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Abstract: Osteoarthritis (OA) is the most common joint disease that causes pain and disability
in the adult population. OA is primarily caused by trauma induced by an external force or by
age-related cartilage damage. Chondrocyte hypertrophy or chondrocyte senescence is thought to
play a role in the initiation and progression of OA. Although chondrocyte hypertrophy and cell death
are both crucial steps during the natural process of endochondral bone formation, the abnormal
activation of these two processes after injury or during aging seems to accelerate the progression
of OA. However, the exact mechanisms of OA progression and these two processes remain poorly
understood. Chondrocyte senescence and hypertrophy during OA share various markers and
processes. In this study, we reviewed the changes that occur during chondrocyte hypertrophy or
senescence in OA and the attempts that were made to regulate them. Regulation of hypertrophic or
senescent chondrocytes might be a potential therapeutic target to slow down or stop OA progression;
thus, a better understanding of the processes is required for management.
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1. Introduction

The simple yet complicated architecture of the articular cartilage compromises its natural capacity
for self-repair [1]. The cartilage, with an avascular and alymphatic nature, is composed of dense
layers of extracellular matrix (ECM) containing embedded distributed chondrocytes [2]. Cartilage
lines the surface of the bone and provides a low-friction surface by absorbing external pressure or
stimuli, which enables painless joint movement [3]. Osteoarthritis (OA) is the most common joint
disorder throughout the whole human population. The incidence of OA is expected to increase
due to the aging population throughout the world. OA accompanies progressive degradation of
the articular cartilage, which leads to a loss of joint mobility and function and eventually to a low
quality of life in patients due to both pain and restricted lifestyles. OA is characterized by pain, joint
stiffness, and joint swelling. Severe stages of OA also include symptoms such as osteophyte and
synovitis formation, which are outgrowths of bone or synovial membrane followed by inflammation.
ECM degradation caused by matrix-degrading enzymes, including aggrecanases (a disintegrin and
metalloprotease with thrombospondin motifs (ADAMTSs)) and matrix metalloproteinases (MMPs),
is a well-known characteristic of OA. Healthy chondrocytes usually display moderate metabolic
activity and proliferation under normal conditions; however, some articular chondrocytes lose their
differentiated phenotype under diseased conditions and enter an endochondral ossification (EO)-like
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state of proliferation along with abnormal hypertrophic differentiation [4,5]. Cellular senescence can
also occur alongside hypertrophy due to similar stimuli. Cellular senescence and hypertrophy share
various markers and processes, and both events are reported to play a role in the development of
OA. This review focuses on the hypertrophic changes and cellular senescence in chondrocytes under
OA conditions.

2. Nature of Articular Cartilage

Articular cartilage mainly refers to hyaline cartilage. Hyaline cartilage is a smooth, lubricated
surface of the cartilage that is 2 to 4 mm thick [6]. It is composed of a dense layer of ECM that also
contains chondrocytes and water. Chondrocytes are quiescent cells, yet they actively synthesize a
large volume of ECM proteins such as collagen, hyaluronans or glycoproteins, and proteoglycans [7–9].
Because of the dense layer of ECM between each lacuna, which is the small space containing each
chondrocyte in the cartilage, chondrocyte only occupies 1%–5% of the total volume of the cartilage
tissue. Cartilage is an avascular and alymphatic tissue, and therefore chondrocytes rely on the diffusion
of nutrients from the articular surface [10]. Given these environmental characteristics, the inner layers
of cartilage maintain a low oxygen environment with a low turnover rate of chondrocytes.

SRY-box 9 (SOX9) is the major transcription factor that regulates chondrogenesis. Chondrocytes
express SOX9, which activates ECM genes such as collagen type II, alpha 1 (COL2A1), and aggrecan
(ACAN). Other ECM genes, including collagen type IX and XI, were also shown to be regulated by
SOX9 [11]. Collagens and other ECM molecules, especially hyaluronan, are water-retentive, and are
responsible for the high water content of cartilage. Up to 80% of the wet weight of cartilage consists
of water. Collagens form about 60% of the dry weight of the cartilage, which makes them the most
abundant type of protein found in ECM [9]. Although the superficial layers of cartilage mostly consist
of collagen type II, the terminally differentiated hypertrophic chondrocytes in the deep zone actively
synthesize collagen type X.

