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Simple Summary: Snake venoms are rich in molecules acting on different biological systems,
and they are responsible for the complications following snake bite envenoming. These bioac-
tive molecules are of interest in pharmaceutical industries as templates for drug design. Different
biological activities of Montivipera bornmuelleri snake venom have been already studied; however, the
venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular
system needs further investigation. Herein, we show that this venom induces toxicity on the nervous
system and disrupts the cardiovascular system, highlighting a broad spectrum of biological activities.

Abstract: The complications following snake bite envenoming are due to the venom’s biological
activities, which can act on different systems of the prey. These activities arise from the fact that
snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The
venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial,
anticancer, and immunomodulatory effects. However, the venom’s activity on the nervous system has
not yet been studied, and its effect on the cardiovascular system needs further investigation. Because
zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged
it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental
toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and
disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage.
Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri’s venom,
suggesting a multitarget strategy during envenomation.

Keywords: Montivipera bornmuelleri; neurotoxicity; cardiotoxicity; zebrafish

1. Introduction

Although dangerous, snake venoms are associated with healing in traditional medicine.
Therefore, researchers have extensively explored snake venom composition and biological
activities, which has raised interest of pharmaceutical companies for the use of snake
venom in drug discovery [1].

Montivipera bornmuelleri is a venomous snake mainly present in the Middle Eastern
region (reviewed in [2]). This snake is classified among the family of Viperidae, a family of
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extensively studied venomous snakes. Its venom composition has previously been studied
using different analytical techniques, showing a proteomic profile of more than 60 protein
compounds [3]. Among these compounds, serine proteases, phospholipase A2 (PLA2),
metalloprotease III, and L-amino acid oxidase (LAAO) have previously been reported [2].
At the functional level, some of these compounds confer to the venom biological activities
such as antibacterial [3,4], pro- and anticoagulant [5], hemolytic [5], pro-inflammatory [6],
vasorelaxant [7], anticancer [8,9], and immunomodulatory effects [10].

Vipers’ venoms can target the cardiovascular and the nervous system of their prey,
among others, resulting in organ-related complications [11]. M. bornmuelleri’s venom has
been shown to act on the vascular system as a vasorelaxant [7,12]; nevertheless, the effect
of M. bornmuelleri’s venom on the nervous system has not yet been studied. In addition, the
effect of the venom on the cardiovascular system needs further investigation. Therefore, we
assessed the toxicity of M. bornmuelleri’s venom in vivo using zebrafish embryos as a study
model. In addition, we screened for neurotoxic and cardiotoxic activities using functional
tests on zebrafish embryos. In fact, by being more complex than cultured cells [13], the
zebrafish model offers several benefits for assessing snake venom toxicity. The high degree
of genetic, morphological, and physiological homology with humans is one of its main
advantages [14,15]. In addition, the rapid development of zebrafish makes it a convenient
model to evaluate developmental toxicity [16–18]. Therefore, the zebrafish model offers a
fast and reliable screening system for toxicants at the cellular, molecular, and behavioral
scale. This is facilitated by the permeability of the transparent embryo’s membrane that
makes the entry of dissolved compounds (i.e., snake venom) simple and effective through
passive diffusion [19–21].

The promising strategy using zebrafish as a toxicological model system emerged
recently for developmental neurotoxicity screening [22–25]. In fact, spontaneous side-to-
side contractions of zebrafish trunk, consisting of the earliest motor behavior of embryos,
reflect the advanced development of sensory-motor neuronal circuits [26–28]. Since the
developing nervous system is sensitive to chemicals, analysis of zebrafish spontaneous
tail coiling activity allowed to screen for neurotoxicants and to differentiate their different
modes of action [24]. In addition, the transparency of the embryos grants the evaluation
of many physiological aspects by simple microscopic observation such as hemorrhage,
blood flow, and cardiology measurements. Herein, we took advantage of the zebrafish
embryos to investigate the neurotoxicity of M. bornmuelleri’s venom and its effects on the
cardiovascular system.

2. Materials and Methods
2.1. Venom

Lyophilized venom was supplied by Riyad Sadek (American University of Beirut,
Beirut, Lebanon) and stored at −20 ◦C. Venom was dissolved in E3 medium or ultrapure
water prior to the experiments as a stock solution of 10 mg/mL.

