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Abstract

Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a
quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided
into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for
genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive
methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-
event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an
extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set,
number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set,
and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of
the drug gemcitabine. Simulation results demonstrated that overall Fisher’s method and the global model with random
effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and
Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role
in identifying pathways that contribute to complex traits.
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Introduction

With the advent of high-throughput technologies, such as

microarrays, complete genome-wide studies of genomic predictors

of diseases have become common. Many diseases or phenotypes

are expected to involve complex relationships of gene products

within the same molecular pathway or functional gene set.

Therefore, pathways or gene sets, as opposed to single genes,

may better reflect the true underlying biology and may be more

appropriate units for analysis. Pathway or gene set methods for

analysis of expression data incorporate prior biological knowledge

into the statistical analysis by evaluating the overall evidence of

association of a phenotype with expression of all genes in a given

pathway or gene set. Application of such methods may enable the

detection of more subtle effects of multiple genes in the same

pathway that may be missed by assessing each gene individually.

Moreover, the incorporation of biological knowledge in the

statistical analysis may aid researchers in the interpretation of

results.

Within the last few years, multiple approaches for gene set

analysis have been proposed for both expression and SNP data.

The various methods can be divided into two types: competitive

and self-contained [1]. Competitive methods compare the results

for genes within the gene set with results for genes outside the gene

set (complement) to determine whether genes in a particular gene

set are associated more with a phenotype as compared to genes

outside the gene set. Two widely used competitive gene set

methods for analysis of gene expression studies are gene set

enrichment analysis (GSEA) [2], which uses a Kolmogorov–

Smirnov test, and DAVID [3], which uses a Fisher’s exact test.

Self-contained methods, in contrast to competitive methods, only

consider results within a pathway or gene set of interest. Because

competitive methods require a comparison between results within

a gene set to those outside the gene set, these tests cannot be

applied in a study that only measured expression in a particular

candidate pathway or gene set. In contrast, self-contained methods

can be used for genome-wide studies as well as candidate gene or

pathway studies. For more discussion on existing methods for gene

set analysis, we refer the reader to Goeman and Buhlmann [1] and

Allison et al [4].

Let S represent a gene set of interest and SC represent the

complement of S. The null hypothesis of self-contained gene set

methods is Ho
SC: Gene expression levels of all genes in S are NOT associated

with the phenotype, while the null hypothesis for competitive methods

is Ho
C: Genes in S are associated with the phenotype as much as genes in SC.

The self-contained approaches are more powerful for testing the

H0
SC hypothesis and allow for subject-level sampling or permu-

tation methods for estimating the empirical null distribution of the

test statistic, while the competitive methods do not [1].

Liu et al [5] compared three self-contained methods for binary

phenotypes: the Global Test of Goeman et al. [6], that involves a

global model with random effects, the ANCOVA Global Test of

Mansmann and Meister (2005) [7] and SAM-GS (2007) [8], and

found that SAM-GS slightly out-performed the Global Test and
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the ANCOVA Global Test. Dinu et al [9] also compared five self-

contained gene set methods and the competitive GSEA method

[2] using three microarray studies and concluded that the self-

contained methods of SAM-GS, Global test and ANCOVA

Global outperformed GSEA. However, general conclusions

regarding the relative performance of the investigated methods

could not be made, as no simulation studies were completed.

Although SAM-GS is only applicable to data with binary

endpoints, an extension of SAM-GS recently introduced by

Adewale et al [10] is applicable to diverse phenotypes, including

binary, multiclass, continuous, and survival endpoints. Tsai and

Chen [11] proposed using a MANOVA test for gene-set analysis

and compared it to several methods including principal compo-

nent analysis, SAM-GS, GSEA, MaxMean, analysis of covariance,

and a global test. Based on simulation results and real data analysis

they found the MANOVA approach appeared to perform best,

but concluded that most methods, except GSEA and MaxMean

were generally comparable in terms of power. A limitation of the

MANOVA method of Tsai and Chen [11] (2009) is that it is only

applicable to categorical outcomes data.

In this paper, we present an extensive study of ten methods for

conducting a self-contained gene set analysis to test the hypothesis

H0
SC. Using the most extensive simulation study to date (over 2000

simulation scenarios and ten self-contained gene set analysis

approaches), we investigated previously proposed methods and a

newly proposed method, which combines the ideas of Fisher’s

Method [12] and Tail Strength [13]. We limited our study to self-

contained gene set methods that can be used for continuous,

binary or time to event endpoints/phenotypes, and allow for the

inclusion of covariate information. The following gene set methods

were assessed: Kolmogorov–Smirnov test (KS), Fisher’s method

(FM), Stouffer’s method (SM), tail strength (TS), a novel modified

tail strength statistic (MTS), global model with fixed effects

(GMFE), global model with random effects (GMRE), and

principal component analysis (PCA). These methods can be

divided into those based on summaries of results for individual

expression probes (e.g., p-values) (FM, SM, KS, TS, MTS) and

those based on joint modeling of all data for a given pathway

(PCA, GMRE, GMFE). The simulation scenarios varied accord-

ing to: number of genes in a gene set, number of genes associated

with the phenotype, effect sizes, correlation between expression of

genes within a gene set, and the sample size.

