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Purpose: The purpose of this study was to design an automated algorithm that can
detect fluorescence leakage accurately and quickly without the use of a large amount
of labeled data.

Methods:Aweakly supervised learning-basedmethodwas proposed to detect fluores-
cein leakage without the need for manual annotation of leakage areas. To enhance the
representation of the network, a residual attention module (RAM) was designed as the
core component of the proposed generator. Moreover, class activation maps (CAMs)
were used to define a novel anomaly mask loss to facilitate more accurate learning of
leakage areas. In addition, sensitivity, specificity, accuracy, area under the curve (AUC),
and dice coefficient (DC) were used to evaluate the performance of the methods.

Results: The proposed method reached a sensitivity of 0.73 ± 0.04, a specificity of 0.97
± 0.03, an accuracy of 0.95 ± 0.05, an AUC of 0.86 ± 0.04, and a DC of 0.87 ± 0.01 on
the HRA data set; a sensitivity of 0.91 ± 0.02, a specificity of 0.97 ± 0.02, an accuracy of
0.96 ± 0.03, an AUC of 0.94 ± 0.02, and a DC of 0.85 ± 0.03 on Zhao’s publicly available
data set; and a sensitivity of 0.71 ± 0.04, a specificity of 0.99 ± 0.06, an accuracy of 0.87
± 0.06, an AUC of 0.85 ± 0.02, and a DC of 0.78 ± 0.04 on Rabbani’s publicly available
data set.

Conclusions: The experimental results showed that the proposed method achieves
better performance on fluorescence leakage detection and candetect one imagewithin
1 secondand thushasgreat potential value for clinical diagnosis and treatmentof retina-
related diseases, such as diabetic retinopathy and malarial retinopathy.

Translational Relevance: The proposed weakly supervised learning-based method
that automates the detection of fluorescence leakage can facilitate the assessment of
retinal-related diseases.

Introduction

Fundus fluorescein angiography (FA) can reflect
the damaged state of the retinal barrier in living
human eyes and is the standard screening and
diagnosis technique for retinal diseases.1 Identifi-

cation of high-intensity retinal leakage in FA images
is a crucial step for clinicians to develop therapy
planning and monitor treatment outcomes. However,
current practical approaches for fluorescein leakage
detection are usually labeled by trained graders2 and
require laborious and time-consuming work that is
inevitably influenced by human factors. Thus, an
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effective automated fluorescein leakage detection
method is urgently needed.

Algorithms that tackle automated fluorescein
leakage detection tasks can be mainly divided into two
types: intensity-based methods and learning-based
methods. The traditional intensity-based methods
usually detect high-intensity leakages by analyzing
the pixel intensity variation.2–5 Although this kind of
method has achieved relatively higher sensitivity and
specificity in fluorescein leakage detection, it takes a
long time to process an image (more than 20 seconds).
Recently, with the development of machine learning
and deep learning techniques, leaning-based methods
are also applied to the fluorescein leakage detection
task. Trucco et al.6 and Tsai et al.7 applied AdaBoost to
detect the leakage regions of FA images, and Béouche-
Hélias et al.1 used random decision forests for leakage
detection. However, these methods are all supervised
and require a large amount of training data derived
from manual annotation, which makes their perfor-
mances inherently dependent on the quality of the
annotations. To solve this problem, Li et al.8 proposed
an unsupervised learning-based fluorescence leakage
detection method. However, this method cannot focus
solely on the learning of leakage areas and leads to
false leakage detection.

The main purpose of this work is to design an
automated algorithm that can detect the fluorescence
leakage more accurately and quickly than those in
former reports and without the use of a large amount
of labeled data.