2.2. Animal Handling and Ethics

Adult zebrafish were maintained at 28 ◦C in a 14/10 hours (hrs) light/dark cycle at the
Lebanese University laboratories according to established procedures. The wild-type AB
strain was used in this study. Maintenance of zebrafish stocks and experiments on larvae
were carried out in accordance with the Guidelines on the protection of experimental animals,
by the Council of Europe, which allow for the usage of zebrafish embryos up to 5 days after
fertilization (approximately to the moment of independent feeding) without the need of
a license. Zebrafish embryos were collected and allowed to develop at 28 ◦C. To prevent
pigment formation, 0.2 mM phenylthiourea (PTU) was added to the fish water starting at
24 hrs postfertilization (hpf).

The C57BL/6 mice were fed a standard diet and kept at 25 ◦C in a 12 hrs day/night
cycle. Animal care and use for this study were performed in accordance with the European
Directive 2010/63/EU “On the protection of animals used for scientific purposes” and
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complied with the guidelines published in the NIH Guide for the Care and Use of Laboratory
Animals. Euthanasia was performed using cervical dislocation.

2.3. Developmental Toxicity Assay

At 2 hpf, embryos were placed in 12-well plates with 1 mL of E3 medium and treated
with venom at final concentrations of 1, 10−1, 10−2, or 10−3 mg/mL. Embryos treated with
E3 medium were considered as negative controls, while embryos treated with retinoic acid
at a final concentration of 0.5 µM served as positive controls on the teratogenic effects and
associated lethality. Embryos were kept at 28 ◦C and checked for mortality rate and various
types of developmental defects at different timepoints under a Carl Zeiss Stereomicroscope.
The median lethal dose (LD50) value was calculated using the AAT Bioquest online tool [29].

2.4. Coiling Test

One-day-old embryos were manually dechorionated and placed in 24-well plates.
Spontaneous tail coiling recordings were acquired using a Carl Zeiss Stereomicroscope.
The video recording assembly was placed in a room maintained at a temperature of 28 ◦C.
Spontaneous tail coiling videos were captured for 5 min, starting with 30 s of baseline
recording before adding venom at a final concentration of 1 mg/mL. Embryos treated with
E3 medium were considered as controls. Side-to-side movements of the tail were counted
manually, and the quantification of spontaneous tail movement was expressed as coiling
frequency (Hz).

2.5. Cell Culture and Differentiation

The P19 mouse embryonic carcinoma cells were differentiated into neurons using all-
trans retinoic acid (ATRA) as described previously [30]. Briefly, P19 cells were maintained
in T-75 culture flasks using low glucose (1 g/L) Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 5% fetal calf serum (FCS), 5% delipidated FCS, and gen-
tamycin (10 µg/mL). To induce differentiation, cells were washed twice with phosphate-
buffered saline (PBS) and detached with 0.001% trypsin for 1 min. After trypsin neu-
tralization, cells were centrifuged at 100 RPM for 5 min at room temperature (RT). Cell
pellet was suspended in differentiation media (DM) consisting of α-MEM 1900 (Gibco)
supplemented with 10% FCS. Next, 3 × 106 cells were seeded in P10 Petri dishes containing
DM supplemented with ATRA (5 µM) and allowed to form aggregates for 4 days at 37 ◦C
in a humidified environment with 5% CO2. After 4 days, aggregates were collected by sedi-
mentation, washed in PBS, and trypsinized with 0.25% trypsin for 3 min in a 37 ◦C water
bath. After trypsin neutralization, cells were then mechanically dissociated by pipetting
and filtered through a Corning® cell strainer 40 µm nylon filter (Merck). After centrifu-
gation, cells were suspended in Neuronal Medium (NM) consisting of DMEM (4.5 g/L
glucose)-GLUTAMAX-1-Ham-F12 (1:1) medium supplemented with N2 (Gibco, 17502048)
and 50 µM fibronectin (Merck), then seeded in 96-well plates precoated with 0.01% poly-L-
lysine (Merck) at a density of 2 × 104 per well. Half of the medium was changed every third
day. Cells were allowed to differentiate for 7 days at 37 ◦C in a humidified environment
with 5% CO2.

2.6. Primary Cortical Neuron Cultures

Primary cortical neuron cultures were prepared as described in [31]. Briefly, dissected
cortices of E13.5 C57BL/6 mice were incubated in 150 µL of prewarmed trypsin/EDTA
(Gibco, 25300-054) at 37 ◦C for 15 min with agitation (600 RPM). Dissociation was stopped
by adding 850 µL of culture media consisting of neurobasal medium supplemented with
0.5 mM GlutaMAX, 1% penicillin/streptomycin, and 1% B-27 supplement. The tissue was
then dissociated by gentle titration through a P1000 micropipette (15 times) and then a P200
micropipette (5 times) to obtain a single cell suspension. Cells were counted and seeded
in 96-well plates precoated with 0.01% poly-L-lysine (Merck) at a density of 2 × 104 per
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well. Half of the medium was changed every third day. Neurons were kept in culture, and
analysis was performed after 7 days (DIV 7).