In the following sections we briefly describe the various self-

contained gene set methods for analysis of gene expression data

and provide details of the data simulation. We then present results

from the extensive simulation study that assessed the statistical

performance of the various gene set methods. For illustration of

the methods, we also present results from a pharmacogenomic

study of the drug gemcitabine.

Materials and Methods

Gene set analysis methods based on association p-values
In following sections we describe several gene set approaches for

testing the null hypothesis H0
SC (expression levels of all genes in a

gene set are not associated with the phenotype) that use p-values

from separate tests of association of the phenotype with the

expression of each gene in the gene set. All of these approaches

rely on first testing for association between the phenotype and the

expression measured by each of m probes individually. Let pi

represent the p-value from the test of the null hypothesis Hoi, i = 1,

2, …, m (Hoi: expression measured by ith probe is not associated

with the phenotype). The tests used to calculate pi’s will depend on

the type of phenotype. For example, for a continuous phenotype,

such as glucose level, the p-values for association with gene

expression could be based on a linear regression model. Any

appropriate parametric or non-parametric method can be used to

calculate the pi’s; however, power for the GSA will dependent on

the use of a powerful method for analysis of data for individual

expression probes. The p-values for these m tests are then used to

calculate a single test statistic and p-value for testing H0
SC.

Throughout this paper Y denotes a vector of size n61 that

contains continuous phenotypic values for the n subjects, and X
represents a matrix of size n6m that contains the gene expression

values for the m genes within the gene set S measured on the n

subjects.

Kolmogorov-Smirnov test. The Kolmogorov-Smirnov (KS)

test is a goodness of fit test that determines if a given empirical

distribution, F(x), differs significantly from a hypothesized

distribution, Fo(x). KS is one of the most useful and general

nonparametric methods for testing goodness of fit, as it is sensitive

to differences of the empirical cumulative distribution function

from the hypothesized function, in both location and shape. In the

context of testing H0
SC, the KS test for goodness of fit can be

applied to determine if the distribution of the observed p-values

differs from the distribution under the ‘‘null’’ hypothesis. In

particular for gene set analysis, we are interested in testing if the

observed p-values are smaller than expected under the null

distribution using the one-sided test statistic dz~max SN xð Þ{½
F0 xð Þ�, with SN Xð Þ representing the cumulative step-function of a

sample. Significance for d+ can be assessed using the Kolmogorov

distribution or Monte Carlo methods. We applied the KS test

using a Uniform(0,1) reference (null) distribution; however, to

avoid reliance on the null U(0,1) distribution of probe-specific p-

values, we used Monte Carlo simulations to determine significance

level of the KS-test statistic d+.

Fisher’s method. Fisher’s method (FM) [12] and variations

of Fisher’s method [14,15,16,17] have been used extensively for

combining results from multiple statistical tests. See Zaykin et al

[16] for a brief review of modifications of Fisher’s method for

combining p-values. The original Fisher’s method for combining

independent p-values is based on the fact that since under the null

hypothesis pi,Uniform(0,1), 22log(pi) follows a Chi-squared

distribution with 2 degrees of freedom (x2
df ~2). Therefore, the

test statistic F~{2
Pm
i~1

log pið Þ ~{2log P
m

i~1
pi

� �
follows a Chi-

squared distribution with degrees of freedom 2*m (x2
2m). It has been

shown that this method of combining p-values from independent

tests is asymptotically optimal (among essentially all methods) [18].

As opposed to relying on the asymptotic distributions that assume

independent p-values, we used a Monte Carlo approach to

determine the empirical p-values of the FM tests.

Stouffer’s method. Like Fisher’s method, Stouffer’s Method

(SM) [19] is also based on a sum of transformed p-values. However,

rather than using the log transformation of Fisher’s method, Stouffer

(1949) proposed using a normal transformation, and defined the test

statistic as Zs~
Pm
i~1

Zi=
ffiffiffiffi
m
p

, with Zi~W{1 pið Þ, where W{1 :ð Þ is the

inverse standard normal cumulative distribution function [19]. In the

setting in which the m tests are dependent (which will often be the

case in gene set analyses), permutation procedures can be utilized to

estimate the distribution of the test statistic. Again, to avoid reliance

on the asymptotic distribution of the gene-set association statistic,

which assumes independent probe-specific p-values, we used a

Monte Carlo approach to determine the empirical p-values of the

SM test.

