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Abstract: The immune system plays a dual role in tumor evolution—it can identify and control nascent
tumor cells in a process called immunosurveillance and can promote tumor progression through
immunosuppression via various mechanisms. Thus, bilateral host-protective and tumor-promoting
actions of immunity are integrated as cancer immunoediting. In this decade, immune checkpoint
inhibitors, specifically programmed cell death 1 (PD-1) pathway inhibitors, have changed the
treatment paradigm of advanced non-small cell lung cancer (NSCLC). These agents are approved
for the treatment of patients with NSCLC and demonstrate impressive clinical activity and durable
responses in some patients. However, for many NSCLC patients, the efficacy of immune checkpoint
inhibitors is limited. To optimize the full utility of the immune system for eradicating cancer,
a broader understanding of cancer immunosurveillance and immunoediting is essential. In this
review, we discuss the fundamental knowledge of the phenomena and provide an overview of the
next-generation immunotherapies in the pipeline.
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1. Introduction

In 1891, William Coley noticed several clinical cases of spontaneous regression and disappearance
of tumors in patients following infection [1,2]. He conceived the idea of injecting bacteria into his cancer
patients, which showed promising results and became known as Coley’s toxin. In 1909, Paul Ehrlich
postulated the concept of cancer immunosurveillance wherein subclinical tumor cells are continuously
and spontaneously eradicated by the activated immune system [3]. This concept is now clearly
established—primarily through demonstrations of increased cancer incidence in immunodeficient mice
and humans [4]. However, cancer develops despite this immunosurveillance. The paradigm of cancer
immunoediting reconciles the mechanisms of tumor surveillance with the presence of clinically evident
cancers. Tumors derived from mutagenesis in immunodeficient mice are more immunogenic compared
to those from immunocompetent mice [4,5]. This phenomenon indicates that tumors develop differently
in the presence of immune system. Specifically, the immune system applies a selective pressure to
tumor development and growth, and tumors are forced to edit the surrounding immune system,
which is known as cancer immunoediting [6,7]. Cancer immunoediting involves three sequential
phases within the context of the immune system: the elimination phase, whereby immunogenic tumors
are eradicated; the equilibrium phase, whereby tumor cells and immune cells coexist; and, finally,
the escape phase, wherein tumor escape from immune control. Clinically detectable cancers often
represent this escape phase.
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2. Cancer-Immunity Cycle

2.1. Cancer-Immunity Cycle Outlined

The concept of a “cancer-immunity cycle,” demonstrating the dynamic anti-tumor immune
responses of cancer in 7 steps, has been proposed (Figure 1) [8]. Cancer antigens are released by tumor
cells during apoptosis or cell death (Step 1). The antigens released are captured by dendritic cells (DCs),
which then mature and simultaneously migrate to lymph nodes (Step 2). At the lymph nodes, the DCs
present the captured cancer antigen to the major histocompatibility complex class (MHC) I molecule,
resulting in the priming of T cells (Step 3). The activated T cells begin the migration to the tumor
(Step 4), infiltrate the tumor tissue (Step 5), recognize cancer cells (Step 6), and injure them (Step 7).
Steps 3 and 6 serve as immune checkpoints at which the activation of T cells is controlled. From the
cancer cells injured by T cells in Step 7, cancer antigens are further released, and the cancer-immunity
cycle returns to Step 1 and continues. In many cancer patients, one or more of these steps can be
interrupted, resulting in ineffective immune responses to cancer.
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Figure 1. Cancer-immunity cycle: (1) Release of cancer antigens from tumor cells; (2) Presentation
of cancer antigens on the major histocompatibility complex class (MHC) by antigen-presenting cells;
(3) recognition of cancer antigens on the MHC by the T cell receptor, resulting in T cell activation;
(4) Trafficking of activated T cells; (5) Infiltration into the tumor; (6) Recognition of cancer antigens on
the MHC within the tumor; (7) Attack on tumor cells, resulting in tumor cell injury/death. This figure
was adopted from Chen DS et al. [8].

2.2. CD8-Positive Cytotoxic T Cells

A key step of anti-tumor immune responses is the activation of CD8-positive cytotoxic T cells
(CTLs). Cytotoxic T cells, activated by the recognition of cancer-specific antigens presented by
antigen-presenting cells (APCs), begin attacking cancer cells [9]. It has been shown that if the immune
checkpoint molecules (co-suppression molecules) expressed on immunocompetent cells, such as
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CTLs are suppressed or the immune co-stimulatory molecules are stimulated, the CTLs are activated,
resulting in the reinforcement of anti-tumor immune responses [10].