3. OA and Chondrocyte Hypertrophy

Chondrocyte hypertrophy and cell death are natural phenomena that usually occur during
a developmental process called EO. Hypertrophic chondrocytes appear and play a crucial role in
EO. Hyaline cartilage can be divided into two groups, (1) temporary and (2) permanent cartilage.
Healthy cartilage is usually called permanent cartilage or resting chondrocytes, which are present
in the articulating joint. Usually, permanent cartilage has a low proliferation rate and does not
undergo terminal differentiation and EO under normal conditions [12]. Temporary cartilage is initially
formed as cartilage, but the final product is bone. Unrestricted differentiation of precursor cells
into the chondrocyte lineage does not lead to permanent cartilage but instead leads to bone [12].
Chondrocytes undergo active proliferation and generate a cascade of cells; whereas some of them
undergo enlargement, others undergo hypertrophical changes and become hypertrophic chondrocytes.
These cells increase their volume dramatically and the surroundings become mineralized to develop
bone tissue [13]. The elastic nature of cartilage begins to change and harden through calcification. This
makes it more difficult for the chondrocytes to receive nutrients, as most of the cells undergo apoptosis
and leave small cavities within the tissue, which leaves enough room in the hardened bone for blood
vessel invasion. Through this process, the cartilage turns into trabecular bone. However, the major
highlight events of EO, such as chondrocyte proliferation, hypertrophic differentiation of chondrocytes,
cell death, calcification or mineralization, blood vessel invasion, and chondrocyte apoptosis, occur
equally in OA (Figure 1).
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Leonard Hayflick and Paul Moorhead, after finding that in vitro cultured primary human fibroblasts 
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Figure 1. Schematic image of (a) endochondral ossification in the embryonic cartilage and (b) progression
of osteoarthritis in the articular cartilage.

Cell hypertrophy generally refers to an increase in cell size and volume. Hypertrophic
differentiation of chondrocytes can also be characterized by the high expression of collagen type X,
runt-related transcription factor 2 (RUNX2), and MMP13. Hyaline cartilage markers, such as aggrecan,
collagen type II, and SOX9, are decreased in the hypertrophic cells. Although hypertrophical changes
in chondrocytes are required in bone growth and development, the mechanism acts as a double-edged
sword in diseased environments [14].

Hypertrophic differentiation is also an important pathological change in OA cartilage [15].
Cartilage tissue fractures at sites that receive high mechanical stress, which is a process called
‘fibrillation’ [3]. During fibrillation in the cartilage, the tissue loses several ECM proteins, including
proteoglycans and collagen fibers. Abnormal chondrocyte hypertrophy in articular cartilage is seen in
cartilage destruction, which is a potential therapeutic target for OA treatment [16,17]. Hypertrophic
chondrocytes start to express genes related to osteogenic differentiation and start to produce mineralized
ECM proteins [18,19]. It is unclear if the abnormally differentiated hypertrophic chondrocytes give rise
to fully differentiated bone cells; however, apoptosis of hypertrophic chondrocytes has been suggested
in previous studies. Lacunar emptying within OA cartilage has been observed, which led to the loss
of the articular cartilage [20,21]. After these changes, the subchondral bone generates osteophytes.
Chondrocyte calcification by calcium deposition is the final stage of chondrocyte hypertrophy [12].
Previous studies report that the layer bordering the calcified cartilage and the non-calcified cartilage
increases after the age of 60 years [22]. Although this layer of calcified cartilage tends to increase
throughout the aging process, in some cases, the calcified region decreases instead. This indicates that
the lower calcified cartilage is replaced by bone due to the EO-like process in OA.