2.7. LDH Cytotoxicity Test

The Lactate Dehydrogenase (LDH) Cytotoxicity Assay Kit (Thermofisher) was used
to measure the LDH released from the cytosol of lysed cells into the culture supernatants.
Briefly, seeded neurons in 96-well plates were treated with different concentrations of snake
venom (10−1, 10−2, and 10−3 mg/mL). Water and Triton (10%) were used as negative
and positive controls, respectively. After incubating the plates at 37 ◦C, 5% CO2 for 4 hrs,
50 µL of the supernatant was transferred to 96-well plates and mixed with 50 µL of the
reaction mixture. The plate was incubated for 30 min at RT protected from light. Then, the
reaction was stopped with 50 µL of stop solution, and the absorbance was measured at
490 and 680 nm. Cytotoxicity percentages were calculated following the manufacturer’s
recommendations.

2.8. Determination of Cardiovascular Toxicity and Hemorrhage

Two-day-old embryos were placed in 12-well plates with 1 mL of E3 medium and
treated with the venom at final concentrations of 1 or 10−1 mg/mL. Embryos treated with
E3 medium were considered as the negative control.

Heart rate was determined from videos taken under a Carl Zeiss Stereomicroscope
after 10 and 30 min of the treatment and expressed as beats per minute (bpm). Embryos
were also observed for any sign of hemorrhage under a Carl Zeiss Stereomicroscope after
6 hrs of incubation with the venom/E3 medium.

2.9. Statistical Analysis

Differences among groups were analyzed with GraphPad Prism 6.0 software (Graph-
Pad Software Inc., San Diego, CA, USA) using the Student’s t-test. The results are expressed
as the mean ± SEM.

3. Results
3.1. Montivipera bornmuelleri’s Venom Developmental Toxicity on Zebrafish Embryos

Zebrafish embryos at early blastula stage (2 hpf) were exposed to increased concentra-
tions of Montivipera bornmuelleri’s venom and checked for mortality rate and various types
of developmental defects during 48 hrs of exposure. The venom showed dose-dependent
toxicity on zebrafish embryos (Figure 1A). In fact, all embryos were found dead after
24 hrs of exposure at 1 mg/mL. The percentage of viability increased when embryos
were exposed to lower venom concentrations (33.3 ± 13% for 10−1 mg/mL; 85 ± 3% for
10−2 mg/mL; 91.7 ± 3% for 10−3 mg/mL). Interestingly, the fully penetrant lethality of the
venom observed at 1 mg/mL was even more effective than retinoic acid (75% of viability),
known for its teratogenicity and toxic effect; therefore, used as a positive control. These
findings emphasize the toxicity of the M. bornmuelleri’s venom on zebrafish embryos. The
toxicity observed at 24 hrs remained stable at 30 and 48 hrs; however, retinoic acid toxicity
kept increasing in time (75% of viability at 24 hrs vs. 0% of viability at 30 hrs). Based on
these findings, we estimated the venom’s LD50 at 61.955 µg/mL after 24 hrs of exposure
(Figure 1B).

To check for possible teratogenic effects for the chosen venom concentrations, em-
bryos were inspected under a microscope for morphological abnormalities throughout
the experiment. Contrary to retinoic acid, known for its teratogenicity, the venom did
not show any teratogenic effect during zebrafish embryo development neither at 24 nor
48 hrs after exposure (Figure 2A,B). In fact, embryos exposed to the highest concentration
of venom (1 mg/mL) were phenotypically comparable to E3-treated (negative controls)
but not to retinoic acid-treated (positive controls) embryos. Phenotypic observations show
that venom-treated embryos developed normally without any sign of spinal curvature,
pericardial edema, and tail malformation, contrary to retinoic acid-treated embryos that
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displayed these signs of teratogenicity (Figure 2A,B). Together these findings suggest that
the zebrafish embryos’ death after being exposed to the venom was due to developmental
toxicity rather than teratogenic effect.
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3.2. Neurotoxicity of M. bornmuelleri’s Venom on Zebrafish Embryos