Tail strength. The measure of tail strength (TS) proposed by

Taylor and Tibshirani [13] can also be used to perform self-
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contained gene set analysis. Let p(1)#p(2) …#p(m) denote the

ordered p-values (pi,) for the m expression probes in a gene

set. Next, define the tail strength as TS~ 1=m

� � Pm
j~1

ð1{p jð Þ

mz1=j

� �Þ. Under the null hypothesis, each pm,Uniform(0,1),

yielding E p jð Þ
� �

~j=mz1ð Þ and therefore E(TS) = 0. As discussed

by Taylor and Tibshirani (2006) [13], the tail strength measures

the deviation of the ordered p-values from the expectation under

the null hypothesis of no association. If overall the ordered p-

values are smaller than their expectation, TS .0 providing

evidence against the null hypothesis.

Since the statistic TS involves a summation, TS is approxi-

mately normal under the null hypothesis when m is large and the

p-values are independent. In practice, m may not be large (,20).

In addition, the assumption of independence between gene

expressions within a given pathway may not be valid. Thus, we

use permutations to determine the empirical distribution of TS

under the null hypothesis as a means for determining the p-value

for each pathway.

Modified tail strength. We propose a modification of the

tail strength method, by applying a log-transformation to p-values,

as is done in Fisher’s method. Let Xi = 2log(p(i)), where p(i) are the

ordered p-values for the m expression probes, and define MTS~

1=m
Pm
i~1

1{Xi
1=E(Xi)

� �� �
. Under the null hypothesis of no

association, the random variable {log(pi) follows an expo-

nential distribution with rate parameter 1. Therefore, the

probability distribution of the order statistic Xi, is Xi*

Exp
Pi

j~1

1=mzj{1

 !
, with expectation E(Xi)~

Pi

j~1

1= m{jz1ð Þ.

Under the null hypothesis, the expectation of the test statistic

MTS is 0, E(MTS) = 0. In a similar fashion as tail strength [13],

the MTS measures the deviation of each ordered 2log(p-value)

from the expectation under the null hypothesis of no association.

However, by using the 2log(p-value), as opposed to the p-value

as done in the original Tail Strength method, we hope to gain

power for testing gene set effects. Since the assumption of

independence between genes within a given pathway may not be

valid, we again use permutations to determine the empirical p-

value of MTS for each pathway.

Gene set analysis method based on data modeling
Rather than relying on individual gene (probe set) p-values,

H0
SC can also be tested by jointly modeling the effects of

expression of genes within a pathway. The methods described in

following three sections.

Global model using fixed effects. Possibly one of the

simplest methods for completing a gene-set analysis is to fit a

regression model (linear, generalized linear, or Cox-proportional

hazards model) in which the expression levels of all m genes in the

gene set are included in the model as fixed effects (GMFE).

Assessment of association of the phenotype with the gene set is

then based on testing the null hypothesis H0 : b1~b2~:::~
bm~0 versus the alternative that at least one of the coefficients

differs from zero [20,21,22]. A limitation of this approach is that

the model is only estimable when m,n.

Global model using random effects. The global model

approach of Goeman et al [6] is based on a linear random effects

model in which the continuous phenotype is modeled as a function

of the expression values for the genes within the gene-set of interest

(GMRE). That is, Y is modeled as YDX*N(Xb,s2) with the gene

expression effects, b, having a common distribution with mean 0

and variance t2. Under the null hypothesis of no gene expression

effects on the phenotype, the variance of the expression effects is

zero (t2 = 0), which can be tested with a score test [6]. This score

test is locally optimal for t2 = 0 [23]. The method can be modified

to include covariates and/or other phenotypic types (e.g., binary,

survival, multi-class).

Principal components analysis. Principal Component

Analysis (PCA) is a broadly-applicable dimension-reduction

technique [24]. The basic goal of PCA is to reduce the

dimension of the data, which is accomplished by choosing p

components instead of the total set of m variables (gene expression),

where p%m. The components are linear combinations of the

original predictor variables. Gene set analysis using PCA was

completed in a manner similar to that described previously

[17,24,25]. In gene expression data analysis, the principal

components are created using linear combinations of gene

expression values. Previous applications of PCA to gene set

analysis used either only the first principal component [25,26] or

the top 3 to 5 principal components [17,27]. We used the top k

principal components needed to explain 80% (PCA80) of the

variation in the gene expression values within the gene set, along

with the methods based on the top one (PCA1) or top five

principal components (PCA1.5). The gene set association analysis

is then based on a likelihood ratio test for the effect of all the PCs

included in the model.