4. OA and Chondrocyte Senescence

OA and cellular senescence are characterized by various epigenetic changes due to altered cellular
phenotype and disease progression. Therefore, cellular senescence is also a factor that is thought to
play a significant role in the pathology of OA [23]. Cellular senescence can be caused by various
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factors, including external stimuli or stress, oncogene activation, radiation, oxidative stress, telomere
length reduction, and abnormal DNA replication. OA chondrocytes exhibit features that are similar
to senescent cells, such as telomere shortening and increased senescence-associated β-galactosidase
(SA-βgal) activity. The term ‘cellular senescence’ was first mentioned in the 1960s by Leonard Hayflick
and Paul Moorhead, after finding that in vitro cultured primary human fibroblasts have a restricted
lifespan, which is approximately 50 cell divisions [24]. Senescent cells undergo morphological changes
such as flattening due to increased cell size, vacuolization, and accumulation of stress granules.
Growth arrest, resistance to cell death, and altered gene expression that leads to the production of
bioactive senescence-associated secretory phenotype (SASP) are induced due to these morphological
changes [25,26]. SASPs are various inflammatory cytokines and growth factors secreted by senescent
cells. Interestingly, SASPs that are reported to be produced by senescent cells (i.e., GM-CSF, IL-1α and β,
IL-6, IL-7, IL-8, MCP-1, MCP-2, MMP1, MMP3, MMP10, MMP13, TIMP-2, and more) have been found
in OA tissues or in synovial fluids [27]. SASPs are produced by senescent cells that secrete various
inflammatory cytokines and growth factors [6,28]. The growth arrest of senescent cells is caused by
the expression of cell cycle inhibitors that can be induced by various stimuli such as DNA damage,
telomere shortening, and oncogene activation [25]. These genetic changes can be induced by other
stimuli such as reactive oxygen species (ROS), mitotic stress, and inflammation. When chondrocytes are
isolated from native culture and maintained in an in vitro culture as a monolayer, they easily lose their
characteristics and express various senescence and dedifferentiation-related genes [29]. Senescence
and dedifferentiation of chondrocytes during culture is accompanied by decreased expression of
chondrocyte-specific proteins such as collagen type II, and other glycoproteins [30].

Although various cell types are involved in OA pathology, chondrocytes are primarily thought to
play a major role in OA induction by cellular senescence [23]. Two different mechanisms of senescence
are suggested in chondrocytes: (1) replicative senescence and (2) stress-induced premature senescence
(SIPS) [31]. There are two main aging pathways, where p53/p21 is thought to act on replicative
senescence as well as chondrocyte apoptosis, and p38/p16 induces SIPS [31,32]. Replicative senescence
generally occurs after 30–40 passaging and shows features of senescent phenotype including enlarged
flattened cells in culture and the expression of SA-βgal. Chondrocytes have also been shown to have
telomere shortening with age [33]. Because of this, chondrocyte senescence is thought to be closely
related to OA, which also occurs with age. Given the chondrocyte characteristics, it is unlikely that
we will find evidence of cell division in normal chondrocytes. However, chondrocyte proliferation
is a feature observed in OA as well as telomere shortening and SA-βgal expression [34]. Although
replicative senescence is caused by telomere shortening, SIPS is caused by oxidative stress and DNA
damage without the change in telomere length [35]. Cellular senescence can be caused by chronic
stress in cells; however, there is still the possibility that post-traumatic OA can be characterized or
triggered by the senescent cells within the damaged region [23]. In the tissue of one patient, however,
senescent cells were found to be absent in normal cartilage and instead were observed near the
osteoarthritic lesions [36]. When senescent cells were transplanted into the knee joint of wild type
mice, an OA-like state was induced, which included pain, impaired mobility, and morphological and
histological changes [37]. SASPs secreted by senescent cells can alter the tissue microenvironment and
impair tissue regeneration induced by stem cells or progenitor cells, which can eventually lead to the
senescence of the neighboring cells [38].

