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Deciphering multi-way interactions in the
human genome

Gabrielle A. Dotson 1,11, Can Chen 2,3,4,11, Stephen Lindsly 1,11,
Anthony Cicalo1, Sam Dilworth5, Charles Ryan6,7, Sivakumar Jeyarajan1,
Walter Meixner1, Cooper Stansbury1, Joshua Pickard1, Nicholas Beckloff8,
Amit Surana9, Max Wicha 10, Lindsey A. Muir1 & Indika Rajapakse 1,2

Chromatin architecture, a key regulator of gene expression, can be inferred
using chromatin contact data from chromosome conformation capture, or Hi-
C. However, classical Hi-C does not preserve multi-way contacts. Here we use
long sequencing reads to map genome-wide multi-way contacts and investi-
gate higher order chromatin organization in the human genome. We use
hypergraph theory for data representation and analysis, and quantify higher
order structures in neonatal fibroblasts, biopsied adult fibroblasts, and B
lymphocytes. By integrating multi-way contacts with chromatin accessibility,
gene expression, and transcription factor binding, we introduce a data-driven
method to identify cell type-specific transcription clusters. We provide tran-
scription factor-mediated functional building blocks for cell identity that serve
as a global signature for cell types.

Structural features of the genome are integral to the regulation of gene
expression and corresponding generation of cellular phenotypes1–3.
Aspects of genome structure have been inferred by studying genomic
regions that are in close physical proximity. Chromosome conforma-
tion capture (3C)-based methods capture these interactions (contacts)
through chemical fixation, digestion of DNA, and proximity ligation,
followedby sequencing of ligatedDNA to identify genomic regions that
are in contact. A variety of cell types have nowbeen characterized using
Hi-C, a genome-wide 3C-based method, adding substantially to our
understanding of genome architecture. However, limitations on read
length during sequencing lead to over-representation of simple inter-
actions, predominantly pairwise. Identification of more complex,
higher-order interactions can help us build a more complete set of
principles of genome architecture.

Multi-way contacts have been identified using targeted 3C-based
methods4–6, through inference from pairwise contacts7, and on

occasion using classical Hi-C8. Ligation-free approaches, such as GAM,
SPRITE, and ChIA-Drop, have recently enabled large scale capture of
multi-way interactions9–11, though comparisons of different methods
find under- and over-representation of higher order contacts in the
absence of proximity ligation12,13.

A recent extension of Hi-C preserves multi-way interactions
and uses sequencing of long reads (e.g. Pore-C)12 to unambigu-
ously identify sets of contacts among multiple loci. Multi-contact
4C sequencing (MC-4C) also uses long-read sequencing to cap-
ture contact complexity14, however, it was designed to capture
local topology for individual genes and regulatory regions and
does not generate multi-way contacts genome-wide. While direct
capture of multi-way contacts can clarify higher order structures
in the genome, new frameworks are needed to address unique
analysis and representation challenges posed by the multi-
way data.
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To address this gap, we generated Pore-C data from neonatal and
biopsied adult fibroblasts and collected publicly available Pore-C data
for B lymphocytes12 and constructed hypergraphs to represent the
multidimensional relationships of multi-way contacts among loci.
Hypergraphs are similar to graphs, but hypergraphs contain hyper-
edges instead of edges. Hyperedges can connect any number of nodes
at once, while edges can only connect two nodes15–17. Prior work on
neural networks highlights the utility of hypergraph representation
learning to denoise and analyze existingmulti-way contact data and to
predict de novo multi-way contacts18. Here, we use incidence matrix-
based representation and analysis of multi-way chromatin structure
directly captured by Pore-C data (Algorithm 1), which is mathemati-
cally simple and computationally efficient, and yet canprovide insights
into genome architecture.

In our hypergraph framework, nodes are genomic loci and
hyperedges are multi-way contacts among loci. In our incidence
matrices, rows are genomic loci and columns are individual hyper-
edges. This representation enabled quantitative measurements of
chromatin architecture through hypergraph entropy and the com-
parisonof different cell types throughhypergraph similaritymeasures.
In addition, we integrated Pore-C with other data modalities to dis-
cover biologically relevant multi-way interactions, which we term
transcription clusters. The cell-type specific transcription clusters we
identified support a role in maintaining cell identity, consistent with
prior work on transcriptional hubs or factories19–23. Furthermore, the
formation of transcription clusters in the nucleus is consistent with
small world phenomena in networked systems24,25.

We use the following definitions. Entropy: a measure of structural
order in the genome. Hyperedge: an extension of edges where each
hyperedge can contain any number of nodes (multi-way contact).
Hypergraph: an extension of graphs containing multiple hyperedges.
Hypergraph motifs: an extension of network motifs that describe
connectivity patterns of 3-way, 4-way,… ,n-wayhyperedges. Incidence
matrix: a representation for hypergraphs where rows are nodes and
columns are hyperedges. Transcription cluster: a group of genomic
loci that colocalize for efficient gene transcription.

Results
Capturing multi-way contacts
We conducted Pore-C experiments using human dermal fibroblasts
obtained from a skin biopsy and human neonatal dermal fibroblasts,
and obtained additional publicly available Pore-C data from B
lymphocytes12. The experimental protocol for Pore-C is similar to Hi-C,
including cross-linking, restriction digestion, and ligation of adjacent
ends followed by sequencing (Fig. 1a). Alignment of Pore-C long reads
to the genome enables fragment identification and classification of
multi-way contacts (Fig. 1b).

Hypergraphs represent multi-way contacts, where individual
hyperedges contain at least two loci (Fig. 1c, left). Hypergraphs provide
a simple and concise way to depict multi-way contacts and allow for
abstract representations of genome structure. Computationally, we
represent multi-way contacts as incidence matrices (Fig. 1c, right). For
Hi-C data, adjacency matrices are useful for assembly of pairwise
genomic contacts. However, since rows and columns represent indi-
vidual loci, adjacency matrices cannot be used for multi-way contacts
in Pore-C data. In contrast, incidence matrices permit more than two
loci per contact andprovide a clear visualization ofmulti-way contacts.
Multi-way contacts can also be decomposed into pairwise contacts,
similar to those in Hi-C, by extracting all pairwise combinations of
loci (Fig. 1d).

Decomposing multi-way contacts
From our Pore-C experiments using adult human dermal fibro-
blasts, neonatal human dermal fibroblasts, and additional publicly
available Pore-C data from B lymphocytes, we constructed

hypergraphs at multiple resolutions (read level, 100 kb, 1 Mb, and
25 Mb)12.

We first analyzed individual chromosomes at 100 kb resolution by
decomposing multi-way contacts into their pairwise contacts.
Decomposing Pore-C data into pairwise contacts provides more
information than Hi-C, as each Pore-C read can contain many pairwise
contacts12. It also allows us to identify topologically associated
domains (TADs) using established methods26–28. We demonstrate
identification of TAD boundaries from decomposed multi-way con-
tacts and show intra- and inter-TAD relationships using multi-way
contacts (Figs. 2, S1). The loci that frequently participate in thesemulti-
way contacts give rise to the block-like pattern of chromatin interac-
tions often seen in Hi-C data.