Methods

Data Sets

The data set used in this study contains images with
Spectralis HRA equipment (Heidelberg Engineering,
Heidelberg, Germany) between March 2011 and

September 2019 at the Third People’s Hospital of
Changzhou (Jiangsu, China); we call this data set
the “HRA data set” in this work. The image types
in our data set are normal FA images and abnor-
mal FA images with three kinds of typical fluorescein
leakage in retinal diseases, that is, optic disc leakage,
large focal leakage, and punctate focal leakage (Fig. 1).
These kinds of leakage have the same characteris-
tic: the leakage of early angiography usually does not
appear or is not obvious, but its size and brightness
will increase in the late phase. The data sets initially
contained 509 abnormal FA images and 343 normal
FA images captured in the late phase (5–6 minutes)
of angiography from 852 eyes of 462 patients (223
female, 239 male, ranging in age from 7 to 86 years)
and one picture per eye. The resolution of each image
is 768 × 768 pixels, and the field of views of these
images includes 30°, 45°, and 60°. Twenty percent of
the normal and abnormal FA images were randomly
selected to comprise the testing set, and the remain-
ing images were employed as the training set. Training
data were augmented with random horizontal flips and
rotations operations, leading to a final 1709 abnormal
and 1149 normal FA images.

Thirty-two abnormal FA images with optic disc
and large focal leakage in the test set were labeled
by two specialists who demonstrated good intra- and
interobserver consistency (Supplementary Table S1).
The Visual Geometry Group Image Annotator,9 an
open-source tool, was used for annotations. Before
commencing to grade the test data set, manual graders
discussed and agreed upon the leakage definition and
segmentation protocol. To define intraobserver relia-
bility, one manual grader repeated his grading on the
same images at least 5 weeks after the initial grading.

Anomaly Mask Calculation

Class activation maps (CAMs) have been widely
used in many tasks, such as object localization,10,11

Figure 1. Examples of the types of FA images. (a) Normal FA image. FA image with (b) optic disc leakage, (c) large focal leakage, and
(d) punctate focal leakage.
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Figure 2. Architecture of the normal and abnormal FA image classification network. conv, convolutional layer; FC, fully connected layer.

image segmentation,12,13 and unpaired image trans-
lation.14 In this work, we mainly used CAMs to
roughly localize the leakage areas and generate a binary
anomaly mask of abnormal FA images. The anomaly
mask can provide weak constraints for the network
training process.

The calculating process of the anomaly mask can
be described as three steps. First, a classification
network is trained to classify the normal and abnor-
mal FA images. We adopt ResNet1815 pretrained on
the ImageNet data set16 as the backbone network
(Fig. 2). Since the FA images and the images in the
ImageNet data set are different in nature, we freeze
the low-level layers (i.e., the first layer of ResNet18,
highlighted by the red dotted box in Fig. 2) and
redesign the last layer of the pretrained network for
our binary classification task (highlighted by the green
dotted box in Fig. 2), and the remaining architectures

are all retrained based on the weights pretrained on
“ImageNet.” This network achieves an accuracy of
0.993 on the normal and abnormal FA image classifica-
tion. Second, the gradient-weighted CAMmethod17 is
applied to generate the CAM of abnormal FA images.
Finally, Otsu’s binarization method18 is used to gener-
ate the binary mask of abnormal FA images. To ensure
that the leakage areas can be included in the white areas
of the mask as much as possible, we set the threshold to
0.6 times Otsu’s original threshold for all images. Some
examples of the generated CAM and mask of abnor-
mal FA images are shown in Figure 3.

Normal-Looking FA Image Generation and
Leakage Detection

The main idea of the proposed method is similar to
the study proposed by Li et al.,8 that is, to train a model

Figure 3. Examples of the generated CAM andmask of abnormal FA images. (a) Original FA images. (b) Corresponding CAMs (represented
as heatmaps on the FA images). (c) Corresponding CAMs (grayscale). (d) Corresponding anomaly masks.
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Figure 4. Architecture of the proposedmethod. (a) The proposed CycleGAN-based network consists of two generators, GA2N and GN2A, and
two discriminators, DA and DN. Architecture of (b) RAB, (c) generator GA2N and GN2A, and (d) discriminator DA and DN. LReLU, leaky rectified
linear unit; ReLU, rectified linear unit; Tanh, TanHyperbolic function.

that can generate a normal-looking FA image from the
input abnormal image and then detect the leakage by
calculating the difference between the abnormal and
generated normal images.

