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Abstract

Background: Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed
understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based
geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.

Methods: Plasmodium vivax Annual Parasite Incidence data (2006–2008) and temperature masks were used to map P. vivax
transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985–2010) for
mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points
were included into a national database of age-standardized 1–99 year old PvPR data. A Bayesian MBG procedure created a
predicted PvPR1–99 endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference
to a 2010 human population surface.

Results: We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3%
inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P.
vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where
little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua.
In general, prediction uncertainty was relatively low in the west and high in the east.

Conclusion: Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood
surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of
infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate
dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation
risk, especially in Java and Bali.
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Introduction

Plasmodium vivax malaria is the most widely distributed species of

human malaria, threatening nearly 3 billion people in 95 countries

ranging from temperate to tropical in the Americas, Africa, and

Asia [1,2]. Unlike the other common cause of malaria, Plasmodium

falciparum, dormant liver stages of P. vivax cause relapses of acute

malaria [3]. Despite the reputation of P. vivax as a benign infection

with very low risk of death, contemporary studies demonstrate

substantial morbidity [4,5,6,7] and mortality [8,9,10,11] burdens

in endemic zones.

Drug resistance and neglect of its research in P. vivax

exacerbates the threat of this infection. The first line therapy

against acute attack, chloroquine, has failed in Indonesia [12,13]

and parts of Oceania [14], and resistance now threatens the

Mekong region [15,16,17,18] and the Indian sub-continent [19],

where .90% of P.vivax malaria occurs [20]. Although several

artemisinin combination therapies (ACT) have shown good

efficacy against acute P. vivax [21], only primaquine can eliminate

the hypnozoite reservoir of infection [22,23]. The safety and

efficacy of primaquine, especially when used with an ACT, is

virtually unknown in 2012 [24]. The distribution of risk of this

infection emerges as a vital consideration in developing strategies

that may mitigate this potentially serious threat. This may be

especially true in places like the vast number of islands scattered
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within the Indonesian archipelago, and those with very limited

resources for dealing with such problems.

Other nations have developed such maps. Brooker et al. [25]

developed a P. vivax map for Afghanistan in 2006 at a spatial

resolution of 868 km using logistic regression models and malaria

surveys from 269 endemic villages. Manh et al. [26] derived a P.

vivax distribution map in Vietnam for 2010 using zero-inflated

Poisson regression models in a Bayesian framework from 12

months of P. vivax malaria reported cases from 670 districts. Reid et

al. [27] produced a P. vivax prevalence map on Tanna Island,

Vanuatu in 2008 at 161 km resolution using 220 geo-referenced

villages and the Bayesian geostatistical logistic regression model.

Dogan et al. [28] developed P. vivax malaria incidence maps at

0.460.4 km resolution in Turkey using malaria data from 81

provinces for over 34 years (1975–2008) using a kriging method.

This report describes the first use of a Bayesian model-based

geostatistics (MBG) approach [29] to predict the risk of P. vivax

malaria in Indonesia in 2010 at a spatial resolution of 161 km,

using the largest assembled contemporary empirical evidence for

any country in Asia. This collaborative effort between the Ministry

of Health in the Republic of Indonesia and the Malaria Atlas

Project (MAP, http://www.map.ox.ac.uk) aims to equip those

responsible for national planning and implementation of malaria

control and elimination strategies with an evidence base for the

distribution of risk of vivax malaria in Indonesia.

Methods

Assembling a national database of Plasmodium vivax
Annual Parasite Incidence data

The Sub-Directorate of Malaria Control at the Directorate of

Vector-borne Diseases, Indonesia Ministry of Health in Jakarta

routinely collected P. vivax Annual Parasite Incidence (PvAPI) at

the district level between 2006 and 2008. The reported cases of

confirmed P. vivax malaria per 1,000 people were computed for

each year by district and averaged over the number of reporting

years. Each PvAPI summary estimate was mapped by matching it

to its corresponding first (provincial) and second level (district)

administrative unit in a geographic information system (GIS;

ArcView GIS 9.3, ESRI, 2008).