Analysis of early tail coiling activity of zebrafish embryos emerged recently as a
powerful tool for neurotoxic compounds screening [24]. Therefore, we assessed sponta-
neous tail coiling of zebrafish embryos before and after their exposure to M. bornmuelleri’s
venom (Figure 3). Baseline tail coiling frequencies were comparable to those studying
the development of motor behaviors in the zebrafish embryos [28]. A significant increase
in tail coiling frequency was observed 2.5 min after venom exposure (0.49 ± 0.13 Hz);
however, tail coiling frequency remained stable in control embryos, and no significant
increase was observed after E3 medium addition (0.16 ± 0.02 Hz). These findings show
that M. bornmuelleri’s venom potentiates spontaneous tail coiling of zebrafish embryos,
suggesting a neurotoxic effect.
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To investigate this hypothesis, the neurotoxicity of M. bornmuelleri’s venom was
also checked in vitro on P19-derived and primary cortical neurons. Results show dose-
dependent toxicity of the venom on the two types of neuronal cells (Figure A1). Interest-
ingly, neurons derived from P19 cells appeared to be more sensitive to the venom than
primary cortical neurons, suggesting a selective toxicity that could be dependent on the
neuron phenotype. In fact, for P19-derived neuronal cultures, significant toxicity appeared
even with the lowest concentration of venom (10−3 mg/mL), which was not the case for
primary cortical neurons (Figure A1). In addition, at the higher venom concentrations,
the toxicity percentage was higher in P19-derived neuronal cultures than in the primary
cortical cultures (23.84 ± 2.4% vs. 4.54 ± 0.7% and 83.44 ± 2.6% vs. 22.51 ± 6.8%, at 10−2

and 10−1 mg/mL, respectively). Taken together, our data describe a neurotoxic effect of
M. bornmuelleri’s venom.

3.3. Cardiotoxic Effects of M. bornmuelleri’s Venom on Zebrafish Embryos

The analysis of zebrafish embryo heart rate showed a significant decrease in heartbeat
rate 10 min postexposure to 1 mg/mL of the venom (venom: 117.4 ± 5.8 bpm vs. control:
132.5 ± 2.6 bpm) (Figure 4A). This decrease disappeared and the heart rate recovered
to values comparable to the negative control after 20 min (venom: 139.7 ± 2.1 bpm vs.
control: 143.8 ± 3.8 bpm) (Figure 4B). However, exposure to a lower amount of venom
(10−1 mg/mL) did not show any significant changes in heartbeat rate neither after 10 nor
30 min of exposure (Figure 4A,B). These results show that M. bornmuelleri’s venom led to
cardiac rhythmic disturbances, which may be due to direct cardiotoxic effects.
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per condition. (C) Representative images of 2-day-old embryos showing dose-dependent hemorrhage
(white arrows) 6 hrs after venom addition. E3 medium was used as the negative control, showing no
sign of hemorrhage. Scale bar: 200 µm.

In addition to heartbeat rate disturbances, we inspected the embryos for any sign
of hemorrhage. Microscopic observations showed that, contrary to the control condition,
zebrafish exposed to the venom presented redness in the pericardial region (Figure 4C).
These findings suggest that the venom may be impairing vascular integrity leading to
hemorrhage. Together, our data suggest that M. bornmuelleri venom components can target
the cardiovascular system.

4. Discussion

Various biological activities of Montivipera bornmuelleri snake venom have been re-
ported [2]; however, its activity on the nervous system has not yet been studied. In this
study, we investigated the neurotoxicity of M. bornmuelleri’s venom using zebrafish, a pre-
dictive animal model for neurotoxicity screening [17,32]. We also used this in vivo model
to highlight the ability of M. bornmuelleri’s venom to target the cardiovascular system.

Since this is the first study investigating the effects of M. bornmuelleri’s venom on ze-
brafish, it was important to start by checking for lethality and developmental impacts of the
venom on zebrafish embryos. Interestingly, the venom did not show any teratogenic effects
during zebrafish embryonic development; however, the venom exhibited a remarkable
toxicity with an estimated LD50 of 61.955 µg/mL.