To transfer the abnormal FA image into the
normal domain without the use of paired images,
a cyclic generative adversarial network (CycleGAN)–
based network is designed. As shown in Figure 4a,
this network also consists of two generators and two
discriminators, which makes the network trained in an
adversarial way. Generator GA2N takes an image xa as
input and generates a normal-looking image GA2N(xa);
the main goal of generator GN2A is to translate an
image from a normal domain to an abnormal domain.
Two discriminators, DA and DN, aim to discriminate
between real and generated images. Figure 4c shows the
architecture of the proposed generators, which contain
three key components: an encoder (composed of a
7 × 7 convolutional layer and two 3 × 3 convolu-
tional layers), nine residual attention blocks (RABs),
and a decoder. The discriminators are the same as
CycleGAN’s (i.e., a 70 × 70 PatchGAN), as shown
in Figure 4d.

Residual Attention Block
The main aim of the designed RAB was to increase

representation ability by using an attention mecha-
nism: focusing on important features and suppressing
unnecessary ones. Details of the RAB are illustrated
in Figure 4b. The RAB is mainly composed of two 3
× 3 convolutional layers and a skip connection, and

a convolutional block attention module (CBAM)19 is
concatenated following the second convolutional layer.
CBAM is a plug-and-play module to learn “what”
and “where” to focus on the channel and spatial
dimensions, respectively. As shown in Figure 4b, this
module consists of two submodules: a channel atten-
tion module and a spatial attention module. Thus,
CBAM can enhance meaningful features along both
channel- and spatial-wise dimensions.

All experiments were implemented on an Ubuntu
16.04 + Python 3.6 + PyTorch 1.7.0 environment. The
proposedmodel was trained for 200 epochs using linear
decay with a batch size of 1 and the Adam optimizer.
It took nearly 72 hours on one GeForce GTX 1080Ti
GPU to train the model.

Loss Function

To ensure that the network generates more realistic
normal domain images, we formulate the loss function
as a combination of adversarial lossLGAN, cycle consis-
tency loss LCC, and anomaly mask loss LAM. The full
loss function of this network can be written as follows:

L = λGANLGAN + λCCLCC + λAMLAM, (1)

where λGAN, λCC, and λAM are the experimentally deter-
mined hyperparameters that control the effect of adver-
sarial loss, cycle consistency loss, and anomaly mask
loss, respectively. Pursuing balance among the three
losses is not a trivial task. After multiple experiments,
we set λGAN = 1, λCC = 10, and λAM = 10 in this task.
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Adversarial Loss
The proposed network adopts a bidirectional trans-

form model with two generators, GA2N and GN2A,
trained simultaneously. This strategy can help stabilize
the model training. Since we have two generators and
discriminators, the GAN loss can be defined as

LGAN = Epa [logDA(xa)] + Epa [log(1 − DN (GA2N (xa)))]

+ Epn [logDN (xn)] + Epn [log(1 − DA(GN2A(xn)))].

(2)

Cycle Consistency Loss
The cycle consistency loss is adopted to transform

normal and abnormal FA into one another and aid the
learning of GA2N and GN2A:

LCC = Epa [‖GN2A(GA2N (xa)) − xa‖1]
+ Epn [‖GA2N (GN2A(xn)) − xn‖1]. (3)

Anomaly Mask Loss
The anomalymask (AM) loss is proposed to assume

that each abnormal FA image has a corresponding
binary mask that indicates where the leakage areas
are within the image. The anomaly mask Mx of the
abnormal FA image can be calculated using themethod
described earlier, and this mask is not needed during
testing. Since we want generatorGA2N to automatically
isolate and modify the leakage areas within the image
without changing nonleakage areas, the loss function is
defined as

LAM = Epa
[‖(1 − Mx) � (GA2N (xa) − xa) ‖22

]
, (4)

where � represents element-wise multiplication and 1
is an all-ones matrix of the same size of the anomaly
mask. That is to say, if the generator modifies the pixels
in an abnormal image xa that does not correspond to
the leakage areas, an L2 cost is paid.

