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Abstract: Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the
fungal pathogen Paracoccidioides brasiliensis and related species. Whole-genome sequencing and
stage-specific proteomic analysis of Paracoccidioides offer the opportunity to profile humoral immune
responses against P. lutzii and P. brasiliensis s. str. infection using innovative screening approaches.
Here, an immunoproteomic approach was used to identify PCM-associated antigens that elicit immune
responses by combining 2-D electrophoresis of P. lutzii and P. brasiliensis proteomes, immunological
detection using a gold-standard serum, and mass spectrometry analysis. A total of 16 and 25 highly
immunoreactive proteins were identified in P. lutzii and P. brasiliensis, respectively, and 29 were
shown to be the novel antigens for Paracoccidioides species, including seven uncharacterized proteins.
Among the panel of proteins identified, most are involved in metabolic pathways, carbon metabolism,
and biosynthesis of secondary metabolites in both immunoproteomes. Remarkably, six isoforms of
the surface-associated enolase in the range of 54 kDa were identified as the major antigens in human
PCM due to P. lutzii. These novel immunoproteomes of Paracoccidioides will be employed to develop
a sensitive and affordable point-of-care diagnostic assay and an effective vaccine to identify infected
hosts and prevent infection and development of human PCM. These findings provide a unique
opportunity for the refinement of diagnostic tools of this important neglected systemic mycosis,
which is usually associated with poverty.

Keywords: immunoproteomic; proteomic; Paracoccidioides brasiliensis; Paracoccidioides lutzii;
paracoccidioidomycosis; serology; diagnosis; endemic mycosis; systemic mycosis; biomarker

1. Introduction

Paracoccidioidomycosis (PCM) is a life-threatening systemic infection caused by the fungal
pathogen Paracoccidioides brasiliensis and related species. The disease was first described in Brazil
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in 1908 by Adolfo Lutz [1], followed shortly thereafter by reported infections in a wide area of the
Americas. The genus Paracoccidioides was described in 1930 by Floriano de Almeida [2], and currently it
infects at least 10 million people [3,4], being the most prevalent systemic mycosis in Latin America [5,6].
The incidence of PCM is estimated to be one to three cases per 100,000 inhabitants, and the majority
of cases occur in endemic areas of Brazil, Colombia, and Venezuela [6,7]. The characteristics of the
work environment can play a role, together with other risk factors, in PCM development. Therefore,
PCM has been mostly reported in male rural workers during the most productive years of their lives,
which poses a significant public health problem and causes substantial economic losses. Mortality
associated with PCM varies between 6.1% [8] and 7.6% [9], ranking it as the eighth most common
cause of death among infectious and parasitic chronic diseases [10].

Patients become infected after inhaling Paracoccidioides propagules from the environment,
leading to primary pulmonary infection in the vast majority of human cases. In the host tissue,
Paracoccidioides undergoes a thermodimorphic transition at 37 ◦C and develops as a multibudding
yeast [11]. The temperature-induced switching of Paracoccidioides species from a saprophytic filamentous
morphotype in the soil at 25 ◦C to a pathogenic budding yeast form in the human host is an essential
morphological adaptation shared with other dimorphic pathogens in the Onygenales. While the
disease is classically characterized by pulmonary involvement and systemic infections, lesions in
the cutaneous and subcutaneous tissues with regional lymphocutaneous dissemination may also
occur [12–14].

The criteria for laboratory diagnosis of PCM rely on positive microscopic identification of the
causative agent in KOH preparations or biopsy specimens, where it is possible to visualize large yeasts
(usually 5–15 µm) that have a thick, birefringent cell wall with single or multiple buds in a “steering
wheel” or “Mickey Mouse” shape and are considered pathognomonic in the diagnosis of PCM [15].
The reference method for the definitive diagnosis is the isolation of the fungus in vitro from clinical
material such as sputum or tissue fragments [15]. Even though classical techniques offer essential
information due to the presence of pathognomonic forms of Paracoccidioides spp., nucleic acid-based
diagnostic techniques are gradually replacing or complementing culture-based and biochemical assays
in the routine of microbiology laboratories [16].

Serological assays are an essential aid in the clinical laboratory, as they provide a presumptive
diagnosis and prognosis of the disease and represent an important tool for PCM patients’ follow-up
during treatment [17–20]. Serological tests can be directed towards detecting circulating antibodies or
circulating antigens in various biological fluids, such as serum, bronchoalveolar lavage, cerebrospinal
fluid, sputum, etc. We highlight the routine use of double immunodiffusion (DID), which allows
the quantitative detection of circulating antibodies in PCM [21,22]. Serological assays also include
techniques such as counterimmunoelectrophoresis reaction (CIE) [23], enzyme-linked immunosorbent
assay (ELISA) [24], latex agglutination assay [25], and immunoblotting [26], which are available
from different reference services in Brazil [27]. These tests usually employ crude preparations of
the glycoprotein of 43 kDa (GP43) as the primary antigen of P. brasiliensis sensu lato (s.l.) to detect
circulating antibodies and have sensitivity between 85% and 100% [27]. Concerning serology tests,
P. lutzii, for instance, has a striking antigenic variation, and since most serologic tests were developed
with P. brasiliensis s.l. antigens, P. lutzii-infected hosts may have false-negative results [22].

Early DNA sequencing analyses in the 2000s demonstrated considerable diversity and recognized
cryptic entities in Paracoccidioides [28–31]. Therefore, this classification has been revisited several
times [32–34]. Presently, it is well known that there are at least four cryptic species included in the
P. brasiliensis complex [35–37] and a distantly related group named P. lutzii [35]. There is a recent
proposal to elevate agents in the P. brasiliensis complex to species level, where P. brasiliensis sensu stricto
(s. str.) is represented by the S1 group (clusters S1a and S1b), and the remaining phylogenetic species
are called P. americana (PS2), P. restrepiensis (PS3), and P. venezuelensis (PS4) [28,36,37]. The paroxysm
of the conflicting organization of the Paracoccidioides genus is the fact that so far, name change relies
only on molecular characteristics and usually does not follow phenotypic dissimilarities or the clinical
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pictures of the patients infected with the plurality of Paracoccidioides species. Although such taxonomic
modifications may be excessive and could cause a great deal of confusion, there is still a need to revisit the
taxonomy using modern approaches such as polyphasic taxonomy [38] or “consilient taxonomy” [39,40].
The availability of sequenced genomes [41,42] enables a new opportunity to consider the Paracoccidioides
taxonomy in harmony with other phenotypic, epidemiological, and clinical attributes.

Useful epidemiological surveys are available for Paracoccidioides and reveal that the P. brasiliensis
complex members occur in sympatry in a vast South American area. Phylogenetic species S1 (S1a and
S1b) are the most common PCM agents and are widespread throughout South America, especially in
southeastern and southern Brazil, Argentina, and Paraguay. A few cases of the PS2 group have been
reported in Venezuela and southeast Brazil. PS3 and PS4 are rare agents of PCM, and isolated cases
have been found in Colombia and Venezuela, respectively. Lately, cases related to PS3 have begun to
emerge in Colombia, Argentina, Peru, and Brazil [42–44]. The offshoot P. lutzii encompasses a single
species. The epicenter of P. lutzii mycosis is in the Midwest and Amazon regions of Brazil, with a single
case reported in Ecuador [45,46].

The finding of other species of Paracoccidioides opens new fields for research on the centenarian
PCM. Unlike the traditional P. brasiliensis, the newly described P. lutzii remains enigmatic in
many aspects [37,47]. Our group recently initiated the serological study of PCM due to P. lutzii,
thus contributing to PCM differentiation by the P. brasiliensis complex and P. lutzii [22]. However,
little is known about the antigenic molecules recognized by P. brasiliensis/P. lutzii-PCM patient sera,
except for the gp43 of P. brasiliensis, which is recognized by all P. brasiliensis-PCM sera [48]. Moreover,
no studies have compared the immunogenic antigens recognized between PCM caused by P. brasiliensis
s. str. and P. lutzii in humans.

Immunoproteomics is a potentially useful tool to identify disease-associated antigens that elicit
immune responses by combining protein separation (2-DE, gel-free separation), immunological
detection (immunoblotting), and mass spectrometry or by combining immunocapture and
mass spectrometry [49]. Therefore, immunoproteomics effectively provides general diagnostic
indications for selecting biomarkers [50] and has been used to analyze several medically relevant
microorganisms [51–53]. Here, we propose an experimental immunoproteomics design using antigen
preparation derived from the yeast phase of Paracoccidioides species probed against a “gold standard”
serum, where for the same patient, we were able to combine fungal isolates identified down to species
level by molecular methods and serum of the patient typified by serology (Figure 1). We explored
the potential of immunoproteomics to gain insights into the main IgG-reactive molecules in PCM
caused by the two main PCM agents, including P. lutzii and P. brasiliensis s. str. Emphasis was given
to the P. lutzii system since there is still no indication of the main antigenic molecule responsible for
antigen–antibody reaction in PCM due to P. lutzii.