Chromosomes as hypergraphs
To gain a better understanding of genome structure with multi-way
contacts,we constructed hypergraphs for entire chromosomes at 1Mb
resolution. We show an incidence matrix of Chromosome 22 as an
example in Fig. 3a, and in Fig. 3b, we visualize the distribution of 1 Mb
contacts at multiple orders (2-way contacts, 3-way contacts, etc.) on
Chromosomes 22. Figure 3c highlights the most common intra-
chromosomal multi-way contacts on Chromosome 22 using multi-way
contact “motifs”, whichwe use as a simplifiedway to showhyperedges.
Figure 3d shows howmulti-way contacts at lower resolutions (25Mb, 1
Mb) are composed of many multi-way contacts at higher resolutions
(100 kb, read level), and Fig. 3e visualizes the multi-way contacts
contained in Fig. 3d as a hypergraph.

We also identified multi-way contacts that contain loci from
multiple chromosomes. These inter-chromosomal multi-way contacts
can be seen at 1 Mb resolution in Fig. 3f and in 25 Mb resolution for
both adult fibroblasts and B lymphocytes in Fig. 4. Figure 4 gives a
summary of the entire genome’s multi-way contacts, by showing the
most common intra- and inter-chromosomal multi-way contacts
across all chromosomes. We highlight examples of multi-way contacts
with loci that are contained within a single chromosome (“intra only”),
spread across unique chromosomes (“inter only”), and a mix of both
within and between chromosomes (“intra and inter”). We note that
manyof the "inter only" contacts observed in Fig. 4mayalsohave intra-
chromosomal contacts when viewed at a higher resolution, similar to
Fig. 3d. Finally, we found the most common inter-chromosomal multi-
way contacts across all chromosomes, which we summarize with five
example chromosomes in Fig. 5 using multi-way contact motifs. These
multi-way contacts between distant genomic loci may offer insights
into the higher-order structural patterning of the genome and its
relationship with transcriptional regulation.

Transcription clusters
We use the following definitions: Transcription cluster: a group of
genomic loci that colocalize for efficient gene transcription. Master
regulator: a self-regulating transcription factor that regulatory
sequences associated with its gene analog. Specialized transcription
cluster: a transcription cluster where at least one master regulator
binds. Self-sustaining transcription cluster: a transcription cluster
where a TF binds and its gene analog is expressed.

Genes are transcribed in short sporadic bursts in areas with high
concentrations of transcriptional machinery29–31, including tran-
scriptionally engaged polymerase and accumulated transcription fac-
tors (TFs). Colocalization of multiple genomic loci in these areas could
help coordinate or increase efficiency of transcription, an idea sup-
ported by studies using fluorescence in situ hybridization (FISH) that
show colocalization during active transcription19. Simulations also
strengthen the idea that genomic loci that are bound by common
transcription factors can self-assemble into clusters and form struc-
tural patterns commonly observed in Hi-C data31. We refer to these
instances of highly concentrated areas of transcriptional machinery
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and genomic loci as transcription clusters. The colocalization of mul-
tiple genomic loci naturally leads to multi-way contacts, but these
interactions cannot be fully captured from the pairwise contacts of Hi-
C. Multi-way contacts derived from Pore-C reads can detect interac-
tions between many genomic loci, and are well suited for identifying
potential transcription clusters (Fig. 6).

To identify candidate transcription clusters in our Pore-C data, we
looked for multi-way contacts with active transcription32, requiring all
loci to be accessible based on ATAC-seq data and at least one locus to
have RNA Pol II binding based on ChIP-seq data. Using these criteria,

we identified 12,364, 16,080, and 16,527 potential transcription clus-
ters from neonatal fibroblasts, adult fibroblasts, and B lymphocytes,
respectively (Table 1, see Data-driven Identification of Transcription
Clusters in Methods). The majority of these clusters involved at least
one expressed gene (94.2% in neonatal fibroblasts, 95.0% in adult
fibroblasts, 90.5% in B lymphocytes) as well as at least two expressed
genes (69.6% in neonatal fibroblasts, 71.9% in adultfibroblasts, 58.7% in
B lymphocytes). While investigating the colocalization of expressed
genes in transcription clusters, we found that over half of clusters
containing multiple expressed genes had common transcription
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Fig. 1 | Pore-C experimental and data workflow. a The Pore-C experimental
protocol, which captures pairwise and multi-way contacts (see Methods).
b Representation of multi-way contacts at different resolutions (top). Incidence
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human fibroblasts at each resolution (bottom). The numbers in the left columns
represent the location of each genomic locus present in amulti-way contact, where
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factors based on binding motifs in fibroblasts (61.9% in neonatal
fibroblasts, 65.2% in adult fibroblasts) and that over half of these
common transcription factors were master regulators (55.9% in neo-
natal fibroblasts, 63.4% in adult fibroblasts). These proportions
were slightly lower in B lymphocytes where we observed that 50.0%
of clusters containing multiple expressed genes had common

transcription factors while 46.8% of these common transcription fac-
tors were master regulators. Example transcription clusters derived
from 3-way, 4-way, and 5-way contacts in fibroblasts and B lympho-
cytes are shown in Fig. 7. Transcription clusters contained at least two
expressed genes with at least one common transcription factor bind-
ing motif.

Decomposing to
pair-wise contacts

v
vi

100 kb Loci

iv

ii
iii

i331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

Inter-TAD (T1 and T2)
Interactions

Intra-TAD (T1)
Interactions 

T1

T2

iii iv

= 3.9

vvi
342
343
344
345
346

i ii
334
335
336
337
338
339
340
341

Intra-TAD (T2)
Interactions 

a

d

c

Hyperedgesb
vi ii viiii iv

33,300,000 33,500,000 33,700,000 33,900,000 34,100,000 34,300,000 34,500,000

TADs

Multi-way contacts

335

334

337
340

338

336

344

342343

345
346

Hypergraph

335

334

337
340

338

336

344

342343

345
346

Graph

T
A

D
 T

2
T

A
D

 T
1

Chr 22

Read-level contacts

Article https://doi.org/10.1038/s41467-022-32980-z

Nature Communications |         (2022) 13:5498 4



We tested the criteria for potential transcription clusters for sta-
tistical significance (see Statistics & Reproducibility in Methods). That
is, we tested whether the identified transcription clusters are more
likely to include genes, and if these genes were more likely to share
common transcription factors, than random multi-way contacts. We
found that the identified transcription clusters were significantly more
likely to include ≥1 gene and ≥2 genes than randommulti-way contacts
(p < 0.01). In addition, transcription clusters containing ≥2 genes were
significantly more likely to have transcription factors and master reg-
ulators in common (p < 0.01). After testing all orders of multi-way
transcription clusters together, we also tested the 3-way, 4-way, 5-way,
and 6-way (or more) cases individually. We found that all cases were
statistically significant (p <0.01) except for clusters with common
transcription factors or master regulators in the 6-way (or more) case
for both fibroblasts and B lymphocytes. We hypothesize that these
cases were not statistically significant due to the large number of loci,
naturally leading to an increased overlapwith genes. This increases the
likelihood that at least two genes will have common transcription

factors or master regulators. Over half of the transcription clusters
where the majority of genes contained common transcription factors
also contained at least one enhancer in adult fibroblasts (98.2%) and B
lymphocytes (87.9%), further suggesting regulatory function within
thesemulti-way contacts33,34 (SupplementaryTable 2). In contrast, only
11.6% of transcription clusters in neonatal fibroblasts exhibited the
same properties, which may be a factor of the significantly sparser
enhancer annotation available for this cell type compared to theothers
from the EnhancerAtlas 2.0 database.