Evaluation Metrics

For a fair comparison with other state-of-the-art
methods, the testing results were all evaluated with the
criteria of sensitivity (Sen), specificity (Spe), accuracy
(Acc), area under the curve (AUC), and dice coefficient
(DC), as in the existing leakage detection works.2,4,8
These metrics can be calculated as

Sen = TP
TP + FN

(5)

Spe = TN
TN + FP

(6)

Acc = TP + TN
TP + TN + FP + FN

(7)

AUC = Sen + Spe
2

(8)

DC = 2(|A ∩ B|)
|A| + |B| , (9)

where TP, TN, FP, and FN represent the number
of true positives (correctly identified leakage pixels
or regions), true negatives (correctly identified
background pixels or regions), false positives (incor-
rectly identified leakage pixels or regions), and false
negatives (incorrectly identified background pixels or
regions), respectively. A indicates the ground truth
regions, B indicates the segmented regions, and |A∩B|
denotes the number of pixels in the intersecting region
between A and B. All pixels are treated equally in
their counting without considering the severity of the
symptoms they depict.

Results

Results on the HRA Data Set

In this section, we compared the proposed method
with the one by Li et al.,8 which is also the baseline
model of the proposed method. Starting from this
baseline model (CycleGAN), which consists of gener-
ator GA2N without AM loss and CBAM, we also
conducted an ablation study to validate the inclusion
of AM loss and CBAM.

Results on Optic Disc and Large Focal Leakage
Detection

Table 1 shows that the proposed method (Cycle-
GAN + CBAM + LAM) achieves the best overall
performance when compared with the other three
models and reaches the highest specificity, accuracy,
AUC, and DC of 0.97 ± 0.03, 0.95 ± 0.05, 0.86 ±
0.04, and 0.87 ± 0.01, respectively. The qualitative
comparison also illustrates the better performance of
the proposed method on optic disc and large focal
leakage detection (Figs. 5, 6).

Results on Optic Punctate Focal Leakage Detection
Since only the FA images with optic disc and large

focal leakages were labeled by experts, only a qualita-
tive analysis is illustrated for punctate leakage detec-
tion (Fig. 7). As seen in Figures 7a3–e3, the proposed
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Table 1. Performances of Different Methods on Detecting Optic Disc and Large Focal Leakages on the HRA Data
Set (32 Images) at the Pixel Level

Characteristic CycleGAN CycleGAN + LAM CycleGAN + CBAM Proposed Method

Sen 0.79± 0.05 0.77 ± 0.04 0.74 ± 0.04 0.73 ± 0.04
Spe 0.93 ± 0.06 0.94 ± 0.05 0.96 ± 0.04 0.97± 0.03
Acc 0.93 ± 0.06 0.91 ± 0.05 0.93 ± 0.05 0.95± 0.05
AUC 0.85 ± 0.04 0.85 ± 0.05 0.84 ± 0.06 0.86± 0.04
DC 0.66 ± 0.01 0.66 ± 0.01 0.73 ± 0.01 0.87± 0.01

Data are expressed as mean ± standard deviation. The bold values represent the best results.

Figure 5. Leakage detection results on HRA data set. (a1–a3) Example of abnormal FA images. Leakage detected by (b1–b3) expert 1’s
annotation, (c1–c3) expert 2’s annotation, (d1–d3) CycleGAN, (e1–e3) CycleGAN+ LAM, (f1–f3) CycleGAN+CBAM, and (g1–g3) the proposed
method.