J. Fungi 2020, 6, 357 4 of 36
J. Fungi 2020, 6, x FOR PEER REVIEW 4 of 40 

 

 

Figure 1. Diagram depicting a two-dimensional (2-D) proteomic approach followed by 2-D 
immunoblot used in this study in an attempt to identify possible antigens of Paracoccidioides species. 
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classical isolate Pb18 (S1) was used for comparison in the immunoproteomics experiments [54]. 
Afterward, the yeasts were used to prepare protein extracts (step 1) and then resolved by 2-D gel 
electrophoresis (step 2). Proteomes were transferred to membranes and probed against sera from 
patients with confirmed paracoccidioidomycosis (PCM) due to P. lutzii or P. brasiliensis (S1) (step 3). 
We consider as gold standard serum, the samples that presented positive double immunodiffusion 
(DID) results and where it was possible to isolate the strain from the patient, following molecular 
characterization of this isolate. Therefore, only a paired serum: strain was used in the 2-D 
immunoblot. IgG-reactive proteins (step 4) were identified by mass spectrometry (step 5). Finally, a 
solid bioinformatic characterization of the immunoreactive protein was employed to highlight 
potential biomarkers for diagnosis of paracoccidioidomycosis due to P. lutzii (steps 6–8). 
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Figure 1. Diagram depicting a two-dimensional (2-D) proteomic approach followed by 2-D immunoblot
used in this study in an attempt to identify possible antigens of Paracoccidioides species. The isolate
EPM208 of P. lutzii was selected based on previous experiments showing that patients with P. lutzii
mycosis show 100% reactivity with antigenic preparations from this strain [22]. The classical isolate
Pb18 (S1) was used for comparison in the immunoproteomics experiments [54]. Afterward, the yeasts
were used to prepare protein extracts (step 1) and then resolved by 2-D gel electrophoresis (step 2).
Proteomes were transferred to membranes and probed against sera from patients with confirmed
paracoccidioidomycosis (PCM) due to P. lutzii or P. brasiliensis (S1) (step 3). We consider as gold
standard serum, the samples that presented positive double immunodiffusion (DID) results and where
it was possible to isolate the strain from the patient, following molecular characterization of this
isolate. Therefore, only a paired serum: strain was used in the 2-D immunoblot. IgG-reactive proteins
(step 4) were identified by mass spectrometry (step 5). Finally, a solid bioinformatic characterization
of the immunoreactive protein was employed to highlight potential biomarkers for diagnosis of
paracoccidioidomycosis due to P. lutzii (steps 6–8).

2. Materials and Methods

2.1. Paracoccidioides Strains and Molecular Characterization

The Paracoccidioides spp. strains used in this study were the classical EPM208 and Pb18 (EPM16)
isolates. Isolates were characterized down to species level by TUB1-RFLP of the alpha-tubulin gene,
as described earlier [55]. Attenuation of virulence can occur in some Paracoccidioides isolates when
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subjected to successive in vitro subculturing [56,57] and thus affect the proteome expressed by isolates.
Therefore, to avoid any bias among Paracoccidioides spp. isolates at the start of in vitro culturing,
isolates were passed through BALB/c and then reisolated before protein extraction, as previously
described by our group [54].

2.2. Protein Sample Extraction

Paracoccidioides yeast cells were grown for 7 days at 36 ◦C in biological triplicate in
semisolid Fava-Netto medium, and protein extraction was performed as previously described by
Rodrigues et al. [58]. Briefly, yeast cells were washed in PBS, centrifuged (5000× g, 5 min, 4 ◦C), frozen in
liquid nitrogen, and ground in a mortar and pestle until a fine powder was obtained. The powder was
suspended in 3 mL of Tris-Ca2+ buffer (20 mM Tris-HCl pH 8.8, 2 mM CaCl2) containing a commercial
cocktail of protease inhibitors (1:100) (GE Healthcare, Piscataway, NJ, USA), RNase, and DNase
enzymes (1:100) (GE Healthcare, Piscataway, NJ, USA). Then, glass beads (Sigma, St. Louis, MO, USA,
425–600 µm) were added, and the mixture was vigorously vortexed for 30 min at 4 ◦C. Cell debris and
glass beads were removed by centrifugation (11,000× g, 4 ◦C, 10 min), and dithiothreitol (20 mM) was
added to the supernatant [59]. Protein concentrations were determined by the Bradford method [60],
and the protein extracts were kept at −70 ◦C until use.

2.3. Two-Dimensional Gel Electrophoresis

Proteins (300 µg) from each replicate were precipitated using the 2D Clean-Up Kit (GE Healthcare,
Piscataway, NJ, USA) following the manufacturer’s recommendations. Proteins were diluted with
rehydration solution (7 M urea, 2 M thiourea, 2% CHAPS, 1.2% DeStreak, 2% vol/vol isoelectric focusing
(IEF) buffer pH 4–7, and trace bromophenol blue) to a final volume of 250 µL. IEF was performed
using an Ettan IPGphor III system (GE Healthcare, USA). Precast IPG strips (pH 4–7, 13 cm) were
rehydrated at 30 V for 12 h. Proteins were focused at 200 V for 2 h, 500 V for 2 h, 1000 V for 5 h,
and then a gradient was applied from 1000 to 5000 V for 2 h. Finally, the voltage was set to 5000 V
until 60,000 Vhr. All IEF experiments were performed at 20 ◦C. Prior to running the second dimension,
the IPG strips were reduced for 15 min with 1.5% dithioerythritol and alkylated for 15 min with
2.5% iodoacetamide in equilibration buffer (6 M urea, 50 mM Tris–HCl pH 6.8, 30% glycerol, and 2%
SDS). Equilibrated strips were placed on homogeneous 10% polyacrylamide gels (16 cm × 16 cm,
GE Healthcare, Piscataway, NJ, USA) and sealed with 0.5% low-melting-point agarose and separated at
10 ◦C using a Hoefer SE 600 unit (15 mA/gel for 30 min and then 23 mA/gel until the dye front reached
the bottom of the gel) [58]. Proteins were either developed with silver [61] and Coomassie staining [62]
or directly transferred in the case of immunoblot analysis.

2.4. Naturally Infected Human Serum Samples

A total of 20 sera from patients with confirmed PCM and 10 self-reported healthy normal donors
were used in this investigation. Patients had the chronic form of PCM and exhibited clinical and
laboratory signs of the disease, with pulmonary system involvement and mucosal or mucocutaneous
lesions [22]. PCM was confirmed in all patients by laboratory demonstration of pathognomonic “ship’s
wheel” budding yeast cells and fungal isolation in vitro. Therefore, only paired samples (strain: serum)
were used as gold standard. Serum samples from patients with PCM due to P. lutzii (n = 10) were
recovered from the serum bank of the Laboratory of Mycology at the Federal University of Mato
Grosso (Cuiabá, Midwest region, Brazil) in 2012–2015, whereas samples from patients with PCM due
to P. brasiliensis s. str. (S1; n = 10) were retrieved from the serum bank of the Laboratory of Medical and
Molecular Mycology at the Federal University of São Paulo (São Paulo state, Southeast region, Brazil)
in 2013–2015. Samples were pooled to maximize the recognition of immunoreactive spots and avoid
patient-specific effects. The pooled positive reference serum was generated by pooling equal volumes of
anti–P. lutzii or anti-P. brasiliensis IgG antibody-positive sera from 10 patients, and the pooled negative
reference serum was generated with sera from 10 healthy adult individuals. All serum samples were
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aliquoted and stored at −70 ◦C until use. This study was approved (CAAE: 17177613.6.0000.5541) by
the research ethics committee of Federal University of Mato Grosso, and protocol numbers 1796–10
and CEP 3147220120 were approve by the counterpart committee of Federal University of São Paulo.
All adult subjects provided informed written consent, and the study was also approved under number
288.250/CEP/HUJM/UFMT.

2.5. Double Immunodiffusion Assays

All individual sera were investigated via double immunodiffusion assays (DID) using a P. lutzii
cell-free antigen (CFA) preparation derived from the reference isolate EPM208 or the exoantigens from
the reference B-339 strain (AgPbB339; PS3) as described earlier [21,22]. A quantitative DID assay was
used to establish the titration of each patient’s serum. Briefly, 3 mm of melted 1% agarose (Sigma
A-6877) in PBS was poured onto a glass slide (75 mm × 25 mm) [22]. This micro-ID test pattern
consisted of a central well surrounded by six wells, each 3 mm in diameter. The central well, located
6 mm (edge-to-edge) from the other wells, was filled with the antigen solution. Each slide contained
two sets of wells. On each slide, the two central wells were filled with 10 µL of Paracoccidioides antigen.
Slides were incubated overnight in a moist chamber at room temperature (20–25 ◦C) and then washed
for 1 h in 5% sodium citrate and 24–48 h in saline. The slides were dried, stained for 5 min with 0.15%
Coomassie Brilliant blue (Sigma) in ethanol: acetic acid: water (4:2:4; v:v), and destained in the solvent
mixture alone until precipitin lines were maximally visible. Precipitation bands were noted by visual
observation [21].

2.6. 2-D Immunoblot of Paracoccidioides Species Proteins

For immunoblotting, proteins separated by conventional 2-D gel electrophoresis were
electrophoretically transferred onto 0.45 µm polyvinylidene difluoride (PVDF) membranes (Bio-Rad,
USA) at 25 V for 1 h with transfer buffer (25 mM Tris base, 192 mM glycine, 20% methanol; pH 8.3) [63]
using a Trans-Blot SD semidry transfer cell (Bio-Rad, Rockville, MD, USA). The success of electrotransfer
was evaluated by Ponceau S staining (0.15% Ponceau S and 1% acetic acid (v/v)) staining. Membranes
were destained and then free binding sites were blocked overnight in PBS blocking buffer (1% bovine
serum albumin, supplemented with 0.05% (v/v) Tween 20 and 5% (wt/vol) skim milk, pH 7.6) at
4 ◦C [64].

Membranes were probed with primary antibody diluted 1:500 (gold standard pooled human
sera) at 25 ◦C for 2 h. Afterward, the membranes were washed three times with Tris-buffered saline
(pH 7.5) containing 0.05% (v/v) Tween 20 (TBST) for 10 min and incubated with horseradish peroxidase
(HRP)-conjugated goat anti-human IgG (1:1000 dilution) for 2 h at room temperature. The membranes
were then washed with TBST, and the signal was detected with an enhanced chemiluminescence
detection kit (GE Healthcare, Uppsala, Sweden). Immunoblots were imaged in a transilluminator
(Uvitec, Cambridge). Alliance software v. 4.7 was used to capture several images at different exposure
times, reaching 10 shots with a 2 s increment.

2.7. Identification of Immunoreactive Proteins by MALDI-ToF MS/MS Analysis

Fresh Coomassie-stained protein spots matching 2-D immunoblot immunoreactive spots were
manually excised and processed by MALDI-ToF/MS. Spots were washed in ultrapure water, destained
in 50 mM ammonium bicarbonate (pH 8.0) with 50% acetonitrile (ACN), shrunk with 100% acetonitrile,
and vacuum dried. Next, the gel pieces were incubated with 12.5 ng/µL of sequencing grade trypsin
(Promega, Madison, WI, USA) overnight at 37 ◦C. After trypsin digestion, the supernatants were
separated, and the peptides extracted first into 0.5% trifluoroacetic acid/50% acetonitrile and then into
100% ACN. All extracts were pooled, and the volume was reduced by SpeedVac [58].