Permutation-based assessment of significance of gene
set association

Non-independence of gene-specific p-values due to correlation

of expression of genes in a gene set, and other factors such as small

sample size, can lead to departures of p-values from the expected

Uniform(0,1) distribution, even in the absence of expression-

phenotype association. Therefore, rather than relying on asymp-

totic distributions of the gene-set association statistics for the KS,

FM, SM, TS, MTS and GMRE methods, we use permutations to

obtain gene-set association p-values for these methods. First, the

phenotypic or response variable is randomly permuted keeping the

gene expression data fixed (and thus keeping the correlation

structure in the expression data). An association test for each gene

within the gene set is then computed based on the data set with the

permuted phenotype, and the gene set analysis statistic and

corresponding asymptotic p-value is calculated. This process is

repeated many times (e.g. 1,000 times), producing an empirical

distribution of the gene-set test statistic (and corresponding p-

values). The proportion of permutations in which the gene set

analysis p-value is smaller than the gene set p-value in the original

data provides the empirical estimate of the p-value for the gene set

test for association. Thus, although we use previously proposed

statistics, such as the F-statistics proposed by Fisher [12], as

summary statistics for a pathway, by using permutation to assess

significance of these statistics we remove the requirement for

specific null distributions (such as the assumption of the chi-square

distribution for the F-statistic). Therefore, none of the approaches

rely on the assumption that the probe-specific p-values, pi, are

uniformly distributed under the null hypothesis. Furthermore,

there is no assumption of independence of probe-specific p-values.

Data
Simulation Study. To assess the power and the type I error

rate for the various self-contained gene set approaches, an

extensive simulation study was completed. The simulated

scenarios varied according to: number of genes in a gene set,

number of associated genes, effect sizes for the associations,

correlation between expression of genes within a gene set, and the

Comparison of Gene Set Methods
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sample size. For each scenario, 1000 simulated datasets were

generated to estimate power or type I error rate.

Let n represent the number of subjects, and m represent the

number of genes (or expression probe sets) in a gene set. The

expression data for each subject was simulated from a multivariate

normal distribution, Xi 1|mð Þ,MVN 0,Sð Þ i = 1,…,n. The covari-

ance matrix S was set to be either one in which there is no

correlation of expression values in a pathway so that S is diagonal,

or a structure in which all genes in the pathway are correlated the

same amount, i.e. exchangeable (with correlation r = 0.1 or 0.3

and variance set to 1). Next, the quantitative phenotype (Yi) for

each subject was generated conditional on their gene expression

values, Yi,N m,sð Þ with m~bXi. The specification of the effect

sizes b was varied according to the simulation scenario, with b = 0,

1, 2, or 3 indicating: no, small, medium, and large effect size.

In total, 114 ‘‘null’’ scenarios, with no association of expression

at any gene in the pathway, were simulated to investigate type 1

error for a range of sample sizes (n = 20, 100 or 500), gene set sizes

(m = 10, 50, 100, or 500), error standard deviation (s = 1, 3, or 6)

and levels of correlation between expression levels at different

genes (r = 0, 0.1 or 0.3). For the null scenarios all bi = 0. Details of

the simulation scenarios investigated are presented in Table S1.

In addition, 2268 scenarios were generated with gene expression

for at least one probe associated with the quantitative trait, to

investigate power of the gene set analysis methods. Simulation

settings for all ‘‘non-null’’ scenarios are presented in Table S2. As

for the type 1 error simulations, sample size, gene set size, error

variance and correlation between expression at different probes

were varied for the power analyses. In addition, the number of

genes with expression associated with the quantitative trait, and

the effect sizes for these associations, were varied, by specifying a

non-zero vector of effect sizes, b.

In addition, we completed simulations with the simulated data

having similar correlation patterns to real data from a pharma-

cogenomic study of gemcitabine (described in subsequent section).

Gene expression data were simulated using the correlation

structure of the observed data, consisting of 31 probes within the

gemcitabine pathway. For these simulations, gene set size was

therefore fixed at 31. The phenotype was simulated under the

models outlined above, restricted to scenarios with the number of

effects being less than 31 probes. Sample sizes of 100 and 500 were

considered. Table S2 includes the 108 non-null simulation

scenarios based on the gemcitabine pathway correlation structure.

Similarly, Table S1 includes the 6 null simulation scenarios with

this correlation structure.