Assembling a national database of Plasmodium vivax
malariometric prevalence

The process of assembling community-based survey parasite

prevalence data undertaken since 1985 has been described

previously [30]. Data searches for P. vivax parasite rate (PvPR)

aimed to retrieve data from published and unpublished sources.

These searches are an on-going activity of the Malaria Atlas

Project (MAP, http://www.map.ox.ac.uk) and were completed for

the current iteration on 25 November 2011. The completed

database was checked via various levels of exclusion criteria in

order to obtain the final input data set for modelling as follows:

removing surveys located only to large (.100 km2) and small

polygons (.25 km2), removing those surveys that could not be

precisely geo-positioned and removing those that could not be

temporally disaggregated into independent surveys or for which

the survey date was unknown. The entire database was then

checked to ensure all survey sites were located precisely on grid

squares identified as land and within the border of the country.

Finally, the database was checked for any spatio-temporal

duplicates. The dataset was then stratified into two regions for

descriptive purposes, since western and eastern Indonesia are

biogeographically distinct regions of the archipelago, typically

demarked by the Wallace Line [31].

Assembling Indonesia human population data
Gridded population counts and population density estimates at

161 km spatial resolution for the years 1990, 1995 and 2000, both

adjusted and unadjusted to the United Nations’ national

population estimates were provided by The Global Rural Urban

Mapping Project (GRUMP) beta version [32,33]. The adjusted

population counts for the year 2000 were projected to 2010 by

applying the relevant national urban and rural growth rates by

country [34] using methods described previously [35]. The urban

growth rates were applied to populations residing within the

GRUMP-defined urban extents [33], and the rural rates were

applied elsewhere. National 2010 totals were then adjusted to

match those estimated by the United Nations [36]. These

population counts were then stratified nationally by age group

using United Nations-defined [36] population age structures for

the year 2010 to obtain population count surfaces for the 0–5

years, 5–14 years and $15 years age groups. This population

surface was extracted for Indonesia and aligned to all other spatial

data grids used in the analysis.

Defining the limits of Plasmodium vivax transmission
Annual Parasite Incidence data at district level in 33 endemic

provinces were sourced to define the spatial limits of P. vivax

transmission in 2010. Following previously defined protocols [1],

classification of risk based on PvAPI data assigned areas at no risk

(zero annual incidence over three years), unstable (mean annual

incidence less than 0.1 per 1,000 people per annum) or stable risk

(mean annual incidence higher than 0.1 per 1,000 people per

annum). These polygon-based data were then rasterised to

161 km spatial grids. A temperature mask was then applied on

PvAPI data-defined limits of transmission [29]. This biological

mask delineated areas where low temperatures were likely to

inhibit parasite development in anopheline vectors [37]. We

further modified a decision rule for stable transmission. Within

stable transmission limits, pixels predicted with high certainty

(probability .90%) of being less than 1% PvPR1–99 were

downgraded from stable to unstable class. This extremely low

prediction was caused by a great abundance of survey data

reporting zero prevalence in those areas.

Environmental covariates
A minimal set of covariates were included to inform prediction

of the mean function, based on a priori expectations of the major

environmental factors modulating transmission. These were (i) an

indicator variable defining areas as urban or rural based on the

GRUMP urban extent product [32,33]; (ii) a long-term average

vegetation index product as an indicator of overall moisture

availability for vector oviposition and survival [38,39]; and (iii) a P.

vivax specific index of temperature suitability derived from the

same model used to delineate suitable areas on the basis of vector

survival and sporogony [37].