Following trypsin digestion, the peptide suspension derived for each spot was spotted on a MALDI
target plate, mixed with the matrix α-cyano-4-hydroxy-trans-cinnamic acid (Sigma), and allowed to
air dry at room temperature. The samples were analyzed with an AB SCIEX TOF/TOF 5800 mass
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spectrometer (Applied Biosystems, Foster City, CA, USA) in automated mode. Initially, a MALDI
MS spectrum was acquired for each spot (800 shots/spectrum), and peaks with a signal-to-noise ratio
greater than 50 in at least two consecutive fractions until a maximum of 10 precursors per fraction
were automatically selected for MS/MS analysis (at least 2200 shots/spectrum) using collision energy of
1 keV with air as the collision gas. All mass spectra were calibrated using the Mass Standards Kit for
Calibration of AB SCIEX TOF/TOF (Applied Biosystems, Foster City, CA, USA) [58]. The spectra were
searched against an in-house database constructed with genome information using two reference strains
of P. brasiliensis s.l. (Pb03, accession number ABHV00000000; Pb18, accession number ABKI00000000)
and one strain of P. lutzii (Pb01; accession number ABKH00000000) [65] as selection criteria and the
Paragon algorithm in the Protein Pilot software (Applied Biosystems, Foster City, CA, USA). A false
discovery rate of 1% was applied, and only peptides with >95% confidence were listed.

2.8. Bioinformatics Analysis

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) (version 11) [66] was
used to construct a protein interaction network (experimentally verified as well as predicted) of the
immunoreactive proteins in the P. brasiliensis and P. lutzii immunoproteomes. Since most biological
information is available for Paracoccidioides brasiliensis, it was used as a model organism in both
analyses. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis [67],
implemented in the STRING database, was used to ascertain the function of the identified proteins.
The web application iPath3.0 was used to visualize and analyze cellular pathways enriched in STRING
analysis (KEGG pathway analysis) [68]. WoLF PSORT was used for predicting subcellular protein
localization of the immunoreactive proteins based on their amino acid sequences [69]. The InteractiVenn
software (unions by list) [66] was used to generate Venn diagrams for our list of immunoreactive
proteins, as well as to compare the dataset found in this study with those immunoreactive proteins
published for human PCM [70] and murine PCM [71].

High-throughput in silico prediction of protein antigenicity was used to compare B-cell epitopes
between P. brasiliensis (Pb18) and P. lutzii (Pb01) immunoreactive proteins. Protein sequences were
retrieved from NCBI and submitted to ABCpred [72], BepiPred [73], and COBEpro [74] using the
default parameters. AntigenPRO [74] and VaxiJen v2.0 [75], two sequence-based, alignment-free and
pathogen-independent predictors of protein antigenicity, were used to predict full-length protein
antigenicity with a prediction threshold of 0.5. Therefore, proteins having antigenic scores >0.5 were
considered to be antigenic.

Potential biomarkers for PCM immunodiagnostics were submitted to the ConSurf server [76] to
estimate the evolutionary conservation of amino acid residue positions based on the phylogenetic
relations between homologous sequences. Multiple sequence alignment was achieved using
MAFFT [77], and the homologs were collected from UNIREF90 [78] using the homolog search
algorithm HMMER (HMMER E-value: 0.0001, number of HMMER iterations: 1, maximal %ID between
sequences: 95; minimal %ID for homologs: 35) [79]. The degree to which an amino acid position is
evolutionarily conserved (i.e., its evolutionary rate) is highly dependent on its structural and functional
importance and was compared with predicted B-cell epitopes. The continuous conservation scores
were partitioned into a discrete scale of 9 bins for visualization, where bin 9 contained the most
conserved positions, and bin 1 had the most variable positions [76].

Finally, for modeling the protein’s 3D molecular structures of Paracoccidioides antigens, the amino
acid sequences were retrieved from NCBI and submitted to RaptorX [80], a web server for protein
structure–function prediction. Protein 3D molecular structures, including molecular surface and
inspection of molecular structures, were determined using the 3D Molecule Viewer implemented in
the CLC Genomics Workbench v.9.0.1. In the last step of the homology modeling, the model’s refined
structure was subjected to a series of tests to check its internal consistency and reliability. Backbone
conformation was evaluated by examining the Psi/Phi Ramachandran plot obtained from PROCHECK
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analysis [81]. We considered a model to have good quality when over 90% of the amino acid residues
were located in the most favored regions [81].

3. Results

3.1. Protein Profile of Paracoccidioides Species

Protein extraction using whole yeast cells yielded around 3 mg of proteins and the proteins
integrity was observed by 1D SDS-PAGE. Whole-cell lysates (300 µg) from P. lutzii and P. brasiliensis
were fractionated by 2-D electrophoresis, using an immobilized pH gradient of 4–7, which provided
better sample separation and improved resolution (Figure 2a,c).
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Figure 2. Proteins from Paracoccidioides lutzii (EPM208) and Paracoccidioides brasiliensis (Pb18) were
fractionated using 13 cm pH 4–7 (left to right) strips in the first dimension and 10% SDS-PAGE gels in
the second dimension, developed by silver staining. (a) 2-D PAGE of EPM208, (b) 2-D immunoblot
using a pool of sera of patients (n = 10) with PCM due to P. lutzii, (c) 2-D PAGE of Pb18, and (d) 2-D
immunoblot using a serum pool of patients (n = 10) with PCM due to P. brasiliensis s. str. (S1). Data are
representative of three independent experiments. Molecular masses of standard proteins are given on
the gels’ left side (BenchMark Protein Ladder, Invitrogen, Waltham, MA, USA). The spots recognized
by sera from patients with PCM and submitted to MALDI-ToF mass spectrometry analysis (MS/MS)
are highlighted. The numbers refer to the spot identification used in Tables 1 and 2.
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Table 1. Identification of IgG-reactive proteins recognized by sera of patients with paracoccidioidomycosis due to Paracoccidioides lutzii.

Spot Number Accession Number Gene Name Protein Name Mass (Mr) pI Cov. (%) Score

Pl01, Pl03, Pl04 XP_015702763 PADG_07749 NAD(P)H: quinone oxidoreductase, type IV 23,585 6.21 16 228

Pl02 XP_015700719 PADG_02764 Uncharacterized protein (Thioredoxin-like Superfamily) 30,945 8.45 14 124

Pl05 XP_002795879 PADG_06906 Triosephosphate isomerase 27,159 5.39 24 408

Pl06 XP_002797384 PADG_03581 Phenylacetone monooxygenase 68,182 5.95 1 33

Pl07 XP_015701261 PADG_00322 Uncharacterized protein (PRTases type I Superfamily) 23,117 5.28 22 186

Pl08 XP_002797532 PADG_07190 Proteasome subunit alpha 29,747 6.36 3 39

Pl09, Pl10 Q8X1X3 PADG_02411 Glyceraldehyde-3-Phosphate dehydrogenase 36,619 8.26 10 185

Pl11 XP_002796107 PADG_00668 Fructose-bisphosphate aldolase 1 39,721 6.09 18 429

Pl12 XP_002791734 PADG_01372 Mannitol-1-Phosphate 5-dehydrogenase 43,119 5.66 3 78

Pl13, Pl30, Pl31, Pl32 XP_002790117 PADG_08118 HSP72-like protein 70,919 5.08 9 390

Pl14 XP_002793640 PADG_04710 Citrate synthase 51,516 9.02 16 307

Pl16 XP_002791040 PADG_01483 Isocitrate lyase 60,173 6.79 2 26

Pl17, Pl19 XP_002793534 PADG_04604 Transketolase 74,940 5.97 2 28

Pl20, Pl21, Pl22, Pl23, Pl24, Pl34 XP_015703472 PADG_04059 Enolase 48,515 5.49 19 389

Pl27, Pl28, Pl29 XP_002789992 PADG_08369 HSP60, mitochondrial 62,266 5.51 13 510

Pl36 XP_002797075 PADG_03893 Uncharacterized protein 38,092 8.46 3 26
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Table 2. Identification of IgG-reactive proteins recognized by sera of patients with paracoccidioidomycosis due to Paracoccidioides brasiliensis sensu stricto.

Spot Number Accession Number Gene Name Protein Mass (Mr) pI Cov. (%) Score

Pb37 XP_010762888 PADG_07524 Nucleoside diphosphate kinase 16,908 6.84 23 226

Pb38, Pb40, Pb41, Pb44 XP_010758730 PADG_03095 1-Cys peroxiredoxin (PbPrx1) 24,931 5.28 17 175

Pb45 XP_010763035 PADG_07782 Deoxyuridine 5′-triphosphate nucleotidohydrolase 22,190 5.27 12 75

Pb46 XP_010762134 PADG_06906 Triosephosphate isomerase 27,176 5.39 10 66

Pb48 XP_010759909 PADG_11679 Proliferating cell nuclear antigen 36,276 4.87 11 205

Pb49 XP_010759842 PADG_04440 Uncharacterized protein (14-3-3 Superfamily) 29,738 4.68 24 322

Pb50 XP_010759301 PADG_04056 14-3-3 family protein epsilon 32,531 4.74 19 240

Pb52 XP_010760066 PADG_04603 Spermidine synthase 33,714 5.33 8 220

Pb53 XP_010759656 PADG_03943 Phosphomannomutase 30,560 5.6 5 33

Pb54, Pb55, Pb56 XP_010758444 PADG_02411 Glyceraldehyde-3-phosphate dehydrogenase 37,397 7.12 12 232

Pb57, Pb58, Pb59, Pb60 XP_010756450 PADG_00668 Fructose-bisphosphate aldolase 1 39,764 6.28 14 391

Pb62, Pb70 XP_010763814 PADG_08468 4-hydroxyphenylpyruvate dioxygenase 45,844 5.64 3 37