Beside chondrocytes, synovial fibroblasts are also thought to initiate or progress OA through
senescence. Nuclear expression of p16 was detected in higher amounts in OA synovial tissue samples
when compared to that of normal synovial tissues, which indicates senescence in OA synovial
fibroblasts [39]. Senescent synovial fibroblasts induced by H2O2 or tumor necrosis factor-α (TNFα)
expressed increased CDKN1A and CDGN2A and other pro-inflammatory SASP-associated factors
such as IL-6, CXCL8, CCL2, and MMP3.
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5. Hypertrophy and Senescence-Related Markers in OA

Several markers are known as chondrocyte hypertrophy and senescence markers. Both
hypertrophy and senescence are not usually characterized by a specific set of markers, but are
rather associated with a set of cellular phenotypes that often co-exist in a stressed environment
(Figure 2) [23]. Although both chondrocyte hypertrophy and senescence are not clearly understood,
markers such as IL-1β, collagen type X, RUNX2, vascular endothelial growth factor (VEGF), osteopontin,
osteocalcin, and Indian hedgehog (IHH) are thought to be related [31,40]. The accumulation of MMPs
induced by pro-inflammatory cytokines is also a positive senescence marker in OA chondrocytes.Int. J. Mol. Sci. 2020, 21, x 6 of 15 
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Figure 2. A theoretical model for the relationships of chondrocyte hypertrophy and chondrocyte
senescence and the initiation or progression of osteoarthritis (OA). When trauma is induced by
mechanical injury or aging, biomechanical stress and oxidative stress increase in the cartilage
environment. Increased chondrocyte hypertrophy and senescence induce decreased anabolic signaling
and increased catabolic signaling. This results in suppressed glycosaminoglycan (GAG) production by
normal chondrocytes and increases the expression of extracellular matrix (ECM)-degrading enzymes
and inflammatory cytokines.

Collagen type X is a major marker used to detect chondrocyte hypertrophy. This type of collagen is
usually not expressed in healthy articular cartilage, though it is thought to play a role in the early stage
of endochondral bone formation since it has been detected at sites of hypertrophic chondrocyte regions
and calcification. Protein and mRNA levels of collagen type X are also detected in human OA cartilage
but their expression shows significant local variation [12,16,41–43]. Despite the overall expression of
collagen type X, alpha 1 (COL10A1) was increased in human OA cartilage, and the expression was
higher in the relatively less degenerated area [44]. Isolated chondrocytes cultured in vitro lose their
normal morphology and start synthesizing collagen type X after several passages [29,45]. For example,
whereas passage 2 chondrocytes show high levels of collagen type II and low levels of collagen type X,
passage 6 chondrocytes show the opposite characteristics with increased collagen type X [31]. The exact
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mechanism of senescence and collagen type X is not fully understood, but its expression is thought to
be the main reason for chondrocyte dedifferentiation [46].

Elevated levels of MMP13 have been reported in OA cartilage [47,48]. The gene level of MMP13
was highly expressed in OA cartilage when compared to normal levels. Elevated expression of MMP13
and collagen type X was reported after inducing knee joint stability by the transection of knee ligaments
and meniscus removal in mouse OA models [49]. MMP13 is also thought to play a central role in
the irreversible degradation of collagen type II in OA [50,51]. Knockdown of activin-like kinase 5
(ALK5) was reported to increase MMP13 mRNA levels [52]. TGFβ is important for the maintenance
and protection of healthy articular cartilage; therefore, it is commonly used in the in vitro culture
of chondrocytes or chondrogenesis. The binding of TGFβ to its receptor recruits the type I receptor
ALK5. In turn, this molecule complex phosphorylates the smad2 and 3 in the smad2/3 pathway,
which is known to repress chondrocyte terminal differentiation [53,54]. Another alternative receptor
ALK1 activates the smad1/5/8 signaling pathway, which is known to induce chondrocyte terminal
differentiation [55,56]. The change in the ALK1/ALK5 ratio during aging or OA development may result
in increased dominance of the smad1/5/8 signaling in chondrocytes and induce a hypertrophic-like
state by high levels of MMP13. MMP13 is also a central regulator of chondrocyte senescence [57].
Chondrocytes undergoing senescence produce ECM-degrading enzymes such as MMP13, which
promotes the degradation of the main protein of the articular cartilage, aggrecan, and collagen type II.
MMP13 produced by cultured chondrocytes isolated from older donors appeared to be increased [58].
Changes in chondrocyte function (e.g., decreased anabolic activity and increased catabolic activity) are
thought to be related to MMP13 production.