The action of co-stimulatory and co-suppression molecules involved in T cell reactions and their
action on effector T cells and Tregs is explained below (Table 1). In addition, the relationship between
co-stimulatory and co-suppression molecules to their ligands is classified by the priming (naïve T
cells are activated by antigen presentation by APCs and proliferate; Figure 2) and effector phases (the
activated and proliferating cancer-specific T cells gather in the cancer cells and attack; Figure 3).

Table 1. Co-stimulatory and co-suppression molecules involved in cancer immunity and their activities.

Co-Stimulatory
Molecule Ligand Expression on Teff Effects on

Teff Function Expression on Treg Effects on
Treg Function

CTLA-4 CD80, CD86 induced by
stimulation ↓

constitutively
expressed ↑

PD-1 PD-L1 induced by
stimulation ↓

constitutively
expressed ↑

ICOS ICOSL induced by
stimulation ↑

constitutively
expressed ↑

TIGIT CD155 induced by
stimulation ↓

constitutively
expressed ↑

CD27 CD70 constitutively
expressed ↑

constitutively
expressed ↑

4-1BB 4-1BBL induced by
stimulation ↑ - -

OX40 OX40L induced by
stimulation ↑

constitutively
expressed ↓

GITR GITRL induced by
stimulation ↑

constitutively
expressed ↓

CD226 CD155 constitutively
expressed ↑ - -

BTLA HVEM constitutively
expressed ↓ - -

TIM-3 galectin-9 induced by
stimulation ↓

constitutively
expressed ↑

LAG-3 MHC-II induced by
stimulation ↓

induced by
stimulation ↑

Red arrows indicate the signals reinforcing the immune responses to cancer, while blue arrows indicate the signals
causing attenuation of such responses. Teff: effector T cell. Treg: regulatory T cell.
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Figure 2. Major co-stimulatory and co-suppression molecules involved in the priming phase of
cancer immunity. The cancer antigen presented by antigen-presenting cells in the lymph nodes is
recognized via the T cell antigen receptor (TCR) by cancer-specific T cells (signal 1, main signal). Major
co-stimulatory and co-suppression molecules producing auxiliary stimuli (signal 2, sub-signal) during
this step and their ligands are shown here. The signals reinforcing the immune responses to cancer are
shown in red, while those the attenuation of these responses are shown in blue.
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Figure 3. Major co-stimulatory and co-suppression molecules involved in the effector phase of cancer
immunity. This figure shows major co-stimulatory and co-suppression molecules (involved in the
attack against the cancer cells by activated and proliferated effector T cells after antigen presentation
and recognition) and their ligands. The signals reinforcing the immune responses to cancer are shown
in red, while the signals causing attenuation of such responses are shown in blue.

2.3. CD28 Family: Cytotoxic T-lymphocyte Associated Protein 4 and Programmed Cell Death 1

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a co-suppression molecule not expressed
on steady-state T cells, but induced in a dynamic manner following the activation of effector CD4+

or CD8+ T cells [11]. CD80 and CD86 expressed primarily on APCs serve as a ligand for CTLA-4
and CD28 (a representative co-stimulatory molecule) [12]. CD28 activates the effector T cells after
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recognition of a specific antigen and its activation induces the expression of CTLA-4 that binds to CD80
in a manner competing with CD28 with a 10–100 fold higher binding affinity [12,13]. Co-stimulation
by CD28 is thus attenuated, resulting in the suppression of immune responses. The CTLA-4 on Treg
causes the attenuation of APC function indirectly by emitting a reverse signal to CD80 and CD86 or
effector T cell function, directly [14]. The development of systemic autoimmune diseases and death
two months thereafter of CTLA-4 knock-out mice also supports its immunosuppressive activity [15].

Programmed cell death 1 (PD-1) is a co-suppression molecule expressed dynamically following
the activation of effector T cells [16]. Its representative ligand is PD-L1, expressed primarily on APCs
and tumor cells. The expression of PD-L1 on the tumor is induced by IFN-γ released from activated
effector T cells following antigen recognition via T cell antigen receptor (TCR) [17]. In the tumor tissue,
primarily CD8 positive cytotoxic lymphocytes having undergone activation show high levels of PD-1
expression. If PD-L1 binds to these lymphocytes, tyrosine dephosphorylases (SHP-1, SHP-2, etc.) gather
into the intracellular part of the immune checkpoint molecules and inhibit tyrosine phosphorylation of
ZAP70, resulting in T cell dysfunction and the induction of apoptosis thereby suppressing excessive
anti-tumor immune responses [18]. Cancer antigen-specific CTLs invading tumor cells are selectively
suppressed by PD-1, which is constitutively expressed on Treg, suggesting its role in Treg differentiation
and function [19]. Supporting this, studies have shown that PD-1 knock-out mice develop diverse
autoimmune diseases (e.g., nephritis, arthritis, and myocarditis) spontaneously [20,21].