Pb65 XP_010761900 PADG_06488 Uncharacterized protein (cyclophilin superfamily) 41,276 5.42 15 352

Pb66, Pb68, Pb69, Pb83, Pb84, Pb85 XP_010763478 PADG_08118 HSP72-like protein 70,949 5.08 14 513

Pb67 XP_010756960 PADG_01551 Thioredoxin reductase 38,134 5.42 7 83

Pb71, Pb72, Pb73 XP_010763627 PADG_08349 ATP synthase subunit beta 66,837 6.01 12 423

Pb74 XP_010763342 PADG_07950 Hexokinase 55,065 5.19 13 224

Pb75 XP_010758595 PADG_02761 HSP75-like protein 67,330 5.27 9 446

Pb76 XP_010761260 PADG_05922 Uncharacterized protein (M20_dimer domain-containing protein) 63,634 6.36 6 145

Pb78 XP_010762465 PADG_07213 Acetyltransferase component of pyruvate dehydrogenase complex 55,658 7.67 3 93

Pb79, Pb80, Pb81 XP_010763632 PADG_08369 HSP60, mitochondrial 62,522 5.51 16 797

Pb82, Pb87 XP_010759621 PADG_03841 Protein disulfide isomerase 58,878 4.88 15 498

Pb86, Pb88 XP_010756347 PADG_00430 HSP7-like protein 94,608 6.4 8 393

Pb89, Pb90 XP_010758132 PADG_02785 Uncharacterized protein (NBD sugar kinase HSP70 actin
superfamily) 80,759 4.91 9 205

Pb92, Pb93 XP_010760563 PADG_11845 Aconitate hydratase, mitochondrial 80,073 6.46 8 136
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3.2. Profiling the Humoral Response in Human PCM

All sera used in this study were typified by immunodiffusion using the AgPbB339 reference
exoantigen or EPM208 cell-free antigen, as previously described [22]. Sera of patients from São
Paulo were reactive to the classical antigen AgPbB339, with titration varying between 1:4 and 1:64
(Supplementary Figure S1a). The molecular identification of the isolates by TUB1-RFLP revealed they
belong to the S1 group (P. brasiliensis s. str.). On the other hand, a positive reaction was detected for
sera from patients living in the Brazilian Midwest using the EPM208 CFA preparation, with titration
varying between 1:4 and 1:32 (Supplementary Figure S1b), showing a strong identity with P. lutzii.
Likewise, the isolates from Mato Grosso were classified as P. lutzii by TUB1-RFLP, confirming the
serological data. Sera from the healthy normal donors did not react with AgPbB339 or EPM208 CFA
preparation (Supplementary Figure S1).

Afterward, typified sera were used in two-dimensional immunoblot tests, revealing a total of 93
IgG-reactive spots in the proteome of Paracoccidioides species (Figure 2). Thirty-six spots with molecular
weights (MW) ranging from 23 to 74 kDa and with isoelectric points in the range from 5.08 to 9.02 were
strongly detected in the P. lutzii proteome using the pooled human serum of patients with PCM due to
P. lutzii (gold standard; Figure 2b). The immunoproteome of P. brasiliensis was much more diverse than
that of P. lutzii, and 57 spots with molecular weights (MW) ranging from 16.9 to 94.6 kDa and with
isoelectric points in the range from 4.68 to 7.67 were strongly detected in the pooled human serum of
patients with PCM due to P. brasiliensis s. str. (gold standard; Figure 2d). Moreover, no significant IgG
binding reactivity was detected with the sera from healthy subjects.

3.3. IgG-Reactive Protein Identification by Mass Spectrometry

A total of 93 spots matching the immunoreactive proteins described above were excised from fresh
2-D Coomassie-stained gels and submitted to mass spectrometry analysis (MS/MS). Homology database
search with the Mascot search engine allowed identifying 77 immunoreactive spots corresponding to
16 proteins in the P. lutzii proteome (Table 1) and 25 proteins in the P. brasiliensis proteome (Table 2).
Interestingly, several spots showed two or more isoforms, such as NAD(P)H:quinone oxidoreductase,
type IV (spots # Pl01, Pl03, and Pl04); glyceraldehyde-3-phosphate dehydrogenase (spots # Pl09 and
Pl10), HSP72-like protein (spots # Pl13, Pl30, Pl31, and Pl32), transketolase (spots # Pl17 and Pl19),
and enolase (spots # Pl20, Pl21, Pl22, Pl23, Pl24 and Pl34). Three uncharacterized proteins were detected
for the first time in the P. lutzii immunoproteome and four were detected for the first time in the
P. brasiliensis immunoproteome. Surprisingly, we did not identify any isoforms of the glycoprotein
of 43,000 Da (gp43) in the immunoproteome of P. lutzii or P. brasiliensis. However, this molecule
has been reported as the immunodominant antigen in PCM patients infected with members of the
P. brasiliensis complex. Only five proteins were found to be shared between P. lutzii and P. brasiliensis
immunoproteomes (i.e., triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase,
fructose-bisphosphate aldolase 1, HSP72-like protein, and HSP60, mitochondrial) (Figure 3a), and three
of them were previously described in PCM (Figure 3b). A comparison between our dataset and
previous immunogenic proteins reported for murine PCM revealed a remarkable difference between
human and murine immunogenic proteins. Only four proteins were found to be common between the
systems (Figure 3c).

3.4. STRING Analysis of Paracoccidioides Immunoproteome

To further understand the properties and correlation of immunogenic proteins, the 16 antigens
of P. lutzii were used to generate a protein–protein interaction network (p = 4.33 × 10−15; average
node degree: 3.12; Figure 4a) and visualize the most representative classes of these proteins for KEGG
pathways (depicted in Figure 4b). The P. lutzii immunogenic proteins represented a broad range
of biological functions, including biosynthesis of secondary metabolites (n = 8; FDR = 2.29 × 10−7;
map01110), carbon metabolism (n = 7; FDR = 8.22 × 10−9; map01200), metabolic pathways (n = 7;
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FDR = 0.00054; map01100), biosynthesis of amino acids (n = 6; FDR = 2.29 × 10−7; map01230),
biosynthesis of antibiotics (n = 6; FDR = 6.96 × 10−6; map01130), glycolysis/gluconeogenesis (n = 4;
FDR = 2.95 × 10−6; map00010), fructose and mannose metabolism (n = 3; FDR = 4.02 × 10−5; map00051),
methane metabolism (n = 2; FDR = 0.0018; map00680), pentose phosphate pathway (n = 2; FDR = 0.0021;
map00030), glyoxylate and dicarboxylate metabolism (n = 2; FDR = 0.0037; map00630), and RNA
degradation (n = 2; FDR = 0.0068; map03018) (Figure 4b). The protein–protein interaction network
showed that seven proteins that are mainly involved in carbon metabolism, biosynthesis of secondary
metabolites, and metabolic pathways could interact with each other. The three uncharacterized proteins
(XP_015700719, XP_015701261, and XP_002797075) are described as newly identified antigens, and along
with NAD(P)H:quinone oxidoreductase, type IV, phenylacetone monooxygenase, proteasome subunit
alpha, and mannitol-1-phosphate 5-dehydrogenase showed no relationship with others (Figure 4).J. Fungi 2020, 6, x FOR PEER REVIEW 12 of 40 
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Figure 3. (a) The Venn diagram summarizes the number of proteins identified in the P. lutzii (n = 16) and
P. brasiliensis (n = 25) proteomes. (b) The three-way Venn diagram summarizes the number of proteins
in each combination found in this study (P. lutzii and P. brasiliensis) shared with the immunoproteome
published by da Fonseca et al. [70] for human PCM (n = 5 immunoreactive proteins). (c) The six-way
Venn diagram summarizes the number of proteins in each combination found in this study (P. lutzii
and P. brasiliensis) shared with the immunoproteomes published by Moreira et al. [71] for murine PCM
using P. brasiliensis s. str. (S1; n = 17 immunoreactive proteins), P. americana (PS2; n = 14 immunoreactive
proteins), P. restrepiensis (PS3; n = 33 immunoreactive proteins), and P. lutzii (n = 15 immunoreactive
proteins). Shared proteins are highlighted in red.
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Figure 4. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis of
Paracoccidioides lutzii immunoproteome. (a) A total of 16 immunoreactive proteins from P. lutzii were
used as input for STRING analysis, and a network was built based on high confidence evidence from
experimental protein–protein interaction (purple line) and curated (light blue lines) databases. Proteins
are indicated by nodes labeled with the encoding gene symbol (number of edges = 25) from P. brasiliensis
as a model. (b) Classification of proteins based on the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. Protein–protein interactions’ enrichment p-value = 4.33 × 10−15.

As we expected, the protein–protein interaction network in STRING for the 25 immunoreactive
proteins of P. brasiliensis had higher node degrees (p < 1.0 × 10−16; average node degree: 4.72; Figure 5a).
The most representative classes of these proteins for KEGG pathways are shown in Figure 5b. Likewise,
the P. brasiliensis immunogenic proteins covered an extensive range of biological functions, including
metabolic pathways (n = 13; FDR = 9.58 × 10−7; map01100), biosynthesis of antibiotics (n = 8;
FDR = 1.56 × 10−6; map01130), biosynthesis of secondary metabolites (n = 8; FDR = 8.33 × 10−6;
map01110), carbon metabolism (n = 6; FDR = 3.94 × 10−6; map01200), glycolysis/gluconeogenesis (n = 5;
FDR = 1.34 × 10−6; map00010), fructose and mannose metabolism (n = 4; FDR = 5.72 × 10−6; map00051),
biosynthesis of amino acids (n = 4; FDR = 0.0013; map01230), protein processing in endoplasmic
reticulum (n = 3; FDR = 0.0060; map04141), RNA degradation (n = 2; FDR = 0.0262; map03018),
and MAPK signaling pathway—yeast (n = 2; FDR = 0.0311; map04011) (Figure 5b). The protein–protein
interaction network showed that 22 proteins, mainly involved in metabolic pathways, biosynthesis of
secondary metabolites, biosynthesis of antibiotics, and carbon metabolism, could interact with each
other. Two uncharacterized proteins (XP_010761900 and XP_010758132), described here as newly
identified antigens, interacted with each other as well as with proteins related to protein processing
in the endoplasmic reticulum and RNA degradation. A newly identified 1-Cys peroxiredoxin
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(PbPrx1, XP_010758730) and an uncharacterized protein (XP_010759842) showed interactions with
proteins related to the protein processing in the endoplasmic reticulum (e.g., HSP72-like protein and
protein disulfide-isomerase). Three proteins, named, spermidine synthase, 4-hydroxyphenylpyruvate
dioxygenase, and an uncharacterized protein (XP_010761260, M20_dimer domain-containing protein)
showed no relationship with the others (Figure 5).J. Fungi 2020, 6, x FOR PEER REVIEW 15 of 40 
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Figure 5. STRING analysis of Paracoccidioides brasiliensis immunoproteome. (a) A total of 25
immunoreactive proteins from P. brasiliensis were used as input for STRING analysis, and a network
was built based on high confidence evidence from experimental protein–protein interaction (purple
line) and curated (light blue lines) databases. Proteins are indicated by nodes labeled with the encoding
gene symbol (number of edges = 25) from P. brasiliensis as a model. (b) Classification of proteins based
on KEGG pathways. Protein–protein interactions’ enrichment p-value < 1.0 × 10−16.