To understand howour transcription clusters alignedwith factors
that have known involvement in chromatin architecture and tran-
scriptional regulation, we evaluated CCCTC-binding factor (CTCF) for
binding using ChIP-seq data. CTCF specifically mediates chromatin
looping and TAD boundary insulation35,36 and binds generously
throughout the genome27. We found significantly higher CTCF binding
in our identified transcription clusters compared tomulti-way contacts
that were not classified as transcription clusters (Supplementary
Fig. 3). In adult and neonatal fibroblasts, CTCF binding was nearly two-

Fig. 2 | Local organization of the genome. a Incidence matrix visualization of a
region in Chromosome 22 from adult fibroblasts (V1-V4). The numbers in the left
column represent genomic loci at 100 kb resolution, vertical lines represent multi-
way contacts, where nodes indicate the corresponding locus' participation in this
contact. The blue and yellow regions represent two TADs, T1 and T2. The six con-
tacts, denoted by the labels i-vi, are used as examples to show intra- and inter-TAD
contacts in (b, c, and d).bHyperedge and read-level visualizations of themulti-way
contacts i-vi from the incidence matrix in (a). Blue and yellow shaded areas (bot-
tom) indicate which TAD each locus corresponds to. cA hypergraph is constructed

using the hyperedges from (b) (multi-way contacts i-vi from a). The hypergraph is
decomposed into its pairwise contacts in order to be represented as a graph.
d Contact frequency matrices were constructed by separating all multi-way con-
tacts within this region of Chromosome 22 into their pairwise combinations. TADs
were computed from the pairwise contacts using the methods from28. Example
multi-way contacts i-vi are superimposed onto the contact frequency matrices.
Multi-way contacts in this figure were determined at 100 kb resolution after noise
reduction, originally derived from read-level multi-way contacts (see Hypergraph
Filtering in Methods).
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Fig. 3 | Patterning of intra- and inter-chromosomal contacts. a Incidence matrix
visualization of Chromosome 22 in adult fibroblasts. The numbers in the left col-
umn represent genomic loci at 1Mb resolution. Each vertical line represents amulti-
way contact, in which the nodes indicate the corresponding locus' participation in
this contact. b Frequencies of Pore-C contacts in Chromosome 22. Bars are colored
according to the order of contact. Blue, green, orange, and red correspond to 2-
way, 3-way, 4-way, and 5-way contacts. c The most common 2-way, 3-way, 4-way,
and 5-way intra-chromosome contacts within Chromosome 22 are represented as
motifs, color-coded similarly to (b). d Zoomed in incidence matrix visualization in
100kb resolution shows themulti-way contacts between three 1Mb loci: L19 (blue),

L21 (yellow), and L22 (red). An example 100 kb resolution multi-way contact is
zoomed to read-level resolution. eHypergraph representation of the 100 kbmulti-
way contacts from (d). Blue, yellow, and red labels correspond to loci L19, L21, and
L22, respectively. f Incidence matrix visualization of the inter-chromosomal multi-
way contacts between Chromosome 20 (orange) and Chromosome 22 (green) in 1
Mb resolution. Within this figure, all data are from one adult fibroblast sequencing
run (V2) and multi-way contacts were determined after noise reduction at 1 Mb or
100 kb resolution accordingly (see Hypergraphs and Hypergraph Filtering in
Methods).
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fold greater in transcription clusters compared to randomly selected
multi-way contacts (80% vs. 45% and 81% vs. 47%). In B lymphocytes,
CTCFbindingwaspresent at 82%of transcription clusters compared to
59% of random multi-way contacts. We additionally investigated
cohesin for its colocalization with CTCF and involvement in regulation
of chromatin architecture, such as chromatin loop extrusion37–40. In
particular, the cohesin subunits RAD21 andSMC3have beenpreviously
linked to CTCF-mediated transcriptional regulation27. ChIP-seq data
showed preferential binding of RAD21 and SMC3 at transcription
clusters compared to random multi-way contacts in adult fibroblasts
(79% vs. 42% for RAD21, 71% vs. 37% for SMC3, p <0.01) and B lym-
phocytes (76% vs. 55% for RAD21, 79% vs. 53% for SMC3, p <0.01)

(Supplementary Fig. 3). Together these data suggest that the identified
transcription clusters are important sites of transcriptional regulation,
and support a model in which CTCF and cohesin actively mediate
multi-way interactions.

We next sought to determine which TFs might be involved in cell
type-specific regulation in transcription clusters. For each cell type, we
ranked expressed TFs by frequency of binding sites across transcrip-
tion clusters. Among TFs with the most frequent binding sites, 39%
were shared across all three cell types, compared to 72%between adult
and neonatal fibroblasts (Supplementary Table 6). Fibroblast and B
lymphocyte TF binding sites had less overlap, at 52% (adult) and 45%
(neonatal), than binding sites between fibroblasts, supporting cell
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Matrices are constructed at 25Mb resolution for both adult fibroblasts (top, V1-V4)
and B lymphocytes (bottom). Specifically, 5 intra-chromosomal and 5 inter-
chromosomal multi-way contacts were identified for each chromosome with no
repeated contacts. If 5 unique intra-chromosomal multi-way contacts are not pos-
sible in a chromosome, they are supplemented with additional inter-chromosomal
contacts. Vertical lines represent multi-way contacts, nodes indicate the corre-
sponding locus' participation in a multi-way contact, and color-coded rows
delineate chromosomes. Highlighted boxes indicate example intra-chromosomal
contacts (red), inter-chromosomal contacts (magenta), and combinations of intra-
and inter-chromosomal contacts (blue). Examples for each type of contact are

shown in the top right corner. Multi-way contacts of specific regions are compared
between cell types by connecting highlighted boxes with black dashed lines,
emphasizing similarities and differences between adult fibroblasts and B lympho-
cytes. Normalized degree of loci participating in the top 10 most common multi-
way contacts for each chromosome in adult fibroblast and B lymphocytes are
shown on the left. Red dashed lines indicate the mean degree for adult fibroblasts
and B lymphocytes (top and bottom, respectively). Genomic loci that do not par-
ticipate in the top 10 most common multi-way contacts for adult fibroblasts or B
lymphocytes were removed from their respective incidence matrices and degree
plots. Multi-way contacts were determined at 25 Mb resolution after noise reduc-
tion (see Hypergraphs and Hypergraph Filtering in Methods).
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type-specific regulation of transcription cluster subsets. Of 18 TFs
whose binding sites were unique to the transcription clusters of neo-
natal fibroblasts, the most frequently occurring was RARB, found at
10.2% of clusters, while in adult fibroblasts, binding sites for ZNF667
were themost frequent among 14 TFs at 6.7% of transcription clusters.
In B lymphocytes, binding sites for TFEC were the most frequent

among 161 TFs at 7.6% of transcription clusters. Prior studies support
the cell type-specific roles of these uniquely-binding TFs in fibroblasts
and B lymphocytes41,42.