Bayesian space-time geostatistical modelling
Bayesian space-time geostatistical modelling for disease preva-

lence mapping has been fully described [29] and implemented at

the national [40] and global scales [29]. The underlying value of

PvPR1–99 in 2010, PvPR1{99 xið Þ, at each location xi was

modelled as a transformation g :ð Þ of a spatiotemporally structured

field superimposed with unstructured (random) variation [ xið Þ.
The number of P. vivax positive responses Ni

z from a total sample

of Ni individuals at each survey location was modelled as a

conditionally independent binomial variate given the unobserved

underlying age-standardized PvPR1–99 value [41]. An age-

Vivax Malaria Endemicity in Indonesia in 2010
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standardisation procedure [42,43] was implemented to allow

surveys conducted in participants of any age range to be converted

to the epidemiologically informative 1 to 99 year age range using

an algorithm based on catalytic conversion models first adapted

for malaria by Pull and Grab [44]. This age-standardisation

procedure has been previously adopted for P. falciparum [29,40],

but the model form has been reparameterised using assembled

age-stratified PvPR surveys. Each survey was referenced tempo-

rally using the mid-point (in decimal years) between the recorded

start and end months. The spatio-temporal component was

represented by a stationary Gaussian process f xi,tið Þ with mean

m and covariance defined by a spatially anisotropic version of the

space-time covariance function proposed by Stein [45]. A

modification was made to the Stein covariance function to allow

the time-marginal model to include a periodic component of

wavelength 12 months, providing the capability to model seasonal

effects in the observed temporal covariance structure. These effects

arise when studies performed in different years but during similar

calendar months have a tendency to be more similar to each other

than would be expected in the absence of seasonality. The mean

component m was modelled as a linear function of a vector of the

selected suite of environmental covariates, k : m~bxzbk xð Þ. The

unstructured component [ xið Þ was represented as Gaussian with

zero mean and variance V . Bayesian inference was implemented

using Markov Chain Monte Carlo to generate 100,000 samples

from the posterior distribution of: the Gaussian field f xi,tið Þ at

each data location, the unobserved parameters bx, b, and V as

stated above and further unobserved parameters defining the

structure and anisotropy of the exponential space-time covariance

function. Distances between locations were computed in great-

circle distance to incorporate the effect of the curvature of the

Earth, which becomes important for a nation as large as

Indonesia. Samples were generated from the 2010 annual mean

of the posterior distribution of f xi,tið Þ at each prediction location.

For each sample of the joint posterior, predictions were made

using space-time conditional simulation over the 12 months of

2010 {t = 2010Jan, …, 2010Dec}. These predictions were made at

points on a regular 161 km spatial grid. Model output therefore

consisted of samples from the predicted posterior distribution of

the 2010 annual mean PvPR1–99 at each grid location, which were

used to generate point estimates. The uncertainty metric was

computed by calculating the ratio of posterior distribution

interquartile range to its mean. This standardized metric produced

an uncertainty index which less influenced by underlying

prevalence levels.

Evaluating model performance
An empirical model assessment was carried out by first selecting

a validation set. Ten percent (n = 445) of the full data points were

selected using a spatially de-clustered stratified random sampling

algorithm, described previously [29]. Those surveys located

outside the stable limits of transmission were excluded from

selection. Using the remaining 90% (n = 4,012) of data points the

model was then re-run to make predictions at the space-time

locations of these held-out data. Model performance was then

evaluated using two criteria: the ability of the model to (1) predict

point-values of PvPR1–99 at validation locations, and (2) to

generate credible intervals (CI) that capture appropriately the

uncertainty associated with predictions at each location.

The ability of model to predict point-values of PvPR1–99 at

validation locations was then evaluated by comparing observed

values to those predicted (using the posterior mean) by the model

at the corresponding locations. Assessment was made using three

summary statistics [29,46] including (1) the mean prediction error,

(2) the mean prediction absolute error, and (3) the linear

correlation coefficient. The mean prediction error measures the

bias of prediction and the mean prediction absolute error

measures the accuracy of predictions. The correlation coefficient

indicates the linear association between predicted and observed

values, which was also visualised using a scatter plot [47].