3.5. Immunoinformatic Analysis of Paracoccidioides Antigens

Bioinformatic analyses were used to predict subcellular localization of immunoreactive proteins.
Results showed 20 cytoplasmic (55.6%), followed by 13 mitochondrial (36.1%), two nuclear (5.6%),
and one extracellular localization (2.7%) (Table 3).
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Table 3. Characterization of full-length immunoreactive proteins of Paracoccidioides spp., for predicted antigenicity using AntigenPRO and VaxiJen.

P. lutzii
Accession

P. brasiliensis
Accession Protein Name Localization

WoLF PSORT
Pb01

AntigenPRO
Pb01

VaxiJen
Pb01 No. of

Epitopes
Pb18

AntigenPRO
Pb18

VaxiJen
Pb18 No. of

Epitopes
Shared

Epitopes

XP_015702763 XP_010763025 NAD(P)H: quinone oxidoreductase, type IV Extracellular 0.6407 0.4315 7 0.7233 0.5125 6 0

XP_015700719 XP_010758121 Uncharacterized protein (thioredoxin-like
superfamily) Mitochondrial 0.9448 0.6254 12 0.9222 0.6070 10 3

XP_002795879 XP_010762134 Triosephosphate isomerase Mitochondrial 0.6495 0.7753 11 0.7712 0.7536 13 7
XP_002797384 XP_010759514 Phenylacetone monooxygenase Cytoplasmic 0.8696 0.5354 17 0.8388 0.4979 16 0
XP_015701261 XP_010756299 Uncharacterized protein (PRTases type I Superfamily) Cytoplasmic 0.8444 0.7386 5 0.7880 0.7390 5 1
XP_002797532 XP_010762451 Proteasome subunit alpha Cytoplasmic 0.8091 0.6841 9 0.6377 0.6426 9 2

Q8X1X3 XP_010758444 Glyceraldehyde-3-Phosphate dehydrogenase Cytoplasmic 0.8114 0.7938 11 0.7921 0.8081 12 5
XP_002796107 XP_010756450 Fructose-bisphosphate aldolase 1 Cytoplasmic 0.7233 0.4472 11 0.7153 0.4869 13 6
XP_002791734 XP_010757428 Mannitol-1-Phosphate 5-dehydrogenase Cytoplasmic 0.6436 0.5805 14 0.7117 0.5592 16 2
XP_002790117 XP_010763478 HSP72-like protein Cytoplasmic 0.8263 0.6064 20 0.8291 0.6046 23 5
XP_002793640 XP_010760342 Citrate synthase Mitochondrial 0.3002 0.4058 20 0.3103 0.4266 16 7
XP_002791040 XP_010757468 Isocitrate lyase Cytoplasmic 0.8288 0.4291 19 0.8450 0.3904 19 4
XP_002793534 XP_010760067 Transketolase Cytoplasmic 0.6889 0.7441 15 0.8113 0.6775 18 6
XP_015703472 XP_010759701 Enolase Cytoplasmic 0.6237 0.8143 13 0.6419 0.7853 15 4
XP_002789992 XP_010763632 HSP60, mitochondrial Mitochondrial 0.5421 0.9471 25 0.5124 0.9500 22 6
XP_002797075 XP_010759641 Uncharacterized protein Mitochondrial 0.8841 0.4142 10 0.8729 0.5637 8 1
XP_002794019 XP_010762888 Nucleoside diphosphate kinase Cytoplasmic 0.5476 0.5195 6 0.6612 0.5236 6 5
XP_002794671 XP_010758730 1-Cys peroxiredoxin (PbPrx1) Cytoplasmic 0.8698 0.8177 9 0.8434 0.8314 10 3
XP_002792326 XP_010763035 Deoxyuridine 5’-triphosphate nucleotidohydrolase Mitochondrial 0.9407 0.3919 3 0.9382 0.3264 3 1
XP_015700963 XP_010759909 Proliferating cell nuclear antigen Nuclear 0.7182 0.6226 7 0.7234 0.7115 21 1
XP_002791205 XP_010759842 Uncharacterized protein (14-3-3 Superfamily) Cytoplasmic 0.8629 0.5059 14 0.8728 0.5530 12 6
XP_002796914 XP_010759301 14-3-3 family protein epsilon Mitochondrial 0.8586 0.5232 14 0.8844 0.5074 15 8
XP_002793533 XP_010760066 Spermidine synthase Nuclear 0.3752 0.4093 11 0.4290 0.4429 8 3
XP_002797030 XP_010759656 Phosphomannomutase Cytoplasmic 0.8278 0.6743 12 0.8003 0.6633 11 0
XP_002789912 XP_010763814 4-hydroxyphenylpyruvate dioxygenase Cytoplasmic 0.7016 0.5006 11 0.7664 0.4948 14 4
XP_015701903 XP_010761900 Uncharacterized protein (cyclophilin superfamily) Cytoplasmic 0.9025 0.5236 13 0.9179 0.5328 11 4
XP_002791109 XP_010756960 Thioredoxin reductase Mitochondrial 0.8249 0.5353 12 0.8541 0.5592 12 3
XP_002789970 XP_010763627 ATP synthase subunit beta Mitochondrial 0.4385 0.6881 25 0.2767 0.7620 21 8
XP_002791907 XP_010763342 Hexokinase Cytoplasmic 0.3520 0.8065 20 0.3815 0.8873 21 6
XP_015700721 XP_010758595 HSP75-like protein Cytoplasmic 0.8588 0.7374 21 0.8632 0.7372 22 11
XP_002789172 XP_010761260 Uncharacterized protein (M20_dimer domain) Mitochondrial 0.6981 0.7508 22 0.5960 0.6827 23 11

XP_002797511 XP_010762465 Acetyltransferase component of pyruvate
dehydrogenase complex Mitochondrial 0.6820 0.8293 13 0.6725 0.6868 14 4

XP_002797127 XP_010759621 Protein disulfide-isomerase Cytoplasmic 0.8475 0.5827 19 0.8856 0.7384 19 4
XP_015703361 XP_010756347 HSP7-like protein Mitochondrial 0.7989 0.7184 27 0.9019 0.7541 27 4

XP_002790451 XP_010758132 Uncharacterized protein (NBD sugar kinase
superfamily) Cytoplasmic 0.8700 0.7442 26 0.82411 0.7502 25 5

XP_015699682 XP_010760563 Aconitate hydratase, mitochondrial Mitochondrial 0.7657 0.6783 27 0.766503 0.6689 23 10
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For the 16 P. lutzii immunogenic proteins, predicted antigenicity varied from 0.3002 to 0.9448 using
AntigenPRO and from 0.4058 to 0.9471 using VaxiJen. Therefore, citrate synthase was not predicted to
be an antigen using both predictors. In contrast, VaxiJen failed to predict another four proteins, namely,
isocitrate lyase (0.4291), NAD(P)H: quinone oxidoreductase type IV (0.4315), fructose-bisphosphate
aldolase 1 (0.4472), and a hypothetical protein (XP_002797075; 0.4142) using a cutoff level of 0.5. Similar
predictions were found for the homolog sequences of P. brasiliensis (Table 3).

Judging from the 25 P. brasiliensis immunogenic proteins, predicted antigenicity varied from 0.2767
to 0.9382 using AntigenPRO and from 0.3264 to 0.95 using VaxiJen. Therefore, ATP synthase subunit beta
(0.2767), hexokinase (0.3815), and spermidine synthase (0.429) were not predicted to be antigens using
AntigenPRO, and deoxyuridine 5′-triphosphate nucleotidohydrolase (0.3264), spermidine synthase
(0.4429), fructose-bisphosphate aldolase 1 (0.4869), and 4-hydroxyphenylpyruvate dioxygenase (0.4948)
showed scores below 0.5. Similar predictions were found for the homolog’s sequences in P. lutzii
(Table 3).

The characterization of epitopes that invoke substantial responses from B-cells is critical in
designing useful diagnostic assays, since B-cell epitopes can recognize definite antibodies, thus allowing
diagnosis with more specificity. Based on the list of IgG-reactive proteins, epitopes were predicted from
the whole protein sequence found in P. lutzii and its homolog in P. brasiliensis (and vice versa). We aimed
to describe the candidates for the design of new serological assays and highlight potential vaccine targets
for future studies. Our analyses revealed 219 epitopes for P. lutzii and 379 epitopes for P. brasiliensis
(Supplementary Table S1). Most of the predicted immunogenic epitopes are accessible on the protein
surface, located in flexible regions, and often overlap between P. lutzii and P. brasiliensis, as depicted
in Figures 6 and 7, reaching a total of 183 common epitopes. Therefore, although the antigenicity
value was found to be somewhat similar between homologs and although the epitope regions were
predicted to occur in the same region (Figures 6 and 7), there were substitutions of one or more amino
acid residues along with epitopes, which could dramatically decrease the antigen–antibody interaction
between the P. lutzii or P. brasiliensis epitopes and the antibodies in heterologous systems. Table 3
shows the number of predicted epitopes and the number of epitopes shared between the antigenic
proteins found in 2-D immunoblotting and its homolog in the sister species, indicating they have
a chance of cross-reaction with other cryptic Paracoccidioides species causing similar infections. In this
scenario, five proteins, namely, 14-3-3 family protein epsilon (Figure 7b), ATP synthase subunit beta,
aconitate hydratase, mitochondrial HSP75-like protein, and an uncharacterized protein (M20_dimer
domain-containing protein), appeared with the highest number of shared epitopes.