All simulated data sets were analyzed with the various self-

contained gene set methods. A test for the association of the

continuous phenotype with expression was calculated for each

probe using an F-statistic for the correlation between the gene

expression and phenotype, i.e. F~(n{2)½(r2=(1{r2)�. P-values

were computed based on the F distribution with degrees of

freedom 1 (numerator) and n22 (denominator). Empirical p-

values for the KS, FM, SM, TS, MTS and GMRE methods were

all based on 1,000 permutations. Results for data generated under

the null hypothesis of no gene set association were used to assess

type 1 error rate, while results for data generated under the

alternative hypothesis were used to assess power. Power and type 1

error rates were estimated for all methods based on a 0.05

significance level. In addition to comparing mean power across

scenarios between methods, we investigated trends in power as a

function of characteristics of the simulation scenarios (e.g. sample

size, effect size). To summarize the extent of genetic contribution

of a gene set to the phenotype, we calculated R2, the proportion of

variation in the quantitative phenotype due to gene expression

variation. R2 was calculated as R2~b’Sb
	

b’Sbzs2
� �

. All

analyses were completed in R with code available from the

authors upon request.

Pharmacogenomic study of gemcitabine. Pancreatic

cancer is a rapidly fatal disease with a 5-year survival rate of less

than 5%. However, drug response to the standard chemotherapy

for pancreatic cancer, gemcitabine, varies widely among

individuals. Host variation in transport, metabolism and targets

for drugs used to treat pancreatic cancer may influence clinical

response to therapy. Variation in genes that play a role at each

step within the gemcitabine metabolic pathway could potentially

influence the quantity of drug transported into the cell, metabolic

inactivation of the drug, the rate of active drug formation and the

quantity of active drug reaching its target(s).

To develop hypotheses to be tested in translational studies

involving pancreatic cancer patients, cytotoxicity studies using a

cell-line model system were performed as previously described

[28]. Gemcitabine cytotoxicity data were collected at eight drug

dosages (e.g., 1000, 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001 uM)

for 194 cell lines, and the phenotype IC50 (effective dose that kills

50% of the cells) was estimated using a four parameter logistic

model. In addition to IC50 phenotypic data, whole genome

expression data for these cell lines was obtained with the

Affymetrix U133 plus 2.0 expression array chip, which contains

over 54,000 probe sets designed based on build 34 of the Human

Genome Project. The mRNA expression array data were

normalized on the log2 scale using GCRMA methodologies

[29,30,31], and association of IC50 with expression of each probe

was investigated (see Li et al [28] for details of experimental

design, analyses and results).

In the previous analyses reported by Li et al [28], each

expression probe set was analyzed separately; however no gene set

analyses were performed. For illustration of the various self-

contained gene set methods, we applied the methods to investigate

the impact of gene expression in three gene sets on IC50. Based on

current knowledge of the function of genes in the gemcitabine

pathway, these genes are believed to play a role in response to the

drug gemcitabine (http://www.pharmgkb.org/do/serve? objId =

PA2036&objCls = Pathway). Thus, variation in expression of these

genes may impact the IC50 phenotype. We therefore chose this

pathway to illustrate the application of the methods, expecting that

we may obtain evidence of association of this candidate gene set

with the IC50 phenotype. The gemcitabine pathway contains 31

probe sets from the Affymetrix U133 plus 2.0 expression array. We

also applied the various GSA methods to a randomly selected set

of 20 genes (‘‘null’’ gene set) and another important drug

metabolizing pathway, the ‘‘glutathione’’ pathway, as this pathway

is the major metabolic pathway responsible for acetaminophen-

NAPQI detoxification [32,33] and response to platinum-contain-

ing drugs used in the treatment of ovarian and lung cancers [34].

The glutathione pathway contained 52 probe sets from the

Affymetrix U133 plus 2.0 expression array. Gene set analysis of

these two pharmacogenomic pathways and the null gene set was

performed as described for the simulated data. In performing GSA

for the gemcitabine cytotoxicity study, empirical p-values for the

KS, FM, SM, TS, MTS and GMRE methods were based on

10,000 permutations.

Results

Simulation study
Table 1 shows the mean type 1 error over all ‘‘null’’ scenarios

for all methods that were investigated. All methods had correct

type 1 error under all simulated scenarios (see Table S1 for

Comparison of Gene Set Methods
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detailed results for each null simulation scenario). Table S2 shows

the power of all methods for all ‘‘non-null’’ simulated scenarios.

The mean power across all scenarios is shown in the last column of

Table 1. Figure 1 displays pairwise comparisons of power, for all

methods, across all simulated scenarios. Looking at the rows of

scatterplots corresponding to FM and GMRE, the points fall on or

above the diagonal, indicating that these methods have higher

power than the other approaches over all scenarios investigated.

Consistent with this observation, these two methods had the

highest mean power across all scenarios. Although GMFE had

even higher mean power under situations when it could be

applied, this method was not applicable in most scenarios,

particularly those with small sample sizes. For the simulation

scenarios investigated here, KS and principal component analysis

with the top component (PCA1) had the lowest mean power. With

a small sample size of n = 20 all of the principal component

methods had low power.