2.4. TNF Receptor Superfamily: OX-40 and Glucocorticoid-Induced TNFR-Related (GITR) Gene

OX-40 is a co-stimulatory molecule; its ligand is OX-40L, which is induced primarily following
activation of T cells and APCs [22]. The stimulatory signals of OX-40 promote activation, survival,
and proliferation of effector cells and the production of cytokines [23]. OX-40 is constitutively expressed
on Treg and involved in the formation and function of Treg. In many animal models, the anti-OX-40
agonistic antibody has been reported to manifest potent anti-tumor activity by inducing the activation
of effector T cells and attenuation of Treg function [23].

GITR is expressed on effector T cells at low levels, serving as a co-stimulatory molecule
whose expression increases following effector T cell activation [22]. Its ligand, GITRL, is expressed
constitutively on APCs and endothelial cells [22]. GITR signals promote the activation and proliferation
of effector T cells and suppression of apoptosis. GITR is constitutively expressed on Treg, and GITR
signals cause the attenuation of Treg’s suppressive activity [24]. In many animal models, the anti-GITR
agonistic antibody is known to manifest anti-tumor activity by causing the activation of effector T cells
and attenuation of Treg’s suppressive activity [24].

3. Tumors Escape Immunosurveillance through Immunoediting

As revealed by the presence of occult and clinically imperceptible tumors, tumor cells that
successfully evaded immunosurveillance can enter tumor dormancy (the equilibrium phase) [25]
(Figure 4). In the equilibrium phase, the adaptive immune system prevents tumor invasion and
outgrowth and sculpts tumor immunogenicity. However, as a consequence of constant immune
selection imposed on genetically unstable tumor cells held in equilibrium, tumor cells can acquire the
ability to circumvent immune recognition, thereby avoiding destruction and eventually developing
into clinically detectable tumors (the escape phase) [26,27]. The mechanisms controlling tumor escape
from immunosurveillance are diverse and include downregulation or loss of expression of MHC I
molecules, which are essential for CD8+ cytotoxic T cell recognition [28,29], and increased expression of
cytotoxic T cell inhibitory ligands, such as programmed cell death ligand 1 (PD-L1), which suppresses
cytotoxic T cell attack [30] (Figure 3). Cytotoxic T cell activation involves multiple steps generated
through the immune synapse between tumor and immune cells. The first signal is transduced through
the binding of a T cell receptor to its cognate peptide located on surface-expressed MHC molecules.
This interaction assigns specificity to the consequence of downstream T cell subsets. Many negative
regulatory checkpoints are present to inhibit overactive immune responses and set a limit on T cell
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activation. In order to escape detection by the immune system, tumor cells upregulate the surface
expression of inhibitory molecules, including PD-L1, cytotoxic T-lymphocyte associated protein 4
(CTLA-4), LAG-3, TIM-3, and 4-1BB [31–35]. As a result of the constant exposure to antigens in
the tumor microenvironment, intratumoral T cells display a broad spectrum of suppressed and
dysfunctional states, called T cell exhaustion [36]. Thus, tumor cells evade immunosurveillance by
editing their microenvironment, including immune cells and their neighboring normal cells. The escape
phase has been an area of intense investigation in the field of tumor immunology over the past decades.
Many studies have demonstrated that tumors in the escape phase evade the immune system through
direct and/or indirect mechanisms to aid in their growth and metastases [26]. Focused work is now
being undertaken to devise strategies that can target these mechanisms of escape since they represent a
means to treat tumors using novel cancer immunotherapies [37,38]. This review provides multiple
examples of tumor immunoediting mainly in lung cancer.
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Figure 4. Tumor evolution and immunoediting. The accumulation of oncogenic mutations initiates
tumor evolution. The immune surveillance system, including cytotoxic CD8 positive T cells, natural
killer cells, and macrophages, recognize tumor-associated neoantigens presented by MHC molecules
on antigen-presenting cells. The balance between signals from the tumor microenvironment and the
immune system shifts during tumor elimination, equilibrium, and escape.