Given the roleof TFs in coordinating transcription among clusters
of genes21,43, we hypothesized that TF loci might feature in a subset of
transcription clusters. To investigate this question, we looked for the
binding motif and encoding gene locus for a given TF within the same
transcription cluster, defining this class as a self-sustaining transcrip-
tion cluster (Fig. 8a, b). We identified nine, eight, and thirteen self-
sustaining transcription clusters in adult fibroblasts, neonatal fibro-
blasts, and B lymphocytes, respectively (Supplementary Table 7). In
adult fibroblasts, we observed that the binding motif for FOXO3, a
master regulator, exists at a 4-way transcription cluster expressing the
FOXO3 gene. The neonatal fibroblast and B lymphocyte datasets had a
self-sustaining transcription cluster in common where STAT3 had a
bindingmotif and the STAT3 genewas expressed.While self-sustaining
transcription clusters demonstrate the capacity for a TF to regulate
itself, not every TF co-occupying a transcription cluster with its gene
analog is classified as a master regulator (Supplementary Table 7).
Therefore, we further stratify these clusters into self-sustaining tran-
scription clusters where the TF is a master regulator and thus binds its
gene analog (stronger coupling) and self-sustaining transcription
clusters where the TF binds in the cluster but not at is gene analog
(weaker coupling). We propose that these strongly-coupled self-sus-
taining transcription clusters are ‘core’ transcription clusters that
serve as transcriptional signatures for a cell type. It also follows that
strongly-coupled self-sustaining transcription clusters are specialized
transcription clusters (Supplementary Fig. 4).We then considered two
classes of analog-independent transcription clusters - where either a
TF and its gene analog occupy different clusters (Fig. 8c) or a TF
occupies a cluster, but its gene analog occupies no cluster (Fig. 8d).
Since both the TF and gene analog belong to transcription clusters in
Fig. 8c, they are coupled, though lesser so than either class of self-
sustaining transcription clusters. In contrast, Fig. 8d represents an
architecturally uncoupled state–23.3%, 25.7%, and 40.1% of TF gene
analogs in adult fibroblasts, neonatal fibroblasts, and B lymphocytes,
respectively, were not expressed in any transcription cluster. Lastly,
we binned all multi-way contact loci involved in self-sustaining tran-
scription clusters at 100 kb resolution and plotted the interaction
frequencies of their decomposed pairwise components (Fig. 8e).

Algorithm 1. Multi-way Contact Analysis
1. Input: Aligned Pore-C data (A), RNA-seq (R: gene expression),

RNA Pol II (P: ChIP-seq), ATAC-seq (C: chromatin accessibility),
transcription factor binding motifs (B)

2. for each set of Pore-C data Al∈A do
3. Construct incidence matrix Hl using Algorithm S1
4. Identify transcription clusters Tlp, Tlc, and Tls using

Algorithm S2
5. Calculate entropy Sl using Algorithm S3
6. end for
7. Compute hypergraph distance dij between pairs Hi and Hj with

p ≥ 1 using Algorithm S4
8. Calculate the statistical significance αij for hypergraph distance

dij using the permutation test in Algorithm S5.
9. Return: Hypergraph incidence matrices Hl 2 Rn×m, hyper-

graph entropy Sl, potential transcription clusters Tlp, tran-
scription clusters Tlc, specialized transcription clusters Tls, and
hypergraph distance matrix [dij] with statistical sig-
nificance [αij].

Discussion
In this work, we introduce a hypergraph framework to study higher-
order genome organization from Pore-C long-read sequence data. We
demonstrate that higher-order genome architecture can be precisely
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Fig. 5 | Inter-chromosomal interactions. The most common 2-way, 3-way, 4-way,
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Article https://doi.org/10.1038/s41467-022-32980-z

Nature Communications |         (2022) 13:5498 7



represented and analyzed using hypergraph theory. Using direct cap-
ture of multi-way contacts, we identified transcription clusters with
physical proximity and coordinated gene expression. Our framework
thus enables study of explicit structure-function relationships that are
observed directly from data, without needing to infer multi-way con-
tacts. In engineering and social systems, hypergraph representation of
data has revealed higher-order organization principles efficiently15–17,44.
Our work here extends the application of hypergraphs, demonstrating
a natural way to represent and analyze genome organization across
scales.

Exploring long-range, inter-chromosomal interactions genome-
wide offers the opportunity to establish fundamental principles of
genome organization. Unbiased capture and study of multi-way con-
tacts can help identify biologically important assemblies that affect
transcription, such as transcription clusters31,45. This approach can also
connect genome organization principles to the study of transcription
factors and how they govern cell type-specific network architecture,
which resembles small world phenomena25,46. Our results support the
idea of cell type-specific formation of transcription clusters that serve
as a basis for efficient navigation of information within the nucleus,
and thereby reflect a signature of small world architecture. Analogous
to the behavior of short-path information propagation in social net-
works, we posit that transcription clusters act as decentralized nodes,

or critical architectures relevant to cell identity. Futurework to explore
these phenomena systematically will undoubtedly help us understand
cell type-specific organization principles. Another exciting direction
will be to investigate time series multi-way interactions during cellular
transitions such as differentiation and cell reprogramming, with
single cell observations. Furthermore, we imagine that multi-way
chromatin structure together with spatial transcriptomics will guide
us to uncover formation principles in tissue patterning and
organogenesis47,48.

Methods
Ethical statement
Primary dermal fibroblasts (IR) were obtained from a punch biopsy
from one adult male volunteer (age 42 years) with approval from the
Institutional Review Board of the University of Michigan Medical
School (HUM00135011) and informed consent. No compensation was
provided.

Cell cultures
Human fibroblasts were maintained in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1X
Glutamax (Thermo Fisher Scientific Cat no. 35050061) and 1X non-
essential amino acid (Thermo Fisher Scientific Cat no. 11140050). BJ
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Fig. 6 | Data-driven identificationof transcription clusters. aBlue shaded area: A
5 kb regionbefore and after each locus in a Pore-C read (regionbetween reddashed
lines) is queried for chromatin accessibility and RNA Pol II binding (ATAC-seq and
ChIP-seq, respectively). Multi-way contacts between accessible loci that have ≥1
instance ofRNAPol II binding are indicative of potential transcription clusters. Gray
shaded area: Gene expression (RNA-seq, E1 for gene 1 and E2 for gene 2, respec-
tively) and transcription factor binding sites (TF1 and TF2) are integrated to
determine potential coexpression and coregulation withinmulti-way contacts with

multiple genes. Transcription factor binding sites are queried ±5 kb from the gene's
transcription start site (see Data-driven Identification of Transcription Clusters in
Methods). Genes are colored based on the overlapping Pore-C locus, and the
extendedhorizontal line fromeach gene represents the 5 kbflanking regionused to
query transcription factor binding sites. b Pipeline for extracting transcription
clusters (Supplementary Methods). c Schematic representation of a transcription
cluster.