RUNX2 is the main transcription factor that is involved in hypertrophic chondrocyte differentiation
and early osteogenesis [48,59]. One of the hallmarks of OA is the upregulation of RUNX2. Therefore,
RUNX2 is assumed to be a major transcriptional factor that directly regulates the expression of
matrix degradation enzymes in the damaged articular cartilage [60]. When the destabilization of
the medial meniscus (DMM) osteoarthritis model was induced in RUNX2 knockout mice, the gene
expression of matrix degradation enzymes (i.e., MMP9, MMP13, ADAMTS4, ADAMTS5, ADAMTS7,
and ADAMTS12) was significantly reduced compared with DMM-induced Cre-negative control. The
deletion of RUNX2 in DMM-induced mice decreased MMP13 protein levels in the articular cartilage.
Cells expressing ectopic RUNX2 showed a senescent-like phenotype that was characterized by an
enlarged and flattened morphology and β-galactosidase staining; p53 signaling was required for this
process [61].

A characteristic feature of hypertrophy and OA cartilage is the increased production of VEGF.
VEGF induces the migration of endothelial cells by chemotactic actions and induces angiogenesis
in vivo. VEGF also promotes angiogenesis in the cartilage tissue, which is related to the calcification of
chondrocytes that can lead to dysregulated osteogenesis of the normal cartilage. Neoangiogenesis in
the cartilage growth plate plays an important role in EO; therefore, VEGF is thought of as a critical
mediator during EO. Carlevaro et al. investigated the expression of VEGF in mammalian and avian
embryo long bone growth plates [62]. Although VEGF was observed in fully mature hypertrophic
chondrocytes, it was completely absent in proliferating and quiescent cells in both chicken and mice.
VEGF mRNA generates five different isoforms with a different number of amino acid residues by
alternative splicing, labeled VEGF121, VEGF145, VEGF165, VEGF189, and VEGF206 [63]. Although
only three types (VEGF121, VEGF165, and VEGF189) were detectable in both OA and normal cartilage,
their receptors were only found in OA cartilage. OA cartilage secreted a significantly higher amount of
VEGF than normal cartilage when cultured in vitro. VEGF expression is induced by mechanical forces
on articular cartilage [64]. Therefore, it is thought that VEGF may regulate chondrocyte differentiation
in response to mechanical forces [65]. After inducing DMM in mice, immunostaining showed increased
levels of VEGF in articular cartilage, subchondral bone, synovium, and meniscus.

IHH is also suggested as a marker for chondrocyte hypertrophy. IHH is a key signaling molecule
that is expressed in pre-hypertrophic chondrocytes during growth plate development and that regulates
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chondrocyte hypertrophy during EO [66]. The upregulation of IHH in postnatal cartilage showed an
increased chondrocyte hypertrophy and degradation [67]. Activation of IHH downstream signaling
pathways results in a reduction in articular cartilage thickness and proteoglycan content levels, while
inhibition of IHH signaling reversed these effects [68,69]. IHH is reported to regulate the onset of
chondrocyte hypertrophy by a negative feedback loop with parathyroid hormone-related protein
(PTHrP) [70]. IHH activates the expression of PTHrP in particular chondrocytes and PTHrP signals
through the receptor PTHR1 to inhibit chondrocyte hypertrophy and maintain the proliferating state.
Mak et al. reported that IHH signaling can also directly regulate chondrocyte hypertrophy in the
absence of PTHrP. IHH also promoted chondrocyte hypertrophy through Wnt/β-catenin activation
and bone morphogenetic proteins (BMPs) signaling.

Expressions of p16, p21, and p53 increase in senescent cells, which result in cell cycle arrest.
Articular chondrocytes with increased expression of p16 and p21 exhibit increased senescence.
Chondrocytes expressing p53 showed similar morphology to OA chondrocytes and underwent
apoptosis, whereas downregulation of p53 expression prevented chondrocytes from undergoing
senescence or apoptosis [71]. Chondrocytes expressing p16 lose their normal phenotype and express
increased inflammatory cytokines and MMPs such as IL-1β, IL-6, and MMP13 [46]. In chondrocytes
isolated from cadaveric donors without evidence of OA between 17 to 72 years old, age was found to
be responsible for 27% of the variation in p16 levels. However, loss of p16 was not critical enough
to prevent the development of age-induced or injury-induced traumatic OA [72]. Collagen type II
expression is negatively correlated with p21 expression [73].