A sample semi-variogram was calculated from standardised

model residuals to assess the presence of residual spatial

autocorrelation unexplained by the model output. Standardised

Pearson residuals were calculated for each validation location

[48,49]. This sample semi-variograms was compared to a Monte

Carlo envelope computed from 99 random permutations of the

same residual set [50]. Where the semi-variogram of standardized

model Pearson residuals lies entirely within this envelope, it can be

considered as the absence of spatial structure.

The ability of the model to generate appropriate credible

intervals was tested via a coverage plot. Working through 100

progressively narrower credible intervals, from the 99% CI to the

1% CI, each was tested by computing the actual proportion of

held-out prevalence observations that fell within the predicted CI.

Plotting these actual proportions against each predicted CI level

allows the overall fidelity of the posterior probability distributions

predicted at the held-out data locations to be assessed.

Measuring area and population at risk
The quantification of areas within no risk, unstable and stable

category was undertaken by first projecting the predicted class

map from geographic to Mollweide equal area projection in

ArcGIS 9.3. The areas covered by each category were then

calculated in km2. To derive population at risk within each zone,

this categorical map was overlaid with the GRUMP-beta 2010

gridded population surface using an exact bespoke algorithm

written in Fortran90, and the total population living in each risk

category was calculated. These totals were further disaggregated

by province level.

Results

The spatial limits of Plasmodium vivax transmission
The 2010 Plasmodium vivax malaria risk limits in Indonesia are

shown in Figure 1. We have estimated that 1.7 million km2

(89.8%) of a total land area of 1.9 million km2 were endemic for P.

vivax malaria (Table 1). These endemic areas, a land area of 0.695

million km2 (40.7%) were unstable transmission zones and 1.014

million km2 (59.3%) were stable transmission zones. Stable vivax

transmission zones were more common in eastern than western

Indonesia (83.5% vs. 33.7%). Further provincial level estimates of

areas at risk are provided in Table S1.

Summaries of P. vivax malaria prevalence survey data
A total of 80 different sources from between 1985 and 2010

documented a total of 4,658 independent community surveys of

PvPR from 33 P. vivax malaria endemic provinces (Figure 2).

Provinces of Papua/West Papua (n = 1,021), East Nusa Tenggara

(n = 734) and Aceh (n = 434) contributed 47% of total data points.

After database fidelity checks, a total of 201 survey locations were

excluded from modelling because they were polygon data (n = 6),

could not be geo-positioned (n = 87), surveys could not be

disaggregated temporally (n = 39), were spatio-temporal duplicates

(n = 50) or were missing information on the month of survey

(n = 19).

Table 2 summarizes the remaining 4,457 data points PvPR by

region. More PvPR surveys were conducted in the eastern region

compared to the western region (58% vs. 42%). Over half of the

Vivax Malaria Endemicity in Indonesia in 2010
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total data points (57.4%) documented the presence of P. vivax. In

eastern Indonesia, 73.4% of the surveys reported presence records,

compared to 35.6% in western region. Mean PvPR was higher in

the eastern than the western region (5.6% vs. 1.5%). The great

majority of the PvPR data (91.8%) were obtained from unpub-

lished works. Peer-reviewed sources only contributed about 6% of

the total data points. A total of 92% of the full number of PvPR

records were obtained from direct communication with malaria

specialists across Indonesia, the Indonesian National Malaria

Control Program and National Health Institute of Research and

Development. Most of the data incorporated resulted from PvPR

surveys conducted between 2005 and 2010 (88.4%). The great

majority of surveys included an upper age .20 years (94.3%).

About seven percent of surveys were geo-positioned by Global

Positioning Systems (GPS) whilst over 70% of the survey sites were

geo-positioned using a combination of paper source, map and geo-

referencing techniques. Surveys with small sample sizes (n,50)

represented 8.95% of the total data. The median sample size was

136. The most common sample size in western region was 50–100

people (38.8%) whilst in eastern region was 100–500 people

Figure 1. The spatial limits of Plasmodium vivax defined by Annual Parasite Incidence and the temperature mask. Areas were defined
as stable (dark grey areas, where PvAPI$0.1 per 1,000 pa), unstable (medium grey areas, where PvAPI,0.1 per 1,000 pa), or no risk (light grey, where
PvAPI = 0 per 1,000 pa).
doi:10.1371/journal.pone.0037325.g001

Table 1. Area and population at risk of Plasmodium vivax malaria in 2010 throughout the Indonesian archipelago.