Article https://doi.org/10.1038/s41467-022-32980-z

Nature Communications |         (2022) 13:5498 8



Transcription Clusters

BACH1
MAFK

ZKSCAN1

(COMT)
22

(ATXN1)
6

5
(FSTL4)

3
(ANKRD28)

15

22
(KCNJ4)

(CENPP)
9

22
(CSNK1E)

22

(GTF3C2)
2

(GRIK1)
21

4
(SLBP)

17
(CPD)

ETV2
STAT3

FOS

EGR1
IRF7
MYC

MITF
HES1
HES4 4

(DDIT4L)

(SYN3)
22

(HAP1)
17

12
(DIP2B)

13
(NDFIB2)

(TANC2)
17

DNMT1
CTCF
MBD2

SMAD4
PRRX1
LHX9

2
(IKZF2)

22

TCFL5
ETS2
IRF1

(CDC42BPB)
14

Neonatal Fibroblast

(RGS12)
4

4
(RBM47)

17
(SP6)

2
(ICA1L)

(KIFAP3)
1

21
(NRIP1)

17

(TNSF8)
9 14

14

14

(CTPS1)
1 1

17
(RHBDL3)

1
(MACF1)

(ADAMTS12)
5

8
(ARMC1)

(MACF1)
1

E2F1
NFKB1
TET1

(CAPN2)
1

GLIS3
NFYA
NFIX

HOXB6
LIN54
TEF

KLF13
STAT6
HBP1

Adult Fibroblast

7
(ZNF398)

12
(CAND1)

MEF2C
SOX11
CLOCK

YY1

(HGF)
7

10
(C10orf90)

8
(MSR1)

(IDE)
10

8
(LZTS1)

(MTMR6)
13

9
(DENND1A)

3
(TP63)

7
(CREB5)

3

7
(ZNF282)

(MAPK14)
6

(RAP1GAP2)
17

19
(AP3D1)

13

HIVEP1
NRF1
TCF4

SMAD1
ATF5
TGIF1

LIN54

2
(PPP1CB)

(HIPK3)
11

11

2
(GPR55)

6
(PNISR)

(STX18)
4

IRF8
RFX5
RFX7

DNMT1
ELF1
HINFP
STAT4

3
(RYBP)

9

EGR2
SP1

KLF10

(ARHGAP15)
2

B Lymphocyte

(UNC13C)
15

(MARCHF3)
5

2

2

17

=

Biological Analog 

=

=

=

=

=

FSTL4

ATXN1
ANKRD28

Chr 3
Chr 6

Chr 5

CDC42BPB

IKZF2

Chr 22Chr 14

Chr 2

CAPN2

ICA1LSP6

Chr 1

Chr 17 Chr 2

ZNF398

HGF

Chr 12

Chr 7

Chr 7

CAND1

DENND1A

MTMR6

TP63

Chr 9 Chr 3

Chr 13

Chr 3

ARHGAP15

RYBP

Chr 9

Chr 2

Fig. 7 | Example transcription clusters. Six examples of transcription clusters are
shown for neonatal fibroblasts (left), adult fibroblasts (center), and B lymphocytes
(right) as multi-way contacts (hypergraph motifs). Black labels indicate genes and
chromosomes (bold). Red labels correspond to transcription factors shared
between the majority of genes within the transcription cluster. For three-way
contacts (green motifs), we highlight the transcription clusters' biological analog
(blue-shaded box), showing how fragments of chromatin fold and congregate at a
common transcription cluster (grey sphere). Each node (black dot) of the

hyperedge and its denoted chromosome and gene in the hypergraph motif cor-
responds to a single chromatin fragment, colored according to chromosome, in the
biological analog. Thus, a three-way hyperedge is depicted by three chromatin
fragments in close spatial proximity. Multi-way contacts used for adult and neo-
natal fibroblasts include all experiments (V1-V4). Examples were selected from the
subset of multi-way contacts summarized in the "Clusters with Common TFs''
column of Table 1.

Table 1 | Summary of multi-way contacts and transcription clusters

Multi-way contacts from B lymphocytes (white rows), neonatal fibroblasts (light gray rows), and adult fibroblasts (dark gray rows, V1-V4) are listed after different filtering criteria. Multi-way contacts
are considered to bepotential transcription clusters if all loci within themulti-way contact are accessible and at least one locusbinds RNA Pol II. Thesemulti-way contacts are then queried for nearby
expressed genes. If a transcription cluster candidate has at least two expressed genes, we determine whether themajority of these genes have common transcription factors (TFs) through binding
motifs. If only two expressed genes are contained within a transcription cluster candidate, we require both genes to have common TFs. From the set of transcription clusters with common TFs, we
calculate how many clusters have at least one common master regulator (MR) (Algorithm S2).
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fibroblasts (RRID:CVCL_3653)were purchased from theAmericanType
Culture Collection (ATCC, Cat no. CRL-2522).

Cross-linking
Protocols for cross-linkingwerebasedonDeshpande et al.12. 2.5million
cells were washed three times in chilled 1X phosphate buffered saline
(PBS) in a 50mL centrifuge tube, pelleted by centrifugation at 500 × g
for 5 min at 4 ∘C between each wash. Cells were resuspended in 10 mL
room temperature 1X PBS 1% formaldehyde (Fisher Scientific Cat no.
BP531-500) by gently pipetting with a wide bore tip, then incubated at
room temperature for 10min. Toquench the cross-linking reaction 527
μL of 2.5Mglycinewas added to achieve a final concentrationof 1%w/v
or 125 mM in 10.5 mL. Cells were incubated for 5 min at room tem-
perature followed by 10 min on ice. The cross-linked cells were pel-
leted by centrifugation at 500 × g for 5 min at 4 ∘C.

Restriction enzyme digest
The cell pellet was resuspended in 500μL of cold permeabilization
buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2% IGEPAL CA-630,
100μL of protease inhibitor cock-tail Roche Cat no. 11836170001) and
placed on ice for 15 min. One tablet of protease inhibitor cocktail was
dissolved in 1 ml nuclease free water and 100μL from that was added

to a 500 μL permeabilization buffer. Cells were centrifuged at 500 × g
for 10 min at 4 ∘C after which the supernatant was aspirated and
replaced with 200μL of chilled 1.5X New England Biolabs (NEB) cuts-
mart buffer. Cells were centrifuged again at 500 × g for 10 min at 4 ∘C,
then aspirated and re-suspended in 300μL of chilled 1.5X NEB cuts-
mart buffer. To denature the chromatin, 33.5μL of 1% w/v sodium
dodecyl sulfate (SDS, Invitrogen Cat no. 15553-035) was added to the
cell suspension and incubated for exactly 10 min at 65 ∘C with gentle
agitation then placed on ice immediately afterwards. To quench the
SDS, 37.5μL of 10% v/v Triton X-100 (SigmaAldrich Cat no. T8787-250)
was added for a final concentration of 1%, followed by incubation for
10 min on ice. Permeabilized cells were then digested with a final
concentration of 1 U/μL of NlaIII (NEB-R0125L) and brought to volume
with nuclease-free water to achieve a final 1X digestion reaction buffer
in 450μL. Cells were then mixed by gentle inversion. Cell suspensions
were incubated in a thermomixer at 37 ∘C for 18 hours with periodic
rotation.