4. Human Leukocyte Antigen (HLA) Loss and Immune Escape in Lung Cancer Evolution

The MHC, a set of genes that code for cell surface proteins, helps the immune system recognize
foreign substances. MHC proteins are inherent in all higher vertebrates. The human MHC complex is
synonymous with the human HLA complex. Silencing, downregulation, or loss of HLA alleles inhibits
peptide antigen presentation and facilitates tumor cells to escape from immunosurveillance [28,29,39]
(Figure 5).
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Figure 5. Tumor escape through human leukocyte antigen (HLA) loss. HLA loss allows tumor cells to
escape the immune system. During tumor evolution, the accumulation of tumor neoantigens induces
local immune infiltration. Tumor cells with HLA loss can be positively selected by avoiding CD8 T
cell recognition.

A recent report elucidated loss of heterozygosity (LOH) at the HLA alleles; in particular, loss of
HLA-C*08:02 was observed in a resistant lesion treated with tumor-infiltrating lymphocytes composed
of cytotoxic T cell clones targeting the KRAS G12D mutation [40]. Since the presence of the HLA-C*08:02
allele is requisite for the presentation of the neoantigen KRAS G12D and tumor recognition by T
lymphocytes, its loss was supposed to directly cause immune evasion. In hepatocellular carcinoma,
tumors with HLA LOH exhibited significant association with an increased recurrence, indicating that
immune escape caused by HLA LOH may accelerate tumor progression [41]. Downregulation of
HLA in vulvar intraepithelial neoplasia was also associated with the development of recurrences [42].
Clinically, patients with high evasion capacity tend to have a higher recurrence rate compared to
those with low evasion capacity [41,42]. However, the magnitude and significance of the loss of the
HLA haplotype has not been systematically evaluated in human cancers, because the polymorphic
feature of the HLA locus precludes alignment of sequence reads to the human reference genome and
estimation of copy number. To overcome this challenge, McGranahan et al. recently developed a new
computational tool using next-generation sequencing data to estimate the allele-specific copy number
of the HLA locus; loss of heterozygosity in the human leukocyte antigen (LOH HLA) was found to
occur in approximately 40% of non-small-cell lung cancers (NSCLCs) and was associated with high
PD-L1 expression [43]. The subclonal frequency of HLA LOH, which occurs in a subset of tumor cells
and is located on the branches of evolutional phylogenetic trees, suggests that HLA LOH is usually a
late event in tumor phylogeny and that immune microenvironment in the tumor tissue may function
as a key selective pressure in shaping branched tumor evolution. In a cohort of primary NSCLC
tumors with matched brain metastasis, HLA LOH was detected in 47% of the cases, which occurred
subclonally and preferentially at the metastatic brain sites. Thus, HLA LOH is a common feature
of NSCLC and facilitates immune escape from immunosurveillance and significant immune editing,
leading to subclonal genome evolution.

5. Heterogenous Immunoediting in Lung Cancer

Multi-dimensional datasets, such as The Cancer Genome Atlas (TCGA), International Cancer
Genome Consortium (ICGC) and Gene Expression Omnibus (GEO), enable the study of relationships
between different biological processes, e.g., genome-wide DNA sequencing, DNA methylation, gene
expression and copy number change, and the leveraging of multiple data types to draw inferences
about biological systems [44–46]. Recent TCGA datasets have associated the genomic profile of tumors
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with tumor immunity, which implicates the neoantigen burden in promoting T cell responses [47]
and identifies somatic mutations in relation to immune infiltrates [48]. The TRACERx (TRAcking
Cancer Evolution through therapy (Rx)) lung study is a multi-million pound research project taking
place since April 2014 [49], which will transform our understanding of NSCLC and take a practical
step towards an era of precision medicine. The study will reveal mechanisms of cancer evolution
by analyzing the intratumor heterogeneity in lung tumors from approximately 850 patients and
tracking its evolutionary trajectory from diagnosis through to relapse. The project enrolled patients
to obtain samples of surgically resected NSCLC tumors in stages IA through IIIA for high-depth,
multiregion whole-exome sequencing. TRACERx recently demonstrated that the immunological
profiles can vary dramatically among different regions of the same early-stage tumor, similar to
genomic heterogeneity, which can affect the prognosis of patients [50]. They also assessed immune cell
infiltration in 258 samples from 88 treatment-naïve, early-stage, lung cancers by histological analyses
and RNA sequencing. Intriguingly, heterogenous immune cell infiltration was associated with genomic
heterogeneity; intratumor variations in tumor mutation burden (TMB), may confound some putative
biomarkers for precision medicine. To examine the influence of tumor-infiltrating immune cells on
tumor evolution, neoantigen burden was compared and analyzed. An analysis of non-neoantigenic,
nonsynonymous mutations confirmed a significant reduction in expressed neoantigens—this depletion
was limited to tumors with intact HLA alleles and, again, to tumors with a high level of immune
cell infiltration, suggesting that these alterations are mediated by immune cells. These data suggest
that the immune profile can vary markedly within each tumor and that there is a heterogeneity of
immunoediting within the tumor, which affects tumor evolution.