Figure 6. Generated normal-looking image corresponding to the abnormal FA images in Figure 4. Normal-looking FA image generated
by (a1–a3) CycleGAN, (c1–c3) CycleGAN + LAM, (e1–e3) CycleGAN + CBAM, and (g1–g3) the proposed method. Difference image between
abnormal FA image and normal image generated by (b1–b3) CycleGAN, (d1–d3) CycleGAN + LAM, (f1–f3) CycleGAN + CBAM, and (h1–h3)
the proposed method.
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Figure 7. Punctate focal leakage detection results on HRA data set. (a1–a3) Example of abnormal FA images. Leakage detected by (b1–b3)
CycleGAN, (c1–c3) CycleGAN + LAM, (d1–d3) CycleGAN + CBAM, and (e1–e3) the proposed method.

Figure 8. Leakage detection results on publicly available data set. (a) Example of abnormal FA images. Leakage identified by (b) an expert,
(c) Zhao et al.,2 (d) Li et al.8 (CycleGAN), and (e) the proposedmethod. (f ) The normal-looking FA image generated by the proposedmethod.

method focuses more on the identification of the
real leakage areas, which illustrates its good specificity.

Results on the Publicly Available Data Sets

The proposed model was also tested on two publicly
available data sets (data sets from Zhao et al.2 and
Rabbani et al.4) and compared with the methods by
Zhao et al.,2 Rabbani et al.,4 and Li et al.8 Zhao et
al.’s data set contains 30 abnormal FA images (20 large

focal and 10 punctate focal) with signs of malarial
retinopathy (MR) on admission. Figure 8 shows that
the leakage detection results of the proposed method
are closer to the expert’s annotation, and Figure 9 illus-
trates the better performance of the proposed method
on leakage detection when compared with Li et al.’s
method. Table 2 shows the good quantitative results
of the proposed method, with the highest accuracy
and DC of 0.96 ± 0.03 and 0.85 ± 0.03, respectively.
Rabbani et al.’s data sets contain 24 images (10 predom-
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Figure 9. Leakage detection results on the publicly avaliable data set. (a) Example FA image. Leakage identified by (b) an expert, (d) Li
et al.8 (CycleGAN), and (f ) the proposed method. The normal-looking FA image generated by (c) Li et al.8 (CycleGAN) and (e) the proposed
method.

Table 2. Performances of Different Methods on Detecting Focal Leakages over the Data Set by Zhao et al.2

(20 images) at the Pixel Level

Characteristic
Intra obs.

(Intraobserver)
Inter obs.

(Interobserver)
Method by

Rabbani et al.4
Method by
Zhao et al.2

Method by Li
et al.8

Proposed
Method

Sen 0.96 ± 0.02 0.91 ± 0.04 0.81 ± 0.08 0.93± 0.03 0.92 ± 0.04 0.91 ± 0.02
Spe 0.97 ± 0.03 0.94 ± 0.05 0.87 ± 0.08 0.96 ± 0.02 0.97± 0.02 0.97± 0.02
Acc 0.96 ± 0.03 0.89 ± 0.04 0.83 ± 0.10 0.91 ± 0.03 0.92 ± 0.02 0.96± 0.03
AUC 0.96 ± 0.02 0.92 ± 0.04 0.84 ± 0.08 0.94± 0.02 0.94 ± 0.03 0.94± 0.02
DC 0.92 ± 0.04 0.80 ± 0.05 0.74 ± 0.05 0.82 ± 0.03 0.84 ± 0.03 0.85± 0.03

Data are expressed as mean ± standard deviation. The bold values represent the best results.

inantly focal, 7 predominantly diffuse, 7 mixed pattern
leakage) captured from 24 patients who had signs of
diabetic retinopathy (DR) on admission. As described
in Rabbani et al.,4 quantitative analysis of a circular
region centered at the fovea with a radius of 1500 μm
is of the greatest significance for clinical diagnosis
and treatment. To make a fair comparison, we also
limited the proposed method of detecting the leakages
in this area. The quantitative and qualitative results
of the proposed method are compared in Figure 10
and Table 3. The proposed method reached the highest
specificity of 0.99 ± 0.06.