Proximity ligation and reverse cross-linking
NlaIII restriction digestion was heat inactivated at 65 ∘C for 20 min.
Proximity ligationwas set up at room temperaturewith the addition of
the following reagents: 100μLof 10XT4DNA ligase buffer (NEB), 10μL

a b dc

e

Genome-wide Summary

Self-Sustaining Transcription Clusters

Coupled Uncoupled

Adult Fibroblasts Neonatal Fibroblasts B Lymphocyte

Fig. 8 | Classes of transcription clusters. In a self-sustaining transcription cluster,
a TF and the gene encoding that TF are both present. The inter- and intra-
chromosomal examples in (a) and (b), respectively, illustrate this phenomenon
where in a we see the TF of interest (orange triangle) circulating at the cluster, its
binding motif present on the chromatin (orange portion), and its corresponding
gene expressed (orange rectangle on Chromosome 6). The gray shapes represent
additional TFs with binding motifs (gray portion of chromatin) at the cluster. Black
rectangles on Chromosomes 3, 9, and 19 represent additional genes present in the
cluster. cAn analog-independent class of transcription clusters wherewe observe a
TF (red square) bind at a transcription cluster (red cluster) and its corresponding
gene expressed in a separate transcription cluster (grey cluster), yet not in the same
cluster.dAnanalog-independent class of transcription clusterswherewe observe a
TF (green circle) bind at a transcription cluster (green cluster) and its corre-
sponding gene expressed but notwithin a transcription cluster.eGenome-wide cell

type-specific self-sustaining transcription clusters extracted from multi-way con-
tact data and decomposed into Hi-C contactmatrices at 100 kb resolution. Contact
frequencies are log-transformed for better visualization. Frequencies along the
diagonal indicate interaction between two or more unique multi-way loci that fall
within the same 100 kb bin. Axis labels are non-contiguous 100 kb bin coordinates
in chromosomal order. Multi-way contacts that make up the self-sustaining tran-
scription clusters are superimposed. Multi-way contacts with green-colored loci
represent 'core' transcription clusters - transcription clusters containing a master
regulator and its gene analog. An example read-level contact map for the inter-
chromosomal FOXO3 self-sustaining transcription cluster is denoted by the orange
highlighted box in the adult fibroblast contact matrix and a read-level contact map
for the intra-chromosomal ZNF320 self-sustaining transcription cluster is denoted
by the blue highlighted box. Values along the left axis of these read-level contact
matrices are base-pair positions of the contacting loci in the genome.
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of 10 mg/mL BSA and 50μL of T4 Ligase (NEB M0202L) in a total
volumeof 1000μLwith nuclease-freewater. The ligationwas cooled to
16 ∘C and incubated for 6 h with gentle rotation.

Protein Degradation and DNA Purification
To reverse cross-link, proximity ligated sample was treated with
100 μL Proteinase K (NEB P8107S-800U/ml), 100 μL 10% SDS (Invi-
trogen Cat no. 15553-035) and 500 μL 20% v/v Tween-20 (Sigma
Aldrich Cat no. P1379) in a total volume of 2000 μL with nuclease-
free water. Themixture was incubated in a thermal block at 56 ∘C for
18 hours. In order to purify DNA, the sample was transferred to a 15
mL centrifuge tube, rinsing the original tube with a further 200 μL
of nuclease-free water to collect any residual sample, bringing the
total sample volume to 2.2mL. DNA was then purified from the
sample using a standard phenol chloroform extraction and ethanol
precipitation.

Nanopore sequencing
PurifiedDNAwas Solid Phase Reversible Immobilization (SPRI) size
selected before library preparation with a bead ratio of 0.48X for
fragments >1.5 kb. The >1.5 kb products were prepared for
sequencing using the protocol provided by Oxford Nanopore
Technologies. In brief, 1 μg of genomic DNA input was used to
generate a sequencing library according to the protocol provided
for the SQK-LSK109 kit (Oxford Nanopore Technologies, Oxford
Science Park, UK, version GDE_9063_v109_revU_14Aug2019). After
the DNA repair, end prep, and adapter ligation steps, SPRI select
bead suspension (Cat No. B23318, Beckman Coulter Life Sciences,
Indianapolis, IN, USA) was used to remove short fragments and
free adapters. A bead ratio of 1X was used for DNA repair and end
prep while a bead ratio of 0.4X was used for the adapter ligation
step. Qubit dsDNA assay (ThermoFisher Scientific, Waltham, MA,
USA) was used to quantify DNA and ~300–400 ng of DNA library
was loaded onto a GridION flow cell (version R9, Flo-MIN 106D).
For adult fibroblasts, 4 sequencing runs were conducted generat-
ing a total of 6.25 million reads (referred to as V1-V4). For neonatal
fibroblasts, 4 sequencing runs were conducted generating a total
of 11.85 million reads.

Sequence processing
Reads which passed Q-score filtering (–min_qscore 7, 4.56 mil-
lion reads) after base calling on the Oxford Nanopore GridION
(Guppy, version 4.0.11) were used as input for the Pore-C-
Snakemake pipeline (https://github.com/nanoporetech/Pore-C-
Snakemake, commit 6b2f762). The pipeline maps multi-way
contacts to a reference genome and stores the hyperedge data
in a variety of formats. The reference genome used for mapping
was GRCh38.p13 (https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001405.39/). Each of the four sequencing runs were assigned
a sequencing run label and then concatenated. The combined
pipeline outputs were used as standard inputs for all downstream
analysis.

Hypergraphs
A hypergraph is a generalization of a graph. Hypergraphs are
composed of hyperedges, which can join any number of nodes49.
Mathematically, a hypergraph is a pair such that G= fV,Eg where V
is the node set and E is the hyperedge set. Each hyperedge in E is a
subset of V. Examples of hypergraphs include email communica-
tion networks, co-authorship networks, film actor/actress net-
works, and protein–protein interaction networks. For genomic
networks, traditional graph-based methods fail to capture con-
tacts that contain more than two genomic loci once, which results
in a loss of higher order structural information. Hypergraphs
can capture higher order connectivity patterns and represent

multidimensional relationships unambiguously in genomic
networks15,50. In hypergraphs obtained from Pore-C data, we
defined nodes as genomic loci at a particular resolution (e.g. read
level, 100 kb, 1 Mb, or 25 Mb bins), and hyperedges as contacts
among genomic loci. We switch between these different resolu-
tions both for computational efficiency and visual clarity. Most
higher order contacts are unique in Pore-C data at high resolution
(read level or 100 kb), so for these data we considered unweighted
hypergraphs (i.e. ignore the frequency of contacts). For lower
resolutions (1 Mb or 25 Mb), we considered edge weights (fre-
quency of contacts) to find the most common intra- and inter-
chromosomal contacts.

Hypergraph filtering
We performed an additional filtering step while constructing genomic
hypergraphs. We first decomposed each multi-way contact into its
pairwise combinations at a particular resolution. From these pairwise
contacts, we counted the number of times a contact was detected for
each pair of loci, and identified the highest frequency locus pairs.
Pairwise contacts were kept if they occurred above a certain threshold
number, which was set empirically at the 85th percentile of the most
frequently occurring locus pairs. For example, in fibroblast data bin-
ned at 1 Mb resolution, a locus pair with six detected contacts corre-
sponded to the85thpercentile. Thus all pairs of loci with fewer than six
detected contacts were not considered, which increases confidence in
the validity of identified multi-way contacts.

Incidence matrices
An incidence matrix of the genomic hypergraph was an n-by-mmatrix
containing values zero and one. The row size nwas the total number of
genomic loci, and the column size m was the total number of unique
Pore-C contacts (including self-contacts, pairwise contacts, and higher
order contacts). Nonzero elements in a columnof the incidencematrix
indicate genomic loci contained in the corresponding Pore-C contact.
Thus, the number of nonzero elements (or column sum) gives the
order of the Pore-C contact. The incidence matrix of the genomic
hypergraph can be visualized via PAOHvis51. In PAOHvis, genomic loci
are parallel horizontal bars, while Pore-C contacts are vertical lines that
connect multiple loci (see Figs. 1, 2, 3, and 4). Beyond visualization,
incidence matrices play a significant role in the mathematical analysis
of hypergraphs.