Area and population at risk Region Total

Western Eastern

Value % Value % Value %

Area (km2) 1,153,945 100.0 748,886 100.0 1,902,831 100.0

No risk 143,050 12.4 50,261 6.7 193,311 10.2

At risk 1,010,895 87.6 698,625 93.3 1,709,520 89.8

Unstable 922,284 53.9 73,035 9.8 695,319 36.5

Stable 388,611 33.7 625,590 83.5 1,014,201 53.3

Population 204,915,987 100.0 27,628,308 100.0 232,544,295 100.0

No risk 96,726,120 47.2 6,157,027 22.3 102,926,147 44.3

At risk 108,146,867 52.8 21,471,281 77.7 129,618,148 55.7

Unstable 96,586,342 47.1 6,176,858 22.4 102,763,200 44.2

Stable 11,560,525 5.7 15,294,423 55.3 26,854,948 11.5

No risk, unstable and stable risk areas correspond to PvAPI = 0 per 1,000 pa, 0,PvAPI,0.1 per 1,000 pa and PvAPI$0.1 per 1,000 pa.
doi:10.1371/journal.pone.0037325.t001
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(48.9%). The most commonly recorded malaria diagnostic

technique in these PvPR surveys was microscopy method (54%).

The distribution of P. vivax malaria surveys was not uniform

among the main islands in the archipelago (Figure 2). The islands

of Sumatra (western), Papua (eastern) and Lesser Sundas (eastern)

were reported as the three richest PvPR data islands with

proportions of 32.8%, 22.4% and 19.1%, respectively. Kaliman-

tan was reported as the island with the sparsest PvPR data (3%)

followed by Sulawesi (4.6%). In Java, where more districts

reported no-risk of vivax malaria, 6.5% of PvPR data were

collected between 1985 and 2010.

The spatial distribution of Plasmodium vivax malaria
endemicity

The continuous predicted surface of P. vivax malaria endemicity

within the limits of stable transmission is presented in Figure 3.

The mean of predicted PvPR1–99 was 1.6% with a high degree of

heterogeneity ranging from 0.2% to about 11%. In western

Indonesia, the predicted P. vivax prevalence was uniformly low.

Spots of intermediate prevalence PvPR1–99 were observed in

eastern Kalimantan. High PvPR1–99 areas were observed in Lesser

Sundas, Maluku and Papua. Uncertainty in predicted PvPR1–99

was relatively low in areas with low endemicity and abundance of

surveys, such as in parts of Sumatra and Kalimantan (Figure 4).

However in areas with high variability of prevalence, such as

Papua, certainty of predicted PvPR1–99 was relatively lower than

other main western islands (Figure 4.).

The estimation of population at risk of Plasmodium vivax
malaria

Table 1 shows the estimated population at risk of P. vivax

malaria in Indonesia in 2010. We have estimated that 129.6

million people (55.7%) lived at risk of P. vivax transmission. Of

these, 102.8 million (79.3%) and 26.8 million (20.7%) inhabited

areas of unstable and stable transmission respectively. Further

provincial level estimates of population at risk are provided in

Table S1.

In the western region, 108.1 million people (52.8%) live at risk

of P. vivax transmission.

On Java and Bali islands, (representing 7% of the land area of

Indonesia) nearly 77 million people lived in areas of P. vivax

tranmission, accounting for 71% of all people at risk in western

region. More people in western Indonesia lived in unstable

transmission than those of stable transmission (89.3% vs.10.7%).

The proportion of the population living in unstable versus stable

risk was 99% vs. 1% in Java, 63% vs. 37% in Sumatra and 62%

vs. 38% in Kalimantan.