Previous results by our group [22] showed that an immunodominant protein in PCM due to
P. lutzii occurs in the range of 54 kDa, and our 2-D immunoblot revealed a large number of protein
spots (Pl20, Pl21, Pl22, Pl23, Pl24, and Pl34) recognized by the P. lutzii antisera. The strongest
reactors were observed in the 54 kDa range. The immunodominant protein in the P. lutzii mycosis
was identified as enolase (XP_015703472), and characterization of its 3D molecular structure was
used to highlight the putative epitopes to improve serodiagnosis of PCM due to P. lutzii (Figure 8a).
The homology modeling found for P. lutzii enolase used the RaptorX software and revealed that
enolase 1 from Saccharomyces cerevisiae (strain ATCC 204508/S288c; PDB ID: 1EBG) [83] was the best
template model, showing a sequence identity of 70.81%. PROCHECK analyzed the quality of the
model predicted by RaptorX for the evaluation of the Ramachandran plot quality. We found that 90.7%
of the residues of this protein (351 amino acid residues) lay in the most favored region, while only
three residues were in disallowed regions (0.8%), supporting the good quality of the predicted model
(Supplementary Figure S2). A comparison between enolase homologs using BepiPred 2.0 revealed
13 epitopes in P. lutzii and 15 epitopes predicted in P. brasiliensis, with only four epitopes shared.
We highlight epitope #2 (pos.40–60: STGQHEACELRDGDQSKWLGK) and epitope #7 (pos. 195–232:
RLRSLSQTEGPRQEEVRQSAGNVGDEGGVAPDIQTPEE) in enolase, which are exclusive to P. lutzii
and were shown by ConSurf analysis to be related to exposed residues of the globular protein according
to the neural network algorithm (Figure 8b).
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Figure 6. Immunoreactive proteins found in the P. lutzii immunoproteome with the highest
antigenic scores. Residue epitope propensity score predictions for (a) enolase (XP_015703472
and XP_010759701), (b) transketolase (XP_002793534 and XP_010760067), (c) heat shock protein
60, mitochondrial (XP_002789992 and XP_010763632), (d) triosephosphate isomerase (XP_002795879
and XP_010762134), (e) uncharacterized protein—Thioredoxin-like superfamily (XP_015700719 and
XP_010758121), and (f) uncharacterized protein—PRTases type I superfamily (XP_015701261 and
XP_010756299). The antigenic propensity scores are plotted against position along the amino acid
sequence as predicted by the COBEpro algorithm [82]. The higher the antigenic propensity scores,
the more likely is the antigenic activity for the respective region. COBEpro uses a support vector
machine to assign epitope propensity scores to peptide fragments.
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Figure 7. Immunoreactive proteins found in the P. brasiliensis immunoproteome with the highest
antigenic scores. Residue epitope propensity score predictions for (a) glyceraldehyde-3-phosphate
dehydrogenase (Q8 × 1 × 3 and XP_010758444), (b) 14-3-3 family protein epsilon (XP_002796914
and XP_010759301), (c) HSP72-like protein (XP_002790117 and XP_010763478), (d) HSP7-like
protein (XP_015703361 and XP_010756347), (e) uncharacterized protein—cyclophilin superfamily
(XP_015701903 and XP_010761900), and (f) fructose-bisphosphate aldolase 1 (XP_002796107 and
XP_010756450). The antigenic propensity scores are plotted against position along the amino acid
sequence as predicted by the COBEpro algorithm [82]. The higher the antigenic propensity scores,
the more likely is the antigenic activity for the respective region. COBEpro uses a support vector
machine to assign epitope propensity scores to peptide fragments.
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Figure 8. B-cell epitopes are exposed in the P. lutzii enolase. A comparative model for enolase
was obtained from the Protein Data Bank (PDB; http://www.rcsb.org/pdb/) webserver [84], and the
Saccharomyces cerevisiae enolase 1 (strain ATCC 204508/S288c; PDB ID: 1EBG) [83], showing a sequence
identity of 70.81%, was selected as a template model. (a) Protein surface view (blue) based on prediction
(p = 5.1 × 10−12) using RaptorX [80]. Epitope 2 (Ep2) and epitope 7 (Ep7) are exclusive of P. lutzii
and are indicated in the zoom area. A yellow dot indicates amino acid residues in the epitopes.
(b) ConSurf analysis of the enolase protein structure of P. lutzii (accession number: XP_015703472)
reveals that the 13 predicted B-cell epitopes (red asterisks) match exposed residues. Amino acid
residues are color coded by their conservation grades using a nine-grade color-coding bar (bin 1 to 9),
with turquoise-through-maroon indicating variable through conserved. The conservation calculation
was performed on a sample of 150 sequences representing the list of homologs to the query XP_015703472.
The figure also reveals the functionally and structurally important regions of the enolase.

http://www.rcsb.org/pdb/
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4. Discussion

The recent introduction of dissimilar species in Paracoccidioides has raised important questions about
the immunodiagnosis of this disease. We highlight the paradoxical diagnosis in PCM, where the same
patient may present positive mycological exams, with the observation of pathognomonic structures
related to Paracoccidioides species, whereas serological tests, such as immunodiffusion, show no
reactivity in the presence of the reference antigen AgPbB339 [15]. The phylogenetic recognition
of P. lutzii brought the first clue to solving this problem [35,47], and currently regional antigenic
preparations are recommended for use in areas of occurrence of this fungus, such as the Brazilian
Midwest [12,13,22,85,86]. The second clue to solving this puzzle emerges from this study, where we
performed immunoproteomic analysis of the Paracoccidioides yeast cells aiming to screen potential
biomarkers for the refinement of the immunodiagnosis of PCM due to P. lutzii.

The 16 specific immunogenic proteins of P. lutzii can be divided into three main groups.
Group 1 comprises seven proteins that have been widely reported in Paracoccidioides under
experimental physiological conditions according to STRING analysis, namely, triosephosphate
isomerase, glyceraldehyde-3-phosphate dehydrogenase, citrate synthase, isocitrate lyase, enolase,
HSP60-like protein, and an uncharacterized protein (thioredoxin-like superfamily) [54,70,87–93].
Proteins included in group 2 are antigens that already have been described in human PCM,
such as triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate
aldolase [70], or Paracoccidioides antigens that already have been related to eliciting a humoral immune
response in BALB/c mice, such as transketolase, HSP60-like protein, and isocitrate lyase (all shared
with PS3) [71]. Finally, proteins in the last group correspond to novel immunogens, described for
the first time in P. lutzii mycosis, such as NAD(P)H: quinone oxidoreductase, type IV, phenylacetone
monooxygenase, proteasome subunit alpha, mannitol-1-phosphate 5-dehydrogenase, HSP72-like
protein, and two uncharacterized proteins (XP_015701261 and XP_002797075).

Paracoccidioides brasiliensis s. str. was used as a comparative group, and to our surprise only five
proteins were found to be shared between P. lutzii and P. brasiliensis (triosephosphate isomerase,
glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase 1, and HSP72-like
protein, and HSP60, mitochondrial). The immunoproteome of human PCM due to P. brasiliensis
s. str. shares only two proteins with those described as eliciting a humoral immune response in
BALB/c mice, including HSP7-like protein (shared with PS2) and HSP 60-like protein (shared with
P. lutzii, S1, PS2, and PS3) [71]. This suggests that more research on this neglected system will
reveal a greater number of antigens shared between closely related cryptic species. The 25 specific
immunogenic proteins of P. brasiliensis can be divided into three main groups. Group 1 comprises
13 proteins that have already been described in Paracoccidioides under experimental physiological
condition, namely, triosephosphate isomerase, spermidine synthase, glyceraldehyde-3-phosphate
dehydrogenase, 4-hydroxyphenylpyruvate dioxygenase, thioredoxin reductase, ATP synthase subunit
beta, hexokinase, HSP75-like protein, HSP60-like protein, HSP7-like protein, aconitate hydratase,
mitochondrial, 1-Cys peroxiredoxin, and an uncharacterized protein (XP_010758132) [54,70,87–95],
all of them enriched in our STRING network. Proteins in group 2 correspond to antigens
that have already been described in human PCM [70] or immunogens that have already been
described to elicit a humoral immune response in BALB/c mice, such as HSP7-like protein and
HSP 60-like protein [71]. Proteins in group 3 correspond to novel antigens, such as nucleoside
diphosphate kinase, deoxyuridine 5′-triphosphate nucleotidohydrolase, proliferating cell nuclear
antigen, 14-3-3 family protein epsilon, phosphomannomutase, HSP72-like protein, the acetyltransferase
component of pyruvate dehydrogenase complex, disulfide-isomerase, and four uncharacterized
proteins (XP_010759842, XP_010761900, XP_010761260, and XP_010758132) described for the first time
in P. brasiliensis mycosis.

Among the proteins identified by us, most are involved in metabolic pathways (KEGG map01100),
carbon metabolism (KEGG map01200), and biosynthesis of secondary metabolites (KEGG map01110)
in both immunoproteomes (Supplementary Figure S3). Recently, Amaral et al. [54] reported that
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genes involved in gluconeogenesis are upregulated in highly virulent Paracoccidioides species, as the
protein levels related to carbohydrate metabolism increase. Remarkable progress has been achieved to
reveal the potential carbon sources during infection using A. fumigatus, C. albicans, and C. neoformans
exposed to immune cells or in infection models [96–99]. Parallels between the response of these
fungi to phagocytosis include enhancement of metabolic pathways required during carbon starvation,
along with gluconeogenesis, fatty acid metabolism, and the glyoxylate shunt, many of which are
targets of the carbon catabolite repression system in these fungi [100]. The increased expression levels
of gluconeogenesis-related proteins during Paracoccidioides infection may expose these proteins to
the host immune system. In this respect, proteins involved in the metabolic and carbon metabolism
pathways were found to be recognized by circulating IgG antibodies in sera of patients that developed
PCM due to P. lutzii and P. brasiliensis s. str.