The neurotoxicity was first studied using a functional assay evaluating changes in
spontaneous tail coiling in zebrafish embryos exposed to the venom. Our findings show that
M. bornmuelleri’s venom potentiated spontaneous zebrafish coiling, highlighting the neuro-
toxicity of the venom. In fact, this strategy using zebrafish as a systems toxicology model
emerged recently and is promising for developmental neurotoxicity screening [22–25]. Dur-
ing the early stages of zebrafish development, the advanced development of sensory-motor
neuronal circuits translates into spontaneous side-to-side contractions of zebrafish trunk,
the earliest motor behavior of the embryos [26–28]. This behavior is due to the neurotrans-
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mitters produced and released at early stages of zebrafish development [33], which can be
targeted by toxicological compounds leading to an imbalance in neurotransmitters and
the failure of central nervous system function. The exact target of M. bornmuelleri’s venom
leading to spontaneous coiling potentiation is unknown and needs further investigation.
However, one scenario can be suggested in which M. bornmuelleri’s venom interferes with
cholinergic signaling. In fact, cholinergic neurons are well reported in one-day-old zebrafish
embryos [34], and proper cholinergic signaling is important for spontaneous zebrafish
coiling [35]. As such, bajan mutants, resulting from a point mutation in the gene coding
choline acetyltransferase, which is the enzyme responsible for acetylcholine synthesis,
lack the coiling movement [35]. Since M. bornmuelleri’s venom was able to potentiate
spontaneous zebrafish coiling, it could be possible that the venom interferes with the cholin-
ergic signaling pathway. For example, it has previously been shown that the inhibition
of acetylcholinesterase leads to neuronal stimulation and hyperactivates spontaneous tail
coiling [36]. Although inhibitors of acetylcholinesterase are known to be present in snake
venom [37,38], other mechanisms could take place, especially as neuromuscular junctions
have different sites of action of snake neurotoxins [39].

The suggested neurotoxic effect of the venom was also validated on neuronal cul-
tures. In fact, M. bornmuelleri’s venom was cytotoxic on neuronal-like cultures (P19-derived
neurons) and primary cortical neurons. Interestingly, P19-derived neuronal cultures were
more sensitive to the venom compared to primary cortical cultures, which might be due
to the phenotype of the neuronal culture. Primary cortical neurons are GABAergic and
glutamatergic [40–42], expressing gamma-aminobutyric acid (GABA) and glutamate re-
ceptors [43–45]. P19-derived neuronal cultures are striatal-like GABAergic neurons [30],
showing spontaneous neuronal network activity within 6 days [46]. These neurons are
responsive to GABA and glutamate neurotransmitters, and they highly express GABA
receptors [46]. Overactivation of GABA receptors has been shown to be neurotoxic, while
chronic blockade of these receptors enhances neurons’ survival [47]. Therefore, it could
be possible that M. bornmuelleri’s venom potentiates the GABAergic system, leading to
neuronal death. Since glutamatergic toxicity is also well reported [43], another scenario
that can be proposed is that the venom induces neuronal death by acting on glutamate
receptors, leading to cytotoxic intracellular Ca2+ overload. Overall, the exact mechanism in
which venom’s neurotoxicity occurs needs further investigation.

P19-derived neuronal cultures also express the dopamine D2 receptor, a molecular
characteristic of striatopallidal medium spiny neurons (MSNs) [30]. MSNs represent 95% of
the neuronal population in the striatum [48], a critical hub for locomotion control [49]. The
high toxicity of the venom on this neuronal model could therefore suggest the observed
motor behavior defects in a recently reported case of M. bornmuelleri snake bite [50]. In
addition to motor behavior impairments, the envenomated patient showed other neuro-
logical dysfunction, highlighting the neurotoxicity of M. bornmuelleri’s venom. Together
these findings encourage the in-depth exploration of the venom’s components that induce
neurotoxicity, probably by modulating ion channels.

Moreover, the venom induced vascular damage in zebrafish embryos leading to
hemorrhage. This might be due to the metalloproteinases in M. bornmuelleri’s venom [3] and
be responsible for the hemorrhagic activity [51]. In addition, the venom induced negative
chronotropic effects reducing heartbeat rate. Since vasodilation leads to an immediate
decrease in blood pressure and heart rate [52], our findings correlate with previous ex vivo
studies describing the vasorelaxant effect of M. bornmuelleri’s venom [7,12]. Together, these
findings suggest that the venom could act on the cardiovascular system by altering vascular
integrity and inducing cardiac arrythmia. This might be due to the presence within the
venom of a cocktail of compounds that targets the cardiovascular system.

5. Conclusions

In this study, we highlighted the neurotoxicity of M. bornmuelleri snake venom using
both zebrafish and in vitro neuronal culture models. Our data showed that the venom also
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targets the cardiovascular system, highlighting a broad spectrum of biological activities.
Despite the advantages of cell culture techniques, such as consistency and reproducibility,
zebrafish can be considered a powerful tool for venom research studies, as it represents a
complex developing organism.
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