In the eastern region, 21.5 million (77.7%) people live at risk of

P. vivax transmission.

Less people lived in unstable transmission than stable transmis-

sion (28.8% vs. 71.2%). All of 10.8 million people lived at risk of P.

vivax transmission in Sulawesi, followed by 6.7 million in Lesser

Sundas, 1.9 million each in both Maluku and Papua. The

proportion of the population living in unstable versus stable risk

was 49% vs. 51% in Sulawesi, 8% vs. 92% in Maluku, 9% vs. 91%

in Lesser Sundas and 3% vs. 97% in Papua.

Model performance
In predicting point-values of PvPR1–99 at validation locations,

the mean prediction error was 20.43% (in units of PvPR1–99),

indicating low bias in predicted PvPR. This value also represented

the tendecy to underestimate P. vivax prevalence by just under

0.5%. Mean prediction absolute error, which measured the model

precision, was estimated at 3.4% PvPR1–99. This value represented

Figure 2. The distribution of Plasmodium vivax prevalence surveys in Indonesia between 1985 and 2010. The 4,457 community surveys
of P. vivax prevalence conducted between 01 January 1985 and 25 November 2011 are plotted. The survey data are shown in white (PvPR = 0%),
yellow (PvPR.0%–5%) and red (PvPR.5%). Areas were defined as stable (dark grey areas, where PvAPI$0.1 per 1,000 pa), unstable (medium grey
areas, where PvAPI,0.1 per 1,000 pa), or no risk (light grey, where PvAPI = 0 per 1,000 pa).
doi:10.1371/journal.pone.0037325.g002

Vivax Malaria Endemicity in Indonesia in 2010

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e37325



the variance between predicted and observed endemicity in each

pixel, which is probably due to heterogenity of prevalence in short-

range areas or sparsity of data points. The correlation coefficient

between predicted and observed values was 0.58, indicating strong

linear agreement (see also the corresponding scatter plot,

Figure 5A). The semi-variograms of the standardized model

Pearson residuals lie entirely within Monte Carlo envelope

(Figure 5B) which indicated no significant spatial structure.

Figure 5C shows the coverage plot comparing predicted to actual

credible intervals. The plotted line is close to the ideal 1:1 line

throughout the range indicating that predicted credible intervals

provided an appropriate measure of model uncertainty.

Discussion

This report describes the spatial limits and level of endemicity of

Plasmodium vivax in Indonesia. The continous surface P. vivax

malaria endemicity maps at 161 km spatial resolution were

generated from an evidence base of nearly 4,500 independent

estimates of P. vivax malaria prevalence across this archipelago and

the use of a Bayesian model-based geostatistical spatial-temporal

Table 2. Summary of the most important aspects of the PvPR data by main region.

Total records of input data set Western Eastern Total Percentage

(n = 1,886) (n = 2,571) (n = 4,457) (100%)

Number selected for model

Population sample size 426,341 955,469 1,381,810

Number of PvPR.0 672 1,886 2,558 57.39

Mean (standard deviation) PvPR (%) 1.49 (3.97) 5.57 (9.27) 3.84 (7.76)

Median (range) PvPR (%) 0 (0–45.9) 1.87 (0–86.1) 0.62 (0–86.1)