The heterogeneity of immunoediting reflects the mutational burden of lung cancer [51], and the
TCR repertoire represents the breadth and strength of the T cell immune response [52]. The enriched
TCR repertoire in both tumors and the surrounding normal tissue are composed of thousands of
different TCR repertoires. Many of them are present at low frequency and a fraction contains bystander
T cell populations [53]. In contrast, the expanded intratumor TCR repertoire is differentially expressed
in the tumor compared to the adjacent normal tissue. Intriguingly, the number of expanded intratumor
TCR repertoires significantly correlates with the number of nonsynonymous mutations, and the
heterogeneity of intratumor TCR repertoire correlates with spatial mutational heterogeneity. Moreover,
the number of ubiquitous and regional TCRs correlates with the number of ubiquitous and regional
nonsynonymous mutations, respectively. Thus, heterogeneity of the mutation landscape can affect
immune landscape heterogeneity.

The immune microenvironment also affects tumor evolution at different metastatic organs [54,55].
Examining the influence of the tumor microenvironment on the metastatic potential of tumor cells has
been hindered by the vast diversity of infiltrating immune cells [56] as well as the extensive interactions
between tumor cells and neighboring normal cells [57]. Extensive analysis of a patient with metastatic
colorectal cancer during an 11-year-old spatiotemporal follow-up revealed that cancer clonal evolution
patterns during metastatic progression depend on the immune context at metastatic sites [58]. Moreover,
neoantigen depletion was observed in metastatic sites with high levels of tumor-infiltrating T cells [58].
The immunoedited tumor clones were eliminated, whereas the progressive clones were immune
privileged in spite of the presence of tumor-infiltrating immune cells [58,59]. Tumor immunoediting
influences both intra- and intertumor heterogeneity and sculpts tumor clonal evolution.

6. Neoantigen Derived from Mutation

6.1. Tumor Antigens

Tumor antigens can be differentiated into five categories: (i) viral antigens; (ii) differentiation antigens;
(iii) cancer-germline antigens; (iv) overexpressed antigens; and (v) neoantigens (Figure 6) [60–63]. As
antigens (i)–(iv) can be expressed in normal tissues as well as cancer tissues, these antigens are more
likely to promote immunological tolerance and are less likely to bring about effective anti-tumor immune
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responses [64]. However, neoantigens are supposed to be expressed exclusively in cancer cells due to
genomic mutations altering the amino acid sequence. This type of antigen is tumor-specific and can cause
an immune response sufficient to kill tumor cells when activated [65–68].
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Figure 6. Tumor antigens recognized by immune cells. Tumor antigens are categorized based on the
pattern of gene expression. The production of antigenic peptides by cancer cells is illustrated herein.
(A) Viral antigens are only expressed in virus-infected cells; (B) Differentiation antigens are encoded
by genes with tissue-specific expression; (C) Cancer-germline genes are expressed in tumors or germ
cells because of whole-genome demethylation; (D) Some genes are overexpressed in tumors owing to
increased transcription or gene amplification. The resulting peptides are upregulated on these tumors,
but also show a low level of expression in some noncancerous tissues; (E) However, mutated genes
may yield a mutant peptide (neoantigen), which is recognized as nonself by immune cells. CEA,
carcinoembryonic Ag; EGFR, epidermal growth factor receptor; EBV, Epstein-Barr virus; HPV, human
papillomavirus; hTERT, human telomerase reverse transcriptase; MAGE-A3, melanoma-associated
antigen 3; MART-1, melanoma antigen recognized by T cells-1; MCC, Merkel cell carcinoma. This
figure is adapted from our previous article [63].