Oxidative stress caused by ROS is a major regulator in cell senescence. ROS induce multiple
genes that spark senescence or dedifferentiation in chondrocytes. The main ROS reported to induce
cartilage damage in chondrocytes are hydrogen peroxide (H2O2) and peroxynitrite [74,75]. Degenerated
cartilage regions in OA patients had significantly lower anti-oxidative potential than the intact cartilage
region, confirming increased oxidative damage in degenerated cartilage [76]. Chondrocytes treated
with H2O2 showed shorter telomere length in vitro. When OA cartilage tissue was cultured with
H2O2 addition, the number of glycosaminoglycans (GAGs) gradually decreased in a time-dependent
manner. However, the addition of an anti-oxidative agent reversed these effects, inhibited GAG loss,
and maintained telomere length. H2O2 addition significantly increased p21 expression in both early
and late passage chondrocytes [77]. The expression started to increase one hour after treatment and
reached its highest level after three hours, and the change in early passage chondrocytes was nine-fold
higher than the initial level.

Growth factors such as BMPs and other cytokines are reported to play a role in chondrocyte
hypertrophy. Several BMPs enhance chondrogenesis; however, dysregulated levels of BMPs may
induce calcification of cartilage and accelerate cartilage degradation. During OA development,
chondrocytes reportedly express BMPs [9,78]. The BMP canonical smad1/5/8 pathway is thought of
as an inducer of chondrocyte hypertrophy and EO [79]. Cytokines such as IL-6 and IL-8 are known
to induce growth arrest of senescent cells when secreted into the cell microenvironment. IL-1β is
associated with chondrocyte dedifferentiation, and induces repression of SOX9 and the synthesis of
nitric oxide (NO) [31,80]. The induction of NO by IL-1β activates c-Jun N-terminal kinases (JNK)
signaling, which is a well-known inducer of senescence [81]. IL-7 is a cytokine that is upregulated
age-dependently [27]. The expression of IL-7 is higher in cultured articular chondrocytes from older
donors compared to that of the younger donors. Furthermore, increased levels of MMP13 are induced
in chondrocytes after IL-7 treatment [82].

Advanced glycation end products (AGEs) are produced from reducing sugars and free amino groups
of proteins, lipids, or nucleic acids by a non-enzymatic reaction [83,84]. AGE accumulation suppresses
collagen type II production and also stimulates the expression of MMPs and ADAMTSs [85–87]. Collagen
cross-linking is increased by AGEs, which enhances tissue stiffness [88,89]. Increased AGEs are pathogenic
and induce oxidative stress and inflammation. AGEs also induce the secretion of TNF-α, and NO [86,90].
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6. Cartilage Treatment and Regeneration Strategies Targeting Hypertrophy or Senescence

Chondrocyte hypertrophy has been targeted in cartilage regeneration rather than treatment.
Several strategies have been attempted to inhibit chondrogenic hypertrophy.

The addition of TGFβ into an in vitro culture was reported to enhance chondrogenesis and reduce
chondrocyte proliferation and hypertrophy [91–93]. TGFβ1 and TGFβ3 were mostly used in in vitro
chondrogenesis in various studies [94]. Some studies report that there is no significant difference
between TGFβ subtypes in suppressing hypertrophy during chondrogenesis; several other studies
show that TGFβ1 is superior in suppressing hypertrophy [95–97]. Smad3 disrupted in mutant mice
showed a progressive loss of articular cartilage and symptoms that resemble OA; however, the addition
of TGFβ1 reversed these symptoms, suggesting that TGFβ/smad3 signals inhibit terminal hypertrophic
differentiation of chondrocytes [54]. TGFβ1 also enhanced hyaline-like properties using BMP2 in
bovine synovial explants, and suppressed chondrocyte hypertrophy [98].

