimal).

Discussion

In this work, we explore the mappability concept with

unprecedented detail, presenting a fast algorithm to compute a

well-behaved approximation of the mappability at the level of an

entire mammalian genome, even when mismatches are allowed or

when small read lengths are used. Our program is freely available,

and can be easily used to construct mappability profiles of any

given genome. Our visualization tracks of human and mouse

mappability profiles are already accessible through the official

UCSC genome browser, and more could be uploaded as custom

tracks for different model organisms. Auxiliary tracks can be easily

derived from the existing ones to account, for instance, for CG-

content sequencing bias.

The analysis of the uniqueness of a genome (i.e. the proportion

of k-mers having a mappability score of 1) for four model

organisms (human, mouse, fly and nematode) computed with up to

2 substitutions revealed a more complex architecture than

anticipated. Regions of the genome that are not uniquely

Figure 13. Proportion of completely rescuable positions for all human chromosomes. In this figure we only consider positions having a
single-end mappability greater than 1, and for different library sizes (300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 4000, 6000, 8000 and 10000
bp) we plot the fraction of locations which could be rescued by taking advantage of the fact that they have a paired-end mappability equal to one.
doi:10.1371/journal.pone.0030377.g013
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mappable correlate not only with the global proportion of

repetitive sequences but also, more importantly, with the nature

(and hence, the number of copies) of these repeats.

Computing the mappability of a genome is very useful in

ChIPSeq experiments, in order to provide a suitable normalization

when peaks are scored. In a given RNASeq experiment,

calculating a priori the mappability sheds light on regions which

will not be easily accessible if multiple mappings are discarded; it

could also help to design a better experiment, in particular

whenever the main goal is either to exploit most of the biological

signal, or to access a specific feature of a genome.

Indeed, we also showed that mappability profiles vary

significantly depending on the type of functional element studied

and the parameters used (read length and/or number of

mismatches). In particular, the analysis of the mappability profiles

of gene families (like the olfactory receptors) and pseudo-genes

shows that even long HTS reads are not enough to make some

features easily accessible: just using a longer read length may not

be enough by itself to completely eliminate the ambiguity which

arises from the repetitive nature of some interesting features of the

genome.

The connection with the design and the analysis of HTS

experiments at the level of the single locus is therefore

straightforward. We further emphasized it by examining how

mappability impacts the study of single-nucleotide polimorphisms,

and how it relates to paired-end sequencing schemes.

Finally, one could note that the systematic fast computation of

mappability may be used in various situations of common interest

in biology other than those related to the analysis of HTS data –

typical examples being the identification of interesting repeated

motifs, or the refinement of primer design. Overall, we believe the

present work still far from being exhaustive: more and more

practical applications of the study of sequence mappability will

certainly follow in the future.
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