Discussion

Fundus FA is a valuable imaging technique that
provides a map of retinal vascular structure and
function by highlighting blockage of, and leakage

from, retinal vessels. Detecting and evaluating the high-
intensity leakages is a crucial step for disease recogni-
tion and treatment.

Current automated leakage identification methods
can be classified as intensity based and learning based.
The pixel intensity–based methods2–5 usually require
a long time to detect leakages in an image (more
than 20 seconds). Also, the supervised-learning based
methods1,6,7 require a large amount of annotated
data to train the model. In addition, the exist-
ing supervised learning–based methods are all a
machine learning–based method that needs to extract
the features manually or use some methods before
segmentation. This makes the extracted features not
various enough, which leads to unsatisfying detection
results.

Recently, with the development of generative adver-
sarial networks (GANs) and unsupervised image trans-
lation techniques, unsupervised learning–based lesion
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Figure 10. Leakagedetection results on thedata set by Rabbani et al.4 (a) Example FA image. Leakagedetectedby (b) expert 1’s annotation,
(c) expert 2’s annotation, (d) expert 2’s annotation after 4 weeks, (e) Rabbani et al.,4 (f ) Zhao et al.,2 (g) Li et al.8 (CycleGAN), and (h) the
proposed method. (i) The normal-looking FA image generated by the proposed method.

Table 3. Performances of Different Methods on Detecting Focal Leakages over the Data Set by Rabbani et al.4 at
the Pixel Level

Characteristic
Intra obs.

(Intraobserver)
Inter obs.

(Interobserver)
Method by

Rabbani et al.4
Method by
Zhao et al.2

Method by Li
et al.8

Proposed
Method

Sen 0.95 ± 0.05 0.78 ± 0.09 0.69 ± 0.16 0.78 ± 0.06 0.80± 0.06 0.71 ± 0.04
Spe 0.73 ± 0.27 0.94 ± 0.08 0.91 ± 0.09 0.94 ± 0.02 0.94 ± 0.04 0.99± 0.06
Acc 0.83 ± 0.16 0.90 ± 0.08 0.86 ± 0.08 0.89 ± 0.06 0.90± 0.05 0.87 ± 0.06
AUC 0.84 ± 0.16 0.91 ± 0.08 0.80 ± 0.12 0.86 ± 0.04 0.87± 0.06 0.85 ± 0.02
DC 0.80 ± 0.08 0.82 ± 0.03 0.75 ± 0.05 0.81± 0.02 0.81 ± 0.04 0.78 ± 0.04

Data are expressed as mean ± standard deviation. The bold values represent the best results.

detection methods have also emerged. Sun et al.20
proposed an abnormal-to-normal translation GAN to
generate a normal-looking medical image and using
the difference between the abnormal and the gener-
ated normal image to guide the detection or segmen-
tation of lesions. Schlegl et al.21 proposed a model to
detect the anomaly regions of optical coherence tomog-
raphy retinal images. As for fluorescence leakage detec-
tion, Li et al.8 proposed an unsupervised learning–
based fluorescence leakage detection model based on
CycleGAN,22 which illustrated the potential of the
unsupervised learning method. However, this method
only applied the CycleGAN to generate the normal-
looking image, and this model cannot focus solely
on modifying the leakages areas and leaving the no-
leakage areas unchanged, as this leads to false leakage
detection.

The present study builds upon that by Li et al.,8
with the purpose of optimizing the CycleGAN-based
method andmaking it concentrate more on the leakage
areas and keeping the pixel intensity of the no-leakage
areas nearly unchanged. To achieve this objective, we
made the following two improvements: (1) a CBAM
was introduced and combined with the deep resid-
ual blocks. CBAM can extract main features in both
spatial- and channel-wise dimensions, which enhances
the representations of the important regions (leakage
areas). (2) The CAMand its derivatives enable discrim-
inative regions of images to be located with basic classi-
fication networks.10 Inspired by this characteristic of
CAM, we designed an anomaly mask loss to make the
network focus on the generation of leakage areas. The
proposed method is called a weakly supervised method
since we need to leverage the normal or abnormal labels
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of FA images to train a classification network to gener-
ate the anomaly mask of abnormal FA images.