Fungi evolved in a polyphyletic manner, developing different lifestyles, ranging from saprophytic
to human pathogenic [101]. Consequently, their metabolic flexibility has been influenced by numerous
evolutionary pressures [102,103]. Fungal metabolic pathways allow them to grow in diverse host
niches and synthesize an array of potent small molecules [102,103]. Therefore, metabolism is essential
to the Paracoccidioides pathogenicity, and there is significant importance of nitrogen [104], carbon [105],
and micronutrient assimilation [91], allowing them to express key virulence factors [54].

The response of Paracoccidioides to macrophage infection shows that the fungus most likely
faces a nutrient-limited environment in macrophage phagosomes, because a significantly higher
expression of genes encoding isocitrate lyase was detected in earlier studies [92,105,106]. In Candida
albicans, isocitrate lyase is a critical enzyme for virulence in the glyoxylate cycle, and its increased
activity has been shown to be an important marker for gluconeogenic carbon source utilization and
starvation [97,107]. Indeed, isocitrate lyase has been shown to elicit a humoral response in BALB/c
mice challenged with exoantigens from members of the P. brasiliensis complex [71], and here, we found
that isocitrate lyase is an antigen in PCM due to P. lutzii.

Interestingly, glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase
are expressed in high levels among highly virulent P. brasiliensis complex isolates found to trigger
disseminated disease in a murine model of PCM [54,106] and have been observed in Paracoccidioides
extracellular vesicle preparations of the Pb18 isolate [90]. Therefore, the vesicular transport may deliver
substances across the Paracoccidioides cell wall, possibly modulating the host’s immune response and
supporting the high virulence of phenotypes [54,108]. Both proteins elicited humoral responses in
human PCM due to P. lutzii and P. brasiliensis s. str.

Proteins employed in carbon metabolism and metabolic or MAPK signaling pathways and that
have been found in the Paracoccidioides cell walls are implicated in adhesion to matrix-associated
components. We found that glyceraldehyde-3-phosphate dehydrogenase, enolase, triosephosphate
isomerase, 14-3-3 protein, and fructose-1,6-bisphosphate aldolase [109–116] elicited IgG antibodies
during PCM. Paracoccidioides moonlighting proteins have different functions inside and outside the
cell. Many enzymes have multiple functions when secreted or when attached to the cell surface.
Usually, the mechanisms behind the moonlighting proteins’ delivery and how some become attached
to the cell surface are enigmatic [117]. Nevertheless, Vallejo et al. [90] proposed that extracellular
vesicles act as an efficient and general mechanism of secretion of pathogenesis-related molecules
in Paracoccidioides, delivering a concentrated payload of fungal products to host effector cells and
tissues [118]. Here, we demonstrated that moonlighting proteins in Paracoccidioides elicited a humoral
response in human PCM, so it is tempting to hypothesize that extracellular vesicles function as
“virulence bags” [118], dispensing antigens during human PCM (Figure 9). The presence of
these moonlighting proteins in vesicles produced by other fungi has already been demonstrated
for Histoplasma capsulatum [119], Cryptococcus neoformans [118], and Saccharomyces cerevisiae [120].
These moonlighting proteins are usually present in increased levels in the fungus cell wall during
interaction with host cells, suggesting they may be involved in host–parasite interactions and
virulence [95,116,121–123]. Some of these proteins have already been demonstrated to be crucial
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vaccine candidates in pathogenic fungi (e.g., glyceraldehyde-3-phosphate dehydrogenase, enolase,
14-3-3 protein, and fructose-1,6-bisphosphate aldolase), since they are highly expressed and have low
identity with homolog proteins in the human host [124,125].
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Figure 9. A panel of immunogenic proteins in paracoccidioidomycosis caused by P. brasiliensis sensu
stricto (left) and P. lutzii (right). The immunogenic proteins were grouped according to the subcellular
localization predicted by the WoLF PSORT [69]. Pieces of information about the report of these
proteins as antigens in human [70] or murine PCM [71], the presence in the cell wall [95,116,126] and
extracellular vesicles [90], during interaction with macrophages [122] or associated with virulence
processes in Paracoccidioides [54,57,106] were noted. The illustration was partially based on Servier
Medical Art elements and licensed under a Creative Commons Attribution 3.0 Unported License.
ER: endoplasmic reticulum.

Interestingly, the 43 kDa glycoprotein (gp43), a classic antigen of P. brasiliensis [127], also implicated
in adhesion to matrix associated components [128], was not found in our immunoproteomes. However,
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a 1-D immunoblot using the purified gp43 protein [129] revealed that anti-gp43 antibodies were
present in the serum pool of patients infected with P. brasiliensis s. str. (Supplementary Figure S4).
Therefore, the lack of reaction in the 2-D immunoblot may be because the strain Pb18 (S1) used in our
experiments is a weaker producer of gp43 compared to the isolate B-339 (PS3) [130,131], combined with
technical limitations related to 2-D electrophoresis, where proteins can be lost during the purification
and transfer process, making detection unfeasible [132]. Although common epitopes between P. lutzii
and P. brasiliensis gp43 exist, anti-gp43 MAbs (MAb3e, Mab17c, Mab19g, MAb21f, or MAb32) do not
recognize the recombining orthologous P. lutzii protein [133] nor did antibodies from patients infected
with P. lutzii recognize the native B-339 [22], supporting the idea that B-339 gp43 cannot be used in the
diagnosis of PCM caused by P. lutzii [133].

The serology of PCM due to P. lutzii draws attention to the intense reaction of a fraction oscillating
in the range of 54 kDa in immunoblots [22,85], which has been proposed as the immunodominant
antigen in P. lutzii mycosis [22]. However, the protein sequence of this immunogenic fraction had not
been identified until the present study. In our experiments, we also observed an intense reaction in the
range of 54 kDa, and interestingly, several spots were identified as enolase. The surface-associated
enolase is upregulated in Paracoccidioides yeast cells derived from mouse-infected tissues [112], and in
agreement with our results, it has been described as an isoform with increased abundance in the P. lutzii
proteome [93]. This protein binds to plasminogen and mediates the interaction of yeast forms with host
cells [134], suggesting that enolase may contribute to the pathogenesis of Paracoccidioides (Figure 9).

Moreover, it is well known that this adhesin can be inhibited by a specific antibody, influencing
the fungus’ adhesion to pulmonary cells. Therefore, the presence of IgG antibodies against P. lutzii
enolase in the serum of patients supports the importance of these molecules during the host–pathogen
interplay [111,135], and it is tempting to hypothesize that post-translational modification of enolase
is responsible for regulation of the immune response during P. lutzii infection. A monoclonal
antibody raised against the enolase cell-surface protein of Aspergillus fumigatus exhibited diagnostic
and therapeutic potential, inhibiting spore germination and presenting a fungicidal activity against
a broad range of Aspergillus infections [136]. Future studies with the recombinant enolase protein or
enolase B-cell epitopes may elucidate the specificity and sensitivity of antienolase antibodies’ detection
and refine the immunodiagnosis of P. lutzii mycosis.

Energy production pathways in yeast cells of P. lutzii are driven by glycolysis and fermentation,
whereas P. brasiliensis yeast cells preferentially use aerobic betaoxidation and the citrate cycle (TCA cycle)
for ATP production [91]. Proteins related to the oxidative phosphorylation and TCA cycle include
citrate synthase, aconitate hydratase, ATP synthase subunit beta, and acetyltransferase component of
pyruvate dehydrogenase complex, which were found to be immunogenic during PCM. Citrate synthase
catalyzes the entry of carbon into the citric acid cycle, and in Paracoccidioides, methylcitrate synthase
transcripts and proteins and aconitate hydratase are upregulated throughout the adaptation to
environmental conditions during the increase in the temperature [91]. Experimental data shows that
P. lutzii presents an elevated methylcitrate synthase activity even when glucose is the sole carbon source,
and two-dimensional Western blot data revealed a different pattern in isoform distribution with low
mass variation, suggesting the presence of varying phosphorylation patterns [137]. Here, a single spot
citrate synthase was recognized by antibodies circulating in sera of patients with PCM due to P. lutzii.
ATP synthase subunit beta is one of the P. lutzii-secreted proteins that interacts with macrophages [122],
and here, it was recognized by IgG in the sera of P. brasiliensis mycosis patients. F-ATP synthases are
molecular rotary motors that catalyze ATP synthesis from ADP and inorganic phosphate using the
proton-motive force generated by substrate-driven electron transfer chains [138]. Acetyltransferase
component of pyruvate dehydrogenase complex, a gene involved in the TCA cycle, was found to be
IgG-reactive in PCM due to P. brasiliensis although experimental data shows that it is downregulated
upon 6 h postinfection of mouse lung compared with the in vitro control [106] (Figure 9).

Proteins related to DNA replication and mismatch repairs such as the proliferating cell nuclear
antigen (PCNA) and deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) were found to be
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immunogenic in the system P. brasiliensis-PCM. dUTPase (EC 3.6.1.23) catalyzes the conversion of dUTP
to dUMP and pyrophosphate (PPi), providing the substrate for methylation of uracil by thymidylate
synthase and preventing accidental incorporation of uracil into DNA by DNA-polymerase [139,140].
Interestingly, dUTPase has been described in the secretome of P. lutzii, and experimental data show that
this protein interacts with macrophage proteins [122]. Notwithstanding, PCNA is described for the
first time as an antigen in PCM. PCNA synthesis correlates with the proliferative state of the cell that
has been found in the nuclei of yeasts, plants, and animal cells that undergo cell division, suggesting
a function in cell cycle regulation and DNA replication [141,142]. Afterward, PCNA was shown to also
play an essential role in other processes involving the cell genome [141,142], and in Paracoccidioides,
it has been observed in the cell wall [116].