Overall, the novel MTS method led to improvements in power

over the existing TS method for large sample sizes (n = 500), while

having lower mean power for small sample sizes (n = 20). The

increase in power was more pronounced for large sample sizes and

models with fewer associated expression probes and low

correlation between expression probes. Among the PCA methods,

analysis based on principal components that explain 80% of the

variation (PCA80) had substantially higher power than analysis

based on either the top component (PCA1) or the top five

components (PCA1.5) for large sample sizes, except when there

was a high correlation between expression probes, in which case

all the PCA methods had similar performance. However, with the

small sample size (n = 20) PCA80 had lowest power among the

investigated methods.

For all methods, power was generally higher at larger sample

size (Figure 2A), and when the correlation between expression

probes was higher (Figure 2B). For each simulation model, we

also calculated the proportion of probes associated with the

phenotype and R2, the proportion of variation in the quantitative

phenotype explained by the gene expression values in the

pathway. As expected, power of all methods increased when more

expression probes were associated with the phenotype (Figure 2C)

and as R2 increased (Figure 2D). Figures 2B–2D show the

relationship of power to the various model parameters (e.g.

number of associated probes, R2) for sample size of n = 100.

Similar plots for sample size of 20 and 500 are shown in Figure
S1. Figure 3 shows power of FM as a function of sample size,

correlation of expression values between probes, and R2, again

demonstrating the increase in power with increasing sample size,

increasing correlation between probe-specific expression levels,

and increasing R2. Similar patterns were observed for other

methods.

Gemcitabine pharmacogenomics
The gene set methods investigated by simulations were applied

to a pharmacogenomic study of the cancer drug gemcitabine, to

examine the impact of the gene set comprised of the gemcitabine

pathway, glutathione and null gene set on the drug-related

phenotype IC50 (effective dose that kills 50% of the cells).

Results of the GSA for the pharmacogenomics data with the

gemcitabine pathway, glutathione pathway and null gene set are

presented in Table 2. For the gemcitabine pathway, evidence of

gene-set association varies considerably between the methods, with

p-values for the pathway ranging from 0.002 for the PCA1.5

analysis to 0.341 for the PCA1 test. FM, GMRE, GMFE, PCA80

and PCA1.5 provided statistically significant evidence (p,0.05) for

association of expression of the gemcitabine pathway gene set with

the phenotype IC50. Overall, the patterns observed in the analysis

of the gemcitabine pathway mimic those patterns observed in the

simulation study for large sample sizes (n = 100–500), with

PCA1.5, PCA80, FM, and GMRE resulting in the most significant

results while PCA1, KS and MTS resulted in the least significant

associations. In contrast, the results for the glutathione pathway

showed the GMFE approach produced the most significant results

(p = 2.2761025), while the methods that produced the largest p-

Table 1. The mean type 1 error and power for all gene set methods averaged across all null (mean type 1 error) non-null (mean
power) simulation scenarios for sample sizes of 20, 100, and 500.

Mean Type 1 Error Mean Power

Type of Method Gene Set Method N = 20 N = 100 N = 500 N = 20 N = 100 N = 500

Based on combining
individual SNP p-values

Kolmogorov-Smirnov (KS) 0.047 0.048 0.053 0.533 0.751 0.831

Fisher’s Method (FM) 0.048 0.050 0.052 0.608 0.894 0.981

Stouffer’s Method (SM) 0.048 0.049 0.051 0.571 0.825 0.937

Tail Strength (TS) 0.048 0.049 0.052 0.573 0.807 0.876

Modified Tail Strength (MTS) 0.050 0.048 0.048 0.549 0.798 0.929

Based on modeling
the data

Global model using fixed effects
(GMFE)*

0.053 0.045 0.051 0.639 0.907 0.985

Global model using random
effects (GMRE)

0.048 0.050 0.053 0.604 0.900 0.984

PCA using 1st principal component
(PCA1)

0.050 0.050 0.049 0.537 0.717 0.821

PCA using1–5 principal components
(PCA1.5)

0.046 0.050 0.050 0.543 0.800 0.925

PCA using principal components
that explain 80% (PCA80)

0.049 0.047 0.052 0.489 0.861 0.975

*GMFE could not be applied in 27 out of 36, 18 out of 39, and 9 of the 39 simulation scenarios used to assess type 1 error at samples sizes of 20, 100, and 500,
respectively. GMFE could not be applied in 594 out of 720, 396 out of 774, and 198 of the 774 power scenarios with sample sizes of 20, 100, and 500, respectively.
doi:10.1371/journal.pone.0012693.t001
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values were PCA1 and PCA1.5. The methods based on probe-

specific p-value summaries (KM, FM, SM, MTS, TS) all produced

similar results (p-values between 0.01 and 0.03). Lastly, all

methods, except GMFE and PCA80, produced non-significant

results for the gene set containing a random selection of 20 genes.