PTHrP is a parathyroid hormone with various isoforms, and it is involved in the development of
multiple tissues including skeletal development [99]. PTHrP increased GAG contents and expression of
SOX9 and COL2A1 in pellets generated from bone marrow stromal cells and adipose-derived stromal
cells, and downregulated the expression of COL10A1 and RUNX2 in a dose-dependent manner [100].
Between other isoforms, PTHrP(1-34) was reported to induce chondrogenesis and reduce hypertrophy
in mesenchymal stromal cells [101]. Previous work done by Lee and colleagues showed that of four
PTHrP isoforms (1-34, 1-86, 7-34, and 107-139), PTHrP(1-34) showed the most significant enhancement
in chondrogenesis and suppression in hypertrophy in human bone marrow stromal cells [102]. Other
studies also showed that PTHrP(1-34) increased the gene and protein expression of collagen type
II. Collagen type X gene expression was less affected; however, PTHrP(1-34) downregulated the
expression of IHH and alkaline phosphatase (ALP) [101].

Various groups have attempted to alter the levels of MMPs despite the negative musculoskeletal
side effects in humans [103]. A broad spectrum of MMP inhibitors has been proposed and tested for
OA [104]. Bertram et al. confirmed the activity of proteases and MMPs in chondrogenesis and how
they influenced the early and late stages of chondrogenesis [105]. The addition of pan-MMP inhibitors
suppresses chondrogenesis in a dose-dependent manner, which was confirmed by decreased levels of
proteoglycan disposition, collagen type II and X staining levels, ALP activity, and SOX9 and COL2A1
expressions. The MMP13-specific inhibitor GG86/2 did not affect early chondrogenesis and did not
alter the collagen type II accumulation. GG86/2 partially reduced ALP activity. There are several drugs
developed to target MMPs in OA [103]. Novartis described an active hydroxamate MMP inhibitor,
CGS-27023A, which can be taken orally. This drug inhibited MMP1, MMP2, MMP3, MMP9, MMP12,
and MMP13, and exhibited a chondroprotective effect in OA animal models. However, it was halted due
to musculoskeletal side effects related to treatment duration during a phase I clinical trial [106]. Other
companies attempted to develop MMP-13 inhibitors such as CP-54439 (Pfizer) and WAY-170523 (Wyeth
Research), and were taken to phase II clinical trials. Although the trials of pan-MMP inhibitors had
rather disappointing results, selective MMP13 inhibitors are under development with both improved
delivery and reduced side effects [103].

Senescent cells secreting pro-inflammatory cytokines and matrix-degrading enzymes were targeted
using senolytic (a combination of the words ‘senescence’ and ‘-lytic’) compounds that have emerged
as a potential therapeutic [107]. Baker et al. attempted to eliminate senescent cells with a tailored
drug through the expression of a transgene that is only expressed in P16(Ink4a)-positive cells [108].
The direct effect of a senolytic agent in OA was tested in an anterior cruciate ligament transection
(ACLT) model induced in transgenic p16-3MR mice, which was designed to eliminate p16-positive cells
with ganciclovir [28]. The senolytic compound UBX0101 was repeatedly delivered by intra-articular
injections after two weeks of ACLT induction. Although the half-life of the compound is only 1.5 h,
UBX0101 successfully reduced the senescent chondrocytes and the production of SASP factors and
showed suppression of the progression of OA.



Int. J. Mol. Sci. 2020, 21, 2358 9 of 15

7. Conclusions

The molecular mechanisms of OA initiation and progression require considerable further study,
despite significant progress in recent years. OA is mainly caused by trauma induced by an external force
or cartilage damage accumulated during aging. During these processes, chondrocyte hypertrophy and
senescence are thought to play a critical role in OA initiation or progression. However, the remaining
question is: which came first, the chicken or the egg? There is still little understanding of whether
these two independent processes (i.e., chondrocyte hypertrophy and senescence) are dependent on
penetration in the other. Further study on which event is the cause or the effect should be conducted
to better understand these processes. Investigating the effect of chondrocyte hypertrophy and/or
senescence in OA would provide a promising research field in developing a potential therapeutic agent
for OA treatment.
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