Data-driven identification of transcription clusters
We used Pore-C data in conjunction with multiple other data sour-
ces to identify potential transcription clusters (Fig. 6). Each locus in
a Pore-C read, or multi-way contact, was queried for chromatin
accessibility and RNA Pol II binding (ATAC-seq and ChIP-seq peaks,
respectively). Multi-way contacts were considered to be potential
transcription clusters if all loci within the multi-way contact were
accessible and at least one locus had binding of RNA Pol II. The loci
in potential transcription clusters were then queried for nearby
expressed genes. A 5 kb flanking region was added upstream and
downstream of each locus when querying for chromatin accessi-
bility, RNA Pol II binding, and nearby genes52. Gene expression
(RNA-seq) and transcription factor binding site data were then
integrated to determine coexpression and coregulation of genes in
potential transcription clusters. If a potential transcription cluster
candidate had at least two genes present, and these genes had
common transcription factors based on binding motifs in the clus-
ter, the potential transcription cluster was determined to be a real
transcription cluster. From the set of transcription clusters with
common transcription factors, we calculated how many clusters
were regulated by at least one master regulator, a transcription
factor that also regulates its own gene, and classified these as spe-
cialized transcription clusters (Fig. 6).

Article https://doi.org/10.1038/s41467-022-32980-z

Nature Communications |         (2022) 13:5498 11

https://github.com/nanoporetech/Pore-C-Snakemake
https://github.com/nanoporetech/Pore-C-Snakemake
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/


Transcription factor binding motifs
Transcription factor binding site motifs were obtained from "The
Human Transcription Factors" database53. FIMO (https://meme-suite.
org/meme/tools/fimo) was used to scan for motifs within ±5 kb of
genes’ transcription start sites. The results were converted to a
22,083 × 1007 MATLAB table, where rows were genes, columns were
transcription factors, and entries were the number of binding sites for
a particular transcription factor and gene. The table was then filtered
to only include entries with three ormore binding sites in downstream
computations. This threshold was determined empirically and is
adjustable in the MATLAB code.

Identifying self-sustaining transcription clusters
From identified transcription clusters (Table 1), we obtained a
subset containing TF-encoding genes specific to each cell type,
yielding 79, 54, and 144 transcription clusters from the adult
fibroblast, neonatal fibroblast, and B lymphocyte data, respec-
tively. We then classified these clusters as self-sustaining if the TF
binding motif corresponding to the expressed TF-encoding gene
was also at the cluster. We further determined whether the self-
sustaining TFs were master regulators based on protein-DNA
interaction data. Results are summarized in Fig. 8 and Supple-
mentary Table 7.

Public data sources
Pore-C data for B lymphocytes were downloaded from Deshpande
et al.12. ATAC-seq and ChIP-seq data were obtained from the Encyclo-
pedia ofDNAElements (ENCODE) to assess chromatin accessibility and
RNA Pol II binding, respectively. These data were compared to read-
level Pore-C contacts to determine whether colocalizing loci belong to
accessible regions of chromatin and had RNA Pol II binding for both
fibroblasts and B lymphocytes. RNA-seq data were also obtained from
ENCODE to ensure that genes within potential transcription clusters

were expressed in their respective cell types. Additionally, ChIP-seq
data for CTCF, RAD21, and SMC3 bindingwere obtained from ENCODE
to evaluate binding preference at transcription clusters. A summary of
these data sources is provided in Table 2.

Hypergraph entropy
Network entropy is often used to measure the connectivity and
regularity of a network17,54,55. We defined a notion of hypergraph
entropy to quantify the organization of chromatin structure from
Pore-C data. Denote the incidence matrix of the genomic hyper-
graph asH. The hypergraph Laplacian matrix is then a n-by-nmatrix
(n is the total number of genomic loci in the hypergraph), which can
be computed by

L=D�HE�1H> 2 Rn×n, ð1Þ

where D 2 Rn×n is a diagonal matrix containing the degrees of nodes
along its diagonal, and E 2 Rm×m is a diagonal matrix containing the
orders of hyperedges along its diagonal. This definition is not
equivalent to decomposing each hyperedge into its edge components.
This definition also considers the degrees of nodes and hyperedges
(i.e., the two degree matrices D and E in the equation) of the hyper-
graph. If we consider a hypergraph with two hyperedges {v1, v2, v3} and
{v3, v4}, the hypergraph Laplacian matrix and the graph Laplacian
matrix (based on decomposing each hyperedge into its edge compo-
nents) are computed as

L=

2
3 � 1

3 � 1
3 0

� 1
3

2
3 � 1

3 0

� 1
3 � 1

3
5
3 � 1

2

0 0 � 1
2

1
2

2
66664

3
77775 andLgraph =

2 �1 �1 0

�1 2 �1 0

�1 �1 3 �1

0 0 �1 1

2
6664

3
7775,

Table 2 | Data sources and additional information

Data type Cell type Description

Pore-C IRa Human adult dermal fibroblasts from donor punch biopsy were processed to generate Pore-C data

Pore-C BJ Human neonatal foreskin fibroblasts (RRID:CVCL_3653) were processed to generate Pore-C data

Pore-C GM12878 Human B lymphocyte (RRID:CVCL_7526) data were obtained from Deshpande et al.12

ATAC-seq IMR-90a Human fetal lung fibroblast (RRID:CVCL_0347) chromatin accessibility data were obtained from ENCODE (ENCFF310UDS)65

DNase-seq BJ Neonatal fibroblast chromatin accessibility data were obtained from ENCODE (ENCFF310UDS)

ATAC-seq GM12878 B lymphocyte chromatin accessibility data were obtained from ENCODE (ENCFF410XEP)

ChIP-seq IMR-90a Fetal lung fibroblast RNA Polymerase II binding data were obtained from ENCODE (ENCFF676DGR)

ChIP-seq GM12878 B lymphocyte RNA Polymerase II binding data were obtained from ENCODE (ENCFF912DZY)

ChIP-seq IMR-90 Fetal lung fibroblast CTCF binding data were obtained from ENCODE (ENCFF203SRF)

ChIP-seq BJ Neonatal fibroblast CTCF binding data were obtained from ENCODE (ENCFF518RUC)

ChIP-seq GM12878 B lymphocyte CTCF binding data were obtained from ENCODE (ENCFF951PEM)

ChIP-seq IMR-90a Fetal lung fibroblast RAD21 binding data were obtained from ENCODE (ENCSR000EFJ)

ChIP-seq GM12878 B lymphocyte RAD21 binding data were obtained from ENCODE (ENCSR000EAC)

ChIP-seq IMR-90a Fetal lung fibroblast SMC3 binding data were obtained from ENCODE (ENCSR000HPG)

ChIP-seq GM12878 B lymphocyte SMC3 binding data were obtained from ENCODE (ENCSR000DZP)

RNA-seq IMR-90a Fetal lung fibroblast gene expression data were averaged over two samples obtained from ENCODE (ENCFF353SBP, ENCFF496RIW)

RNA-seq IRa Adult fibroblasts were processed to generate gene expression data

RNA-seq BJ Neonatal fibroblast gene expression data were averaged across two samples obtained from ENCODE (ENCFF477JDG, ENCFF005WBQ)

RNA-seq BJ Neonatal fibroblasts were processed to generate gene expression data

RNA-seq GM12878 B lymphocyte gene expression data were averaged across two samples obtained from ENCODE (ENCFF306TLL, ENCFF418FIT)

Enhancers IMR-90a Fetal lung fibroblast enhancer data were obtained from EnhancerAtlas 2.066

Enhancers BJ Neonatal fibroblast enhancer data were obtained from EnhancerAtlas 2.066

Enhancers GM12878 B lymphocyte enhancer location data were obtained from EnhancerAtlas 2.066

aindicates data that were combined for identification of transcription clusters in adult fibroblasts.
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respectively. More importantly, the hypergraph Laplacian matrix is
well-defined and has useful spectral properties regarding the hyper-
graph structure56.