Primary source of PvPR data

Peer reviewed sources 104 156 260 5.83

Unpublished work 1,688 2,405 4,093 91.83

Reports{ 94 10 104 2.34

Source of spatial coordinates

Personal communication 35 39 74 1.66

GPS 129 165 294 6.60

Encarta 235 329 564 12.65

Combination 1,333 1,817 3,150 70.68

Other digital gazettes 112 161 273 6.12

Paper source 4 1 5 0.11

Map 38 59 97 2.18

Time period

1985–1989 99 11 110 2.47

1990–1994 58 60 118 2.65

1995–1999 35 60 95 2.13

2000–2004 81 115 196 4.39

2005–2010 1,613 2,325 3,938 88.36

Upper age sampled

#10 17 40 57 1.28

.10 and #15 70 10 80 1.79

.15 and #20 - 117 117 2.63

.20 1,799 2,404 4,203 94.30

Diagnostic method

Microscopy 1,064 1,336 2,400 53.85

RDT 822 1,235 2,057 46.15

Denominator

1–49 272 127 399 8.95

50–100 732 507 1,290 28.94

101–500 572 1,258 1,779 39.91

.500 310 679 989 22.19

Median (Inter Quartile Range; IQR) 95 (65–321) 197 (100–538) 136 (83–450)

{Ministry of Health reports, theses and other unpublished sources.
doi:10.1371/journal.pone.0037325.t002
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Figure 3. The Plasmodium vivax malaria PvPR1–99 endemicity map. Model-based geostatistical point estimates of the annual mean PvPR1–99 for
2010 within the stable spatial limits of P. vivax malaria transmission, displayed as a continuum of light green to red from 0% to 7% (see map legend).
Areas within the stable limits in Figure 1 that were predicted with high certainty (.0.9) to have PvPR1–99 less than 1% were classified as unstable areas
(shaded medium grey areas). The rest of the land area was defined as unstable risk (medium grey areas, where PvAPI,0.1 per 1,000 pa) or no risk
(light grey, where PvAPI = 0 per 1,000 pa).
doi:10.1371/journal.pone.0037325.g003

Figure 4. The uncertainty map of predicted PvPR1–99 within the stable transmission areas. These values indicate the uncertainty of
prediction by using the ratio of posterior inter-quartile range to the posterior mean prediction at each pixel. Large values indicate greater uncertainty.
Smaller values indicate higher degree of certainty in the prediction. The rest of the land area was defined as unstable risk (medium grey areas, where
PvAPI,0.1 per 1,000 pa) or no risk (light grey, where PvAPI = 0 per 1,000 pa).
doi:10.1371/journal.pone.0037325.g004
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platform, similar to that applied for P. falciparum [29,40]. These

estimates of area and population at risk of P. vivax represent

improved and updated estimates from those made for 2009 [1].

The detection of P. vivax using the Rapid Diagnostic Tests (RDTs)

accounted for 46% of assembled malaria prevalence surveys.

RDTs are known to be less sensitive than expert microscopy and

molecular detection, especially at low parasite densities, which

tends to result in higher false-negative rates and, thus, lower

observed PvPR [51,52,53,54]. However, precise quantitative

adjustments for these factors are not readily available and we

have not assessed the impact of this low sensitivity of RDTs on our

endemicity estimates.

Indonesian challenges to control and elimination
Options for malaria preventive measures [55] to reduce the risk

of P. vivax malaria in Indonesia are limited. No contemporary work

has demonstrated the impact of district or nationwide implemen-

tation of larvicides, larvivorous fish, or source reduction by

environmental management upon malaria transmission. Low

coverage rates of insecticide-treated nets (ITN) and their usage,

low proportions of houses with screening in endemic zones,

variable practices in personal protection represent obstacles to

efforts to eliminate malaria transmission in Indonesia. The

challenge is further complicated by the unusually diverse mix of

20 Anopheles vectors with varying bionomics [56] and interspersed

distributions, as recently shown by comprehensive distribution

maps of dominant malaria vectors [57]. Another important

problem is the availability of reliable diagnostics, which may

currently identify fewer than 20% of malaria attacks [12]. A

clinical diagnosis in Indonesia prompts therapy with chloroquine

or sulfadoxine-pyramethamine, despite widespread resistance to

these drugs by both P. falciparum and P. vivax malaria [12].

Indonesian authorities acknowledge diagnostics as their primary

challenge in malaria control.

In the context of controlling or, especially eliminating endemic

P. vivax, chemotherapeutic attack on the hypnozoite reservoir of

infection may be a key consideration. However, the only drug

available for this purpose, primaquine, threatens to potentially

seriously harm patients with G6PDd [58]. Laboratory screening of

those at risk of this harm is not currently practical as part of

routine care in Indonesia. The G6PDd prevalences were

documented between 1–8% in this archipelago [59,60,61,62,63].