Thus, tumor-specific antigens originating from cancer cell-specific gene mutation exist as nonself,
because they are absent in normal cells and present in cancer cells alone and are called “neoantigens.”
The peptide fragment (neoantigen) containing amino acid mutants processed from the mutant protein
of cancer cells binds to the MHC molecule and is presented on the cell surface. It can efficiently induce
highly reactive specific T cells without undergoing immunotolerance. Gene mutations of cancer cells
can be divided into driver mutations (directly associated with cellular oncogenesis) and passenger
mutations (not associated with cellular oncogenesis), and both can yield neoantigens [69]. Neoantigens
originating from driver mutations of BRAF, KRAS, and p53 have a high potential of being distributed
extensively among cancer patients [70]. A vaccine with wide applicability can be developed using
these antigens as the target [71]. If the driver mutation is set as the target, immune escape through
the loss of antigen from cancer cells is less likely to occur, and higher clinical efficacy is expected.
However, it is incorrect to conclude that the entire peptide sequence, including the part of the driver
mutation, is presented by APCs and recognized by T cells. In fact, driver mutations containing peptide
sequences less likely to be presented as the antigens are found more frequently in cancer cells [72].
In contrast, neoantigens originating from passenger mutation occur at a much higher frequency in
cancer cells. However, inter-individual variations in passenger mutations among patients make
their detection difficult using conventional technology. Recently, the development of next-generation
sequencers enables easier detection through whole-exome analysis [73,74]. In addition, gene fusions
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are also identified as a source of immunogenic neoantigens which can mediate anticancer immune
responses [75,76]. Their computational prediction from DNA or RNA sequencing data necessitates
specialized bioinformatics expertise to assemble a computational workflow including the prediction of
translated peptide and peptide-HLA binding affinity [73,76]. Thus, personalized cancer immunotherapy
may be developed by identifying neoantigen from the gene mutations (mostly passenger mutations),
which vary from one case to another and setting a target of treatment at the identified neoantigen.

6.2. Anti-Tumor Immune Responses by Neoantigen-Specific T Cells

In recent years, the clinical efficacy of immune checkpoint inhibitors has been demonstrated,
motivating the clinical use of these inhibitors in patients with various cancers [77,78]. However, since
the response rate to these inhibitors is low, exploration of efficacy-predictive biomarkers identifying
patients expected to respond to these inhibitors has been conducted worldwide, and close attention has
been paid to the tumor mutational burden as one possible predictor [79,80]. The responses to immune
checkpoint inhibitors correlate positively with the total number of gene mutations, and therapies using
these inhibitors have been reported to be particularly effective against cancers involving several gene
mutations due to extrinsic factors (ultraviolet ray, smoking, etc.) such as malignant melanomas and
squamous cell carcinomas of the lungs [81,82]. Furthermore, as an intrinsic factor, it has been reported
that patients with cancers involving the accumulation of gene mutations due to deficient mismatch
repairs (dMMR) respond more markedly to the anti-PD-1 antibody [83]. This antibody has been used
extensively in the clinical practice against many types of solid cancers, which often shows microsatellite
instability (MSI), a marker of dMMR [84]. It has been estimated that an increase in the number of gene
mutations in cancer cells is associated with an increase in the number of neoantigens formed from
such mutations, resulting in an increase in neoantigen-specific T cells, which are activated by immune
checkpoint inhibitors and manifest anti-tumor activity [83,85].

Recently, there has been an increase in the number of reports directly suggesting the presence
of neoantigen-specific T cells among cancer patients and the clinical significance of the presence of
such cells [86]. Zacharakis et al. infused tumor-infiltrating lymphocytes, containing four types of
neoantigen-specific T cell clones, into patients with breast cancer and concomitantly administered immune
checkpoint inhibitors to these patients and reported that the metastatic foci subsided and the cancer
was eradicated completely [87]. Moreover, several studies have also shown that when the antigenic
specificity of infused lymphocytes was investigated in cancer patients having survived years following T
cell infusion therapy, the neoantigen-recognizing T cell clones were identified with high frequency [88].
Thus, neoantigen-specific T cells are believed to play a central role in anti-tumor immune responses.

In addition, Anagnostou et al. demonstrated that among the patients with NSCLC that responded
to immune checkpoint inhibitors, the disappearance of a total of 41 neoantigens (7–18 antigens per
case) was noted in the four cases where the disease recurred [52]. The specific T cells against the
disappearing neoantigens were detected during the effective period, but decreased during disease
progression, suggesting that tumor reduction in response to immune checkpoint inhibitors is mediated
by immune responses to neoantigens and that the disappearance of neoantigens serves as one possible
mechanism for the development of resistance to therapy [52,89].