Inspired by von Neumann graph entropy (which utilizes the dis-
tribution of the eigenvalues from the graph Laplacian matrix), we
define the hypergraph entropy as

HypergraphEntropy= �
Xn
i = 1

�λi ln
�λi, ð2Þ

where �λi are the normalized eigenvalues of L such that
Pn

i = 1
�λi = 1,

and the convention 0 ln0=0 is used. In mathematics, eigenvalues
can quantitatively represent different features of a matrix57. Bio-
logically, genomic regions with high entropy are likely associated
with high proportions of euchromatin (i.e. less organized folding
patterns), as euchromatin is more structurally permissive than
heterochromatin58–60.

We computed the entropy of intra-chromosomal genomic
hypergraphs for both fibroblasts and B lymphocytes as shown in
Supplementary Table 8. It is expected that larger chromosomes
have larger hypergraph entropy because more potential genomic
interactions occur in the large chromosomes. However, there are
still subtle differences between the fibroblast and B lymphocyte
chromosomes, indicating differences in their genome structure. In
order to better quantify the structural properties of chromosomes
and compare between cell types, it may be useful to introduce
normalizations to hypergraph entropy in the future.

Hypergraph distance
Comparing graphs is a ubiquitous task in data analysis and
machine learning61,61–63. In order to quantify difference between
two genomic hypergraphs G1 and G2 at different scales, we pro-
pose to use several hypergraph distance or similarity measures.
These measures are based on conversion of hypergraph into a
graph representation, see44 for details. Denote the incidence
matrices of two genomic hypergraphs by H1 2 Rn ×m1 and
H2 2 Rn×m2 , respectively. For i = 1, 2, construct the adjacency
matrices Ai and normalized Laplacian matrices ~Li:

Ai =HiE
�1
i H>

i , ~Li = I�D
�1

2
i HiE

�1
i H>

i D
�1

2
i 2 Rn×n, ð3Þ

respectively, where I 2 Rn×n is the identity matrix, Ei 2 Rmi ×mi is a
diagonal matrix containing the orders of hyperedges along its diag-
onal, and Di 2 Rn ×n is a diagonal matrix containing the degrees of
nodes along its diagonal56. The degree of a node is equal to the number
of hyperedges that contain that node. Given these adjacency and
normalized Laplacian matrices, we use following three distance mea-
sures in our application to determine differences in the two genomic
hypergraphs at both local and global scales:

• Hamming Distance: measures local similarity and is based on
absolute values of difference between the two adjacency
matrices, i.e.,

DHðG1,G2Þ=
1
n2

Xn
j = 1

Xn
k = 1

∣A1,jk � A2,jk ∣,

where, the notation Ai,jk implies jk-th entry of the matrix Ai.
• Spectral Distance: measures global similarity and is based on the

p-norm for difference between ordered set of eigenvalues of the
two Laplacians, i.e.,

DλðG1,G2Þ=
1
n

Xn
j = 1

∣λ1,j � λ2,j ∣
p

 !1=p

, ð4Þ

where λi,j is the jth eigenvalue of ~Li for i = 1, 2, and p ≥ 1. In our
analysis, we choose p = 2.

• DeltaCon Distance: measures both local and global similarity,
and is based on the fast belief propagationmethodofmeasuring
node affinities using the matrix64, i.e.,

Si = I+ ϵ2Da
i � ϵAi

� ��1
,

where0 < ϵ≪ 1 is small constant capturing the influencebetween
neighboring nodes, and Da

i is the n × n diagonal matrix with the
diagonal entries Da

i,jj =
Pn

k = 1 Ai,jk . DeltaCon then compares the
two matrices S1 and S2 via the Matusita difference as the mea-
sure:

DΔðG1,G2Þ=
1
n2

Xn
j = 1

Xn
k = 1

S1,jk
1=2 � S2,jk

1=2
� �2 !1=2

, ð5Þ

where we have added a normalization factor 1
n2. In our analysis,

we found results too insensitive to the choice of ϵ, and report the
results for ϵ = 10−3.

Further details on the properties of these different distances can
be found in Supplemental Note 1.

We computed hypergraph distance between genome-wide
hypergraphs derived from adult fibroblasts, neonatal fibroblasts,
and B lymphocytes using the Hamming, spectral, and DeltaCon
distances described above and examined distances statistically
through a permutation test. Supplementary Fig. 2a1–3 demon-
strates that the adult fibroblast and B lymphocyte hypergraphs are
significantly different at the chromosome level, especially along
Chromosome 21, in stark contrast to the distance between adult
and neonatal fibroblasts. Additionally, we computed the same
distance measures at the genome level, incorporating inter-
chromosomal data, and found that the genomic hypergraphs
between fibroblasts and B lymphocytes were significantly differ-
ent, with a p value of 0 compared to an observed insignificant
difference between adult and neonatal fibroblasts (p value of 1)
(Supplementary Fig. 2b1–3.)

Statistics & reproducibility
In order to assess the statistical significance of the transcription
cluster candidates we determined using our criteria (Fig. 6), we
used a permutation test which builds the shape of the null
hypothesis (i.e. the random background distribution) by resam-
pling the observed data over N trials. We randomly selected n 3rd,
4th, 5th, and 6th or more order multi-way contacts from our Pore-
C data, where n was based on the number of transcription cluster
candidates we determined for each order. For example, we ran-
domly selected n = 11, 261 multi-way contacts from the set of 3rd
order multi-way contacts in fibroblasts (Table 1). For each trial, we
determined how many of these randomly sampled “transcription
clusters”match our remaining criteria: transcription clusters with
≥1 gene, ≥2 genes, common TFs, and common MRs. The back-
ground distribution for each of the criteria was then constructed
from these values. The proportion of values in the background
distributions that was greater than their counterparts from the
data-derived transcription cluster candidates yielded the p value.
This analysis was based on the assumption that transcription
clusters will be more likely to contain genes and that those genes
are more likely to have common transcription factors than ran-
dom multi-way contacts. For this analysis, we chose N = 1, 000
trials.

Similarly, we used a permutation test to determine the sig-
nificance of the measured distances between two hypergraphs.
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Suppose that we are comparing two hypergraphs G1 and G2. We
first randomly generate N hypergraphs fRigNi = 1 that are similar to G1

("similar” means similar number of node degree and hyperedge
size distribution). The background distribution therefore can be
constructed by measuring the hypergraph distances between G1

and Ri for i = 1, 2,…, N. The proportion of distances that was
greater than the distance between G1 and G2 in this background
distribution yielded the p value. For this analysis, we again chose
N = 1 000 trials. See Supplementary Notes for details.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The data discussed in this
publication have been deposited in NCBI’s Gene Expression Omnibus
and are accessible through GEO Series accession number GSE211897.
See Table 2 for additional accession codes. Source data are provided
with this paper.

Code availability
All code in our computational framework can be found at: https://
github.com/lindsly/Pore-C_Hypergraphs and https://github.com/
nanoporetech/pore-c.
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