Although most authoritative agencies recommend a daily dose of

primaquine of 0.5 mg/kg for 14 days [64], especially in Southeast

Asia [65,66], this regimen is relatively threatening without G6PDd

screening, and the Indonesian authorities thus recommend

0.25 mg/kg for 14 days [67]. Even this lower dose, however, is

potentially dangerous and many providers in Indonesia may be

reluctant to prescribe it, much less encourage patients to be fully

adherent. It may thus be appreciated that G6PDd constitutes a

very significant challenge to the Indonesian authorities striving to

achieve their declared elimination goals [68].

This risk map of P. vivax malaria in Indonesia provides an

evidence base which the Indonesian authorities may refer to when

developing strategies for the systematic elimination of malaria

transmission. The steep challenges imposed by diagnosis, resis-

tance to chloroquine, and the potential harm caused by

primaquine may be rationally considered beyond nation-wide

solutions. Instead, the resources required to overcome these

challenges may be focused upon specific sites where control

measures are most needed or where elimination may be

realistically within reach. Further, maps of G6PDd prevalence,

and some understanding of the distribution of the most vulnerable

variants, may also guide balance of risk and benefit with

Figure 5. Evaluation of model performance. (A) Scatter plot of
actual versus predicted point-values of PvPR1–99. (B) Sample semi-
variogram of standardized model Pearson residuals estimated at
discrete lag and a Monte Carlo envelope (dashed line) representing
the range of values expected by chance in the absence of spatial
autocorrelation. (C) Probability-probability plot comparing predicted
credible intervals with the actual percentage of true values lying inside
those intervals. In the top and bottom plots the 1:1 line is also shown
(dashed line) for reference.
doi:10.1371/journal.pone.0037325.g005
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primaquine strategy, policy and practice brought to bear by the

authorities [69].

Further work
The Malaria Atlas Project developed cartographic techniques to

estimate clinical burden of P. falciparum malaria by using a

continuous relationship model between paired P. falciparum

prevalence and clinical incidence [70,71]. A non-parametric

Bayesian inference was chosen to define this relationship [71].

Space-time joint simulation was then used to measure uncertainty

of these clinical burden estimates [70]. In order to achieve similar

estimates for P. vivax, further work is needed to resolve the

association between prevalence of P. vivax and clinical incidence.

This is especially challenging with the added dimension of relapse

and further clinical attacks from a single infectious event.

Nonetheless, such estimates constitute vital evidence in rational

allocation of limited resources in a nation facing multiple infectious

disease threats to the public health.

A glance at the geography of Indonesia reveals yet another

challenge faced by the authorities in realizing and maintaining the

elimination of malaria from any given island. People from the

heavily populated islands of Java and Bali represent a significant

proportion of those engaged in the economic development of the

many sparsely populated outer islands of the archipelago and it is

unknown how many travel back and forth between these islands.

These movements incur substantial risk of importing and re-

establishing malaria transmission on Java and Bali. MAP and its

Indonesian partners will explore techniques to estimate specific

patterns and numbers of human movements among the islands in

order to identify specific and high priority threats to elimination.

The feasibility of such exploration has been facilitated by the

advance of geographical information systems, spatial statistics, and

anonimized mobile phone records [72,73,74] allowing for the

tracking of movement of mobile phones among the communica-

tions masts that serve them.

Conclusions
The maps presented in this report constitute part of a suite of

GIS tools aimed at providing the authorities in Indonesia

responsible for malaria contol with evidence-based means of

focusing their resources to where they are most needed and may

be most effectively applied. Maps of endemicity of both important

species of parasite, coupled with estimates of population at risk and

clinical burden, along with the geographic distribution of G6PDd

prevalence and patterns of internal migration compose that

envisioned suite.
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