The immunosurveillance and immunoediting mechanisms of cancer exist, but the likelihood
of the manifestation of these mechanisms can vary depending on the cancer development process
or tumor microenvironments of different types of cancer [90,91]. Immunotherapy using immune
checkpoint inhibitors can trigger therapy-induced immunoediting (immune reconstruction) in some
cancers, possibly leading to the restoration of cancer elimination/equilibrium, while stimulating
therapy-induced tumor escape in others [52]. It is, therefore, necessary to understand the mechanisms
involved in immunoediting by cancer or therapy-induced immunoediting and devise a strategy capable
of preventing the disappearance of cancer antigens and avoiding therapy-induced tumor escape.
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7. Treg and Tumor Immunity

The immune system distinguishes self from nonself-molecules. Immunotolerance to self-molecules,
i.e., a lack of an immune response to molecules, allows the normal self-tissue to escape immune
system attacks. Lymphocytes possessing receptors binding strongly to self-antigens undergo apoptosis
following negative selection in the thymus, resulting in the elimination before maturation [92]. However,
stimulation of peripheral blood mononuclear cells by the tumor-self antigen can induce self-antigen
specific CD8+ T cells. Thus, elimination does not occur for all self-reactive T cells. Based on these
findings, it was anticipated that self-reactive T cells are regulated by some mechanisms and later that
Treg is involved in this mechanism [93,94].

Regulatory T cells (Treg) are a group of CD4 T cells that suppress various immune responses.
They express high levels of IL-2 receptor α chain (CD25), CTLA-4, and transcription factor FoxP3 [94].
CD25+CD4+ T cells account for approximately 10% of all CD4+ T cells found in the peripheral blood
of normal individuals [95]. Tregs are mostly formed in the thymus as a subset of T cells specialized in
immunosuppression. Part of Treg undergoes differentiation from naïve T cells in peripheral lymph
tissue (intestinal lymph tissue among others) under certain conditions. It enables self-immunotolerance
through the suppression of self-reactive immune responses and thus, plays an important role in the
suppression of autoimmune disease [96]. Thymus-derived Foxp3+CD25+CD4+ Treg is indispensable
for the introduction and maintenance of peripheral immune self-tolerance. For example, if peripheral
T cells of the same strain of normal mice are transferred into T cell-deficient nude mice after removal of
CD25+CD4+ T cells (removal of Treg from normal animals), autoimmune diseases such as thyroiditis
and gastritis develop spontaneously [97]. The onset of these diseases can be prevented by the
replenishment of the Treg. Furthermore, if the aforementioned mice are then inoculated with tumor
cells originating from the same strain of mouse, potent anti-tumor immune responses are induced [98].
If the proliferation of allografted antigen-specific Treg is attempted in the same experimental system,
immunotolerance for the organ graft can be induced [99].

In case of malignant tumors, Treg suppresses the anti-tumor immune responses, thus contributing
to the proliferation of tumor cells. The tumor tissues often have a large number of Treg that are
activated after stimulation with the antigen, and the presence of Treg in the tumor serves as a biomarker
of a poor prognosis [100].

Tregs manifest immunosuppressive functions via multiple mechanisms, with the most important
mechanism being the inhibition of T cell activation through the suppression of APCs [101,102].
Tregs constitutively express CTLA-4, which binds to the CD80/CD86 of APCs, causing their
downregulation and the suppression of their T cell activating capability [103,104]. In addition,
as Treg expresses high levels of CD25 (IL-2 receptor α chain), it has a high affinity for IL-2. Owing to the
transcription factor FoxP3 suppressing the expression of the IL-2 gene, Treg cannot produce IL-2 on its
own. Thus, it survives by consuming the IL-2 produced by other cells [105], resulting in the depletion
of IL-2 in local environments and making it impossible for effector T cells to become sufficiently
activated. Tregs also suppress immune responses by producing immunosuppressive cytokines such as
transforming growth factor-β (TGF-β) and IL-10 [100,106].

Therefore, if immunosuppression by Treg is controlled, anti-cancer immunotherapy may become
more effective. With this expectation, various attempts at removing Treg by targeting IL-2 and CD25
have been made but have been clinically ineffective. To the best of our knowledge, no agent capable of
removing Treg in a reliable manner has been developed to date [107].