Discussion

An extensive simulation study comparing a variety of self-

contained gene set methods for analysis of gene expression data

was carried out. Results demonstrated that among the methods

considered, Fisher’s method (FM) [12] and a global model with

random effects (GMRE) [6] have the highest power to detect gene

set effects. As compared to GMRE, the main advantage of FM is

that it can be applied when only summary statistics or p-values for

each gene expression probe are available. However, when original

expression data are not available, the permutation-based p-value

for the overall gene set effect cannot be obtained, and we must rely

on p-values based on asymptotic theory. This can lead to an

invalid test with inflated type 1 error when different expression

values within a gene set are correlated. The main advantage of

GMRE, on the other hand, is that it allows for estimation of effects

in the context of other effects within the pathway, and inclusion of

interaction effects. An investigation of the performance of various

gene set approaches in detecting pathway effects in the presence of

gene-expression interactions is warranted.

FM was more powerful than the other methods based on

combining probe-specific p-values that were considered. FM treats

p-values at the extreme of the distribution asymmetrically, being

more sensitive to small p-values than large p-values. This leads to

an advantage over methods such as Stouffer’s Method (SM) [19]

that avoids asymmetry by transforming p-values to normally

distributed variables and then using them in a one-sided test. SM is

therefore equally applicable to detecting deviations of p-values

from the null distribution due to an overrepresentation of p-values

close to 1, rather than p-values close to 0. However, as this is not

the goal of the overall test of association of a pathway with the

phenotype, this feature is not advantageous in this context. For

large sample sizes (n$100), the proposed MTS test statistic with

the use of a log transformation of the p-value resulted in higher

statistical power than the originally proposal TS measure.

However, the MTS test still falls short of both FM and GMRE

methods in terms of power.

Similar approaches can be considered in the context of analysis

of genotype data from single nucleotide polymorphisms (SNPs)

within genes that belong to a gene set. The key differences between

expression and genotype gene set data is that SNP-sets tend to be

much larger (more SNPs than expression probes map to a gene

set), and for SNPs there is a greater extent of correlation within a

gene set, resulting from linkage disequilibrium (LD) within genes.

Also, SNP data are ordinal (0, 1, or 2 minor alleles for each SNP)

and different ways of modeling such data can be considered (e.g.,

dominant, recessive genetic models).

In our simulation study we generated a continuous phenotype

that depended on a portion of expression values according to a

specific model. The methods investigated here, or simple

Figure 1. Pairwise scatterplot of power for the various methods for scenarios with standard deviation (s) of 6.0.
doi:10.1371/journal.pone.0012693.g001
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modifications of these methods, could also be applied to other

phenotypes, such as case-control status or time-to-event outcomes.

The p-value combination methods are particularly easily modified,

as the individual gene/probe set p-values can be based on any

appropriate method, such as logistic regression for a case-control

analysis.

The global model with fixed effects (GMFE) cannot be applied

to data with a large number of gene expression probes (number of

genes greater than number of subjects), due to the model being

non-estimable. Otherwise, all methods considered are relatively

easy to implement and computationally feasible. Although

calculating permutation p-values, as opposed to p-values based

on asymptotic distributions, is more time-consuming, we recom-

mend the use of permutations when the gene expression levels

within a gene set are correlated. Use of asymptotic distributions

assumes independence of gene expression levels and can lead to

highly inflated type 1 error rates when this is an invalid

assumption. For instance, with p-values based on the asymptotic

chi-squared distribution (detailed results not shown), the mean

type I error rates for FM across the null simulation scenarios

increased as the level of dependency between the genes increased,

with mean error rates of 0.051, 0.11, and 0.182 for correlation of

0.0, 0.1 and 0.3, respectively. It should also be noted that if an

appropriate testing method is not used to assess the association of

each gene within the gene set with the phenotype, the aggregation

of these results for determining the association of the gene set will

be invalid. Thus, when applying FM for gene set analysis, one

should choose an appropriate analysis method (and if possible, the

most powerful) for assessing the association of each gene with the

phenotype.

Application of the gene set methods to data from a

pharmacogenomics study provided evidence that the expression

of genes in the gemcitabine and glutathione pathways are

associated with the IC50 outcome following treatment of cell lines

with gemcitabine. The application of the various gene set methods

to the gemcitabine pharmacogenomic study demonstrates one of

the key advantages of self-contained methods: these methods can

be applied to a specific candidate pathway, without requiring

genome-wide data for other pathways. Analysis of specific

pathways of interest can be more powerful as it reduces the need

for correction for multiple testing.