In this work, we evaluated the proposed model on
our HRA data set and two publicly available data
sets to validate its effectiveness and universality. The
presented HRA data set contained FA images with
three common types of fluorescein leakage (large focal,
punctate focal, and optic disc leakage). As shown
in Figure 5, the proposed model obtained the best
performance on the optic disc and large focal leakage
detection when compared with the other three models.
The reason is that the proposed model consists of
both AM loss and CBAM, which can make the model
focus more on the leakage areas and obtain less
background redundant information in the difference
image (Figs. 6h1–h3) and then gets better detection
results. The proposed method achieved the highest
specificity, accuracy, AUC, and DC of 0.97 ± 0.03,
0.95 ± 0.05, 0.86 ± 0.04, and 0.87 ± 0.01, respectively
(Table 1). However, the sensitivity of the proposed
method is lower than that of the other methods
(Table 1) because the difference images of the other
methods (Fig. 6) contain lots of redundant background
information. The high-intensity redundant informa-
tion can be identified as leakage, which allows the
leakages with similar intensity of background to be
detected and leads to high sensitivity, but this also
makes the background detected as leakages and results
in lower specificity.

As shown in Figures 5 and 7, the proposed method
performedwell on the detection of large focal and optic
disc leakage, but it cannot detect all leakage areas in the
FA images with punctate focal leakage. This is because
the introduction of the attention module and AM loss
make the network focus more on the obvious areas
and ignore the less obvious ones. Therefore, improving
punctate leakage detection will be the main task in our
future study.

The proposed method also compared with three
state-of-the-art methods on two publicly available data
sets from Zhao et al.2 and Rabbani et al.4

Figure 8 and Table 2 show the qualitative and
quantitative results on the data set by Zhao et al.,2
and it can be seen that the overall performance of the
proposed method is slightly better than the existing
best intensity-based method by Zhao et al.2

The qualitative and quantitative comparable results
of the proposed method over the data set by Rabbani
et al.4 are illustrated in Figure 9 and Table 3. As
shown in Table 3, the proposed method reached the
highest specificity (0.99 ± 0.06), which indicates that
the proposed method focuses more on the detection
of the real and obvious leakage. For this reason, the
proposed method will eliminate the less obvious ones
and lead to a low sensitivity (0.71 ± 0.04). Thus,

improving the detection sensitivity of this kind of
leakage will also be the main task in our future study.

It should be noted that the HRA data set in our
study does not have the disease labels. Since we cannot
get the disease labels, the purpose of this study is to
propose a method that can automatically and effec-
tively detect the three types of fluorescein leakage: large
focal, punctate focal, and optic disc leakage (these types
of leakage are common in DR4,23 and MR5,24), so as
to achieve the auxiliary diagnosis of the retinal diseases
with such fluorescein leakages. Also, the experimental
results of the proposed method on two publicly avail-
able data sets indicate the effectiveness of the proposed
method on DR and MR. This can demonstrate the
potential value for application in clinical diagnosis to
some extent.

In general, the proposed method can achieve
comparable or even better performance to the exist-
ing intensity-based method on the publicly available
data sets, which can demonstrate the effectiveness and
universality of the proposed method to some extent.
Furthermore, the detection time of the proposed
method (within 1 second) is much less than that of
intensity-based methods (more than 20 seconds). This
depends on the characteristics of the learning-based
method (i.e., spending a long time to train a model but
needing a short time to test).

In summary, here we introduce a novel weakly
supervised deep learning method for leakage detection
in FA images. The results show that the proposed
method has better performance on fluorescein leakage
detection when compared with other methods,
especially the FA image with optic disc and large
focal leakage. Moreover, this method can detect one
image within 1 second, which is far superior to the
intensity-based methods (more than 20 seconds).
These indicate the potential value of the proposed
method in clinical diagnosis and treatment for retinal
diseases, such as DR and MR.
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