A total of seven antigenic proteins detected in our analysis matched uncharacterized protein.
This finding was not surprising as Desjardins et al. [143] reported that approximately 60% of
Paracoccidioides genes were encoding hypothetical proteins with undetermined cellular functions
with no evidence of in vivo expression [144]. Such finding is common in Paracoccidioides species [93] as
it has poor databases and a lack of proteomic studies compared to model organisms. To the extent of
our knowledge, this is the first report describing the hypothetical proteins XP_015701261 (PRTases
type I superfamily) and XP_002797075 as antigens in P. lutzii immunoproteome. Both proteins were
predicted to be antigens by AntigenPRO with high scores. Interestingly, the uncharacterized protein
XP_002797075 was predicted to be in the mitochondria of Paracoccidioides. As antibodies were from
infected patients, this strongly suggests that these proteins are expressed in vivo during PCM.

A hypothetical protein (XP_015700719) containing domains with a thioredoxin-like fold was
immunogenic in P. lutzii proteome. Recent studies investigating the humoral response in BALB/c mice
revealed antibodies targeting an uncharacterized protein with a thioredoxin-like superfamily domain
in PS3 secretome [71], similar to the response found in our study in human PCM. Likewise, other four
uncharacterized protein was found to be immunogenic exclusively in the P. brasiliensis immunoproteome,
including a hypothetical protein containing a 14-3-3 superfamily domain (XP_010759842), a cyclophilin
superfamily domain (XP_010761900), an M20_dimer domain-containing protein (XP_010761260),
and an NBD sugar kinase superfamily (XP_010758132). Indeed, in silico characterization of P. brasiliensis
hypothetical proteins sequences using AntigenPRO and VaxiJen predicted them to be antigens with
scores above 0.5. Further studies will be needed to characterize all these hypothetical proteins and
understand its role in PCM infection.

During infection, nutrient starvation results in common stress for fungal pathogens, leading to
primary and secondary metabolism changes. Secondary metabolites are crucial players in fungal
development and actively shape interactions with other organisms [145]. A cluster of proteins
related to the biosynthesis of amino acids and purine metabolism was immunogenic in PCM,
including nucleoside diphosphate kinase, spermidine synthase, 4-hydroxyphenylpyruvate dioxygenase,
which are found in the Paracoccidioides species’ cell wall [116] (Figure 9). Spermidine synthase and
4-hydroxyphenylpyruvate dioxygenase are among the most abundant upregulated proteins of P. lutzii
yeast cells under carbon starvation [105]. In contrast, nucleoside diphosphate kinase was described as
an adhesin-like molecule, identified during copper-deprivation conditions in P. lutzii in the presence of
extracellular matrix components [146].

Four molecular chaperones named “HSP60, HSP72, HSP75, and HSP7” were identified as antigens
in P. lutzii or P. brasiliensis proteomes. Molecular chaperones, usually known as heat shock proteins,
are a diverse family of proteins that are upregulated under conditions of stress and operate to
protect proteins from irreversible aggregation during synthesis and in times of cellular stress [147,148].
These molecular chaperones have been demonstrated to be modulated during the nitrosative stress in
P. brasiliensis, suggesting that they play essential roles in fungal virulence [149]. Remarkably, the HSP60
protein, have been primarily explored in fungal cells and recognized to be crucial for cell growth [150],
survival in the host, morphogenesis [151,152], germination, and conidiation [153]. Immune responses
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to the three molecular chaperones (HSP60, HSP70, and HSP7) elicit the production of both specific
antibodies in BALB/c mice challenged with proteins secreted by Paracoccidioides species [71].

The thioredoxin system, a central antioxidant system in nearly all living cells, comprises
thioredoxin, thioredoxin reductase, and NADPH [154]. A cluster of proteins involved in the
pentose phosphate pathway, including thioredoxin reductase, hexokinase, mannitol-1-phosphate
5-dehydrogenase, NAD(P)H: quinone oxidoreductase, type IV, and phenylacetone monooxygenase,
were recognized by antibodies circulating in the sera of patients with PCM. Proteomic analyses
demonstrated that thioredoxin reductase was induced in Paracoccidioides during murine infection [106],
and along with hexokinase, they were detected among the group of upregulated proteins upon carbon
starvation in Paracoccidioides [105]. Hexokinase is present in the secretome and in the cell wall of
Paracoccidioides species [116,155]. Mannitol-1-phosphate 5-dehydrogenase was described as a virulence
factor in Paracoccidioides, and we found that this protein elicits IgG antibodies during P. lutzii infection.
In pathogenic fungi, the improved stress resistance resulting from accumulated six-carbon polyol
D-mannitol enhances the ability to deal with defense strategies of the infected host [156]. Mannitol
is known to quench reactive oxygen species (ROS) [157], and there is some evidence that fungi use
mannitol to suppress ROS-mediated host defenses [156,158]. NAD(P)H: quinone oxidoreductase,
type IV and phenylacetone monooxygenase, two enzymes that belong to the family of oxidoreductases
and catalyze the transfer of electrons from oxidant to reductant [159–161], were identified as antigens
in the proteome of P. lutzii. Indeed, cytosolic quinone reductase is a critical component of pathogenicity
during the host–fungus interaction [162,163].

A unique P. brasiliensis 1-Cys peroxiredoxin (PbPrx1; XP_010758730) was only recently reported to
localize in the cytoplasm and at the cell wall of the yeast and mycelial forms of P. brasiliensis, as well as
in the yeast mitochondria [95]. Longo et al. suggest a possible role of PbPrx1 in the fungal antioxidant
defense mechanisms [95], and here, we report PbPrx1 as an antigen in human PCM due to P. brasiliensis
s. str. Interestingly, in plants, 1-Cys peroxiredoxin has been shown to not only relieve oxidative stresses
but also play a central role as molecular chaperones under severe conditions during seed germination,
and that overoxidation controls the switch in function of 1-Cys-peroxiredoxins from peroxidases to
molecular chaperones [164]. In fungal pathogens, analyses of the three 1-Cys peroxiredoxins from
A. fumigatus reveal that they act together to maintain the redox balance, playing a significant role in
pathogenicity [165], two aspects that could be regulated by antibodies during Paracoccidioides infection.

Phosphomannomutase was found to be immunogenic in the system P. brasiliensis-PCM.
This enzyme catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate, and in
Saccharomyces cerevisiae, phosphomannomutase (Sec53p) is essential for viability [155]. However,
a proteomic study found that phosphomannomutase is preferentially secreted in P. lutzii compared to
P. restrepiensis [155]. A sequence related to protein degradation, such as the proteasome subunit alpha,
was identified as antigenic in P. lutzii mycosis. Proteasome is a highly sophisticated protease complex
that promotes selective and efficient processive hydrolysis of intracellular client proteins in eukaryotic
cells, a process that requires metabolic energy [166].

In the second part of our study, we analyzed the prediction of linear epitopes for B-cells. It is
important to mention that epitope-based antibodies are currently the most promising classes of
biopharmaceutical protein products [167]. Significant advances in immunoinformatics tools have
revolutionized the development of diagnostic assays and vaccine design [168]. The latest tools available
for analyzing antigenic properties and epitopes associated with the pathogen include AntigenPRO,
BCPred, SVMTriP, COBEpro, and IEDB tools like BepiPred, Ellipro, etc. [169–171]. The identification
of Paracoccidioides antigens was followed by in silico analysis to predict B-cell epitope, producing
a library of 219 and 379 epitopes predicted for P. lutzii and P. brasiliensis, respectively. These are all good
candidates for serological diagnosis of PCM. Interestingly, two synthetic peptides, named “P2 and L15,”
have been proposed for the serodiagnosis of PCM [172,173], and our panel of epitopes can significantly
increase in the number of peptides used in immunodiagnosis of PCM in the coming years.
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The lack of good-quality diagnostic tests for Paracoccidioides infection causes slow diagnosis,
and consequently poor prognosis of this neglected mycosis in the Americas. Since PCM’s
clinical manifestations lack specificity, confirmatory tests are required to identify humans
infected with Paracoccidioides spp. Further studies are under way to map these epitopes in vitro.
Several antibody-detection assays employing crude preparations or recombinant proteins have been
developed for laboratory diagnosis of PCM [17–19,21,24–26,48,174–179]. However, a diagnostic
method with high specificity and sensitivity to guide the management and control remains to be
developed for P. lutzii. We believe that a new generation of diagnostic tests with the expected high
sensitivity and specificity should be composed of various linear B-cell epitopes, mapped in silico from
the Paracoccidioides antigens identified in this study. The current clinical data on PCM have shown
great overlap of clinical signs due to distinct Paracoccidioides species [12,14,180]. Therefore, the best
strategy for the immunodiagnosis still involves differentiation between P. lutzii and members of the
P. brasiliensis complex instead of stressing a multimarker diagnostic assay, which will likely pose
a major challenge regarding specificity and sensitivity for successful implementation. A sensitive and
affordable point-of-care assay is mandatory for an important neglected mycosis such as PCM, which is
usually associated with poverty.

5. Conclusions

Our study was carried out using proteomic and in silico analysis, and we were able to identify novel
antigens that represent a panel of key targets for humoral response against P. lutzii and P. brasiliensis
s. str., the most common agents of PCM in a vast area of the Americas. This is the first study to
report specific antigens in the yeast phase of cryptic Paracoccidioides species using a gold-standard
human serum. We identified the major antigen of PCM due to P. lutzii as enolase, and several B-cell
epitopes were predicted in the Paracoccidioides-PCM system. Hypothetical proteins were found to elicit
an antibody response in human PCM, so were identified as antigens. Further studies employing some
of these native and recombinant proteins will be conducted to develop an accurate diagnostic test and
an effective vaccine, identify infected hosts, and prevent infection and development of human PCM.
The findings reported here provide a unique opportunity for the refinement of diagnostic tools of this
important neglected systemic mycosis.
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