The results obtained for the pharmacogenomics example are

consistent with the prior knowledge that the gemcitabine pathway

contains genes that play a role in individual response to the drug

gemcitabine. However, not all the gene set methods were able to

detect the association of the phenotype with this pathway. In

particular, the KS, SM, TS, MTS, and PCA method using only

the top component, did not detect a significant association at the

Figure 2. Plots of power for all methods. Power is plotted as a function of (A) sample size, (B) the correlation between expression values within
the gene set (r), (C) the proportion of probes associated with the phenotype, and (D) the calculated R2, the proportion of variation in the quantitative
phenotype explained by the gene expression values in the pathway. The average power values are based on all simulated non-null scenarios. Plot (B)
excludes scenarios with between-probe correlation structure defined by the gemcitabine pathway, and only shows fixed-correlation scenarios (r= 0,
0.1, 0.3). Plots (B), (C), and (D) are based on sample size of 100. Similar plots for sample sizes of 20 and 500 are shown in Figure S1. For plots (C) and (D)
a kernel smoother was used to fit a curve to the data. Scenarios with all expression probes being associated with the trait were excluded from plot
(C), as all the methods had very high power in this situation.
doi:10.1371/journal.pone.0012693.g002
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0.05 significance level. These results are consistent with our

simulation study results, which demonstrated that these methods

tended to have lower power than the other gene set tests.

However, for the gemcitabine pathway, principal component

analysis with the top 5 PCs detected stronger evidence of gene-set

association than other approaches, even though in simulations this

was generally not the most powerful approach. This is not

surprising, as the actual power of each method for a given data set

depends on the underlying situation, such as the number of

expression probes truly associated with the outcome, the levels of

association, etc. Perhaps for the gemcitabine pathway, the top five

PCs were optimal for capturing the relevant variation in

expression as related to the IC50 outcome. This is also observed

in the analysis of the glutathione pathway, in which the GMFE

approach produced the most significant results. This also agrees

with the simulation study, in which, if possible to fit, the GMFE

Figure 3. Power of Fisher’s Method (FM) as a function of sample size, correlation of expression values between probes (r), and R2

(proportion of variation in the quantitative phenotype explained by the gene expression values in the gene set).
doi:10.1371/journal.pone.0012693.g003

Table 2. Results from analysis of gemcitabine pathway, glutathione pathway and null gene set from the various gene set
methods.

Type of Method Gene Set Method
Glutathione Pathway
p-value

Gemcitabine pathway
p-value Null gene set

Based on combining
individuals SNP p-values

Kolmogorov-Smirnov (KS) 0.0178 0.250 0.447

Fisher’s Method (FM) 0.0121 0.016 0.126

Stouffer’s Method (SM) 0.0241 0.158 0.272

Tail Strength (TS) 0.0211 0.160 0.344

Modified Tail Strength (MTS) 0.0371 0.267 0.278

Based on modeling the data Global model using fixed effects (GMFE) 2.2761025 0.032 0.004

Global model using random effects (GMRE) 0.0137 0.012 0.780

PCA using 1st principal component (PCA1) 0.3610 0.341 0.668

PCA using1–5 principal components
(PCA1.5)

0.2920 0.002 0.518

PCA using principal components that
explain 80% (PCA80)

0.00396 0.022 0.050

doi:10.1371/journal.pone.0012693.t002
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approach was one of the most powerful approaches. The

simulation results provide an overall power comparison across

methods for a wide range of situations.

In conclusion, over a variety of scenarios, the FM [12] with

empirical p-values or the GMRE [6] were the most powerful

analytical approaches for a self-contained gene set analysis.

Therefore, we recommend either the FM [12] with empirical p-

values or the GMRE [6] for the analysis of gene expression data

with self-contained gene set analysis.

Supporting Information

Table S1 Type I error rates for various simulations scenarios for

all gene set methods considered (excel file).

Found at: doi:10.1371/journal.pone.0012693.s001 (0.04 MB

XLS)

Table S2 Power for various simulations scenarios for all gene set

methods considered (excel file).

Found at: doi:10.1371/journal.pone.0012693.s002 (0.47 MB

XLS)

Figure S1 Plots of power for all methods as a function of the

correlation between expression values within the gene set (r), the

proportion of probes associated with the phenotype, and the

calculated R2 (the proportion of variation in the quantitative

phenotype explained by the gene expression values in the

pathway). The average power values are based on all simulated

non-null scenarios, with plots (A)–(C) being based on sample size of

20, and plots (D)–(F) being based on sample size of 500. The plots

of power as a function of correlation (A and D) exclude scenarios

with between-probe correlation structure defined by the gemcita-

bine pathway, and only shows fixed-correlation scenarios (r= 0,

0.1, 0.3). For plots (B), (C), (E) and (F) a kernel smoother was used

to fit a curve to the data. Scenarios with all expression probes

being associated with the trait were excluded from plot (B) and (E),

as all the methods had very high power in this situation.

Found at: doi:10.1371/journal.pone.0012693.s003 (0.31 MB EPS)
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