In humans, FoxP3 can also be induced by stimulating naïve T cells using antigens, hence, it is
not completely Treg-specific. The appropriate definition of a Treg is essential in the development of
new drugs. Depending on the combination of CD45RA (a marker of naïve T cell) and FoxP3, FoxP3
positive T cells can be divided into three fractions: (1) CD45RA+FoxP3lowCD4+ T cell (naïve type Treg);
(2) CD45RA-FoxP3highCD4+ T cell (effector type Treg); and (3) CD45RA-FoxP3lowCD4+ T cell (non-Treg
without immunosuppressive activity) (Figure 7) [101,108]. Of these fractions, the effector type Treg has
the most potent immunosuppressive activity. Most of the Treg invading the tumor tissue is the effector
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type Treg, while naïve type Treg is abundantly seen in peripheral blood [109]. At present, attempts are
being made to develop new means of treatment by which the peripheral naïve type Treg is preserved
(by setting a target at the CCR4 selectively expressed on the effector type Treg) and anti-tumor immune
responses are activated by setting a target only at the effector type Treg in the tumor tissue [109,110].
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Figure 7. Foxp3+ T cell subset in the blood and tumor tissue. FoxP3lowCD45RA+ naïve Treg (Fr. I) can
be viewed as cells that have just been supplied from the thymus. If these naïve Treg are activated by the
TCR signal, CD45RA becomes negative and FoxP3 is upregulated, yielding FoxP3highCD45RA- effector
Treg (Fr.II). Effector Treg (Fr. II) expresses high levels of CCR4. Regarding FoxP3+ cells, the CD45RA
negative FoxP3low CD4+ T cell (Fr. III) which has no immunosuppressive activity is not Treg, but a
helper T cell producing IFN-γ or IL-17 when activated.

8. Tumor-Associated Macrophages (TAMs) and Tumor Immunity

Macrophages are cells, found in various tissues of the body, possessing diverse functions such
as ontogeny, homeostasis of organisms, tissue repair, and immune responses to pathogen infection.
They are conventionally viewed as differentiating from monocytes among leukocytes. In recent years,
however, it has been shown in multiple tissues that the macrophages indigenous in the tissue during
the fetal period undergo proliferation in that tissue [111,112]. More importantly, the macrophages that
invade the tumor stroma are called TAM and stimulate the development, progression, and metastasis
of tumors (Figure 8) [113–115]. In many tumors, TAM is recruited into microenvironments by CCL2,
CSF-1, IL-10, TGF-β, etc. secreted from cancer cells. CSF-1 plays a particularly important role in TAM
as it contributes not only to TAM differentiation, but also invasion into tumor tissue [116]. Owing to
these activities, the proliferation of Lewis lung carcinoma cells implanted subcutaneously is suppressed
in mice functionally lacking CSF-1 [117]. In a mouse model of breast cancer, defects of CSF-1 caused
delays in the development of metastatic tumors [118].

Two representative mechanisms are known for the immunosuppressive activity of TAM. The first
involves regulation through direct interactions with immunocompetent cells [119]. Here, TAM
suppresses the activation of the immune mechanism by the direct transmission of negative signals
to the immunocompetent cells [119]. It expresses immune checkpoint molecules, such as PD-L1 and
CD80/CD86, which are recognized by PD-1 and CTLA-4, respectively, present on the CTL, resulting in
inactivation of these CTLs [120]. Furthermore, TAM expresses HLA-G and HLA-E, which are suppressive
MHC-1 molecules [121]. HLA-G is recognized by LIT-2 (leukocyte immunoglobulin-like receptor 2)
expressed on CD4+ T cells, resulting in suppressed activation of these cells [120]. Similarly, HLA-E is
recognized by NKG2 on natural killer cells, resulting in suppressed migration of these cells and suppressed
secretion of IFN-γ [120]. The second mechanism involves the recruitment of Treg. TAM regulates immune
responses by recruiting Treg into the tumor microenvironment [121]. TAMs are known to recruit natural
Treg into tumor tissues by producing chemokines (CC-chemokine ligands: CCL3, CCL4, CCL5, CCL20,
CCL22) [122]. Furthermore, by producing IL-10 and TGF-β, TAM activates the transcription factor Foxp3
of CD4+ T cells, possibly contributing to the induction of inducible Treg [121,123].
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Other than these mechanisms, immune responses are regulated by chemokines, cytokines,
etc. secreted from TAM and cancer cells. For example, chronic pathogen infections stimulate
the continuous production of inflammatory cytokines (IFN-γ, TNF, IL-6, etc.) by macrophages,
resulting in chronic inflammation [124]. Such a state of chronic inflammation may stimulate tumor
progression. Furthermore, TAM induces cancer cell migration, infiltration, intravascular invasion and
neovascularization needed for tumor growth, and this can lead to tumor metastasis [122]. For example,
in breast cancer, CSF-1 secreted from cancer cells and vascular endothelial growth factor (VEGF)
secreted from TAM mutually stimulate the secretion of these factors, resulting in the acceleration
of tumor infiltration and intravascular invasion [125]. TAM is also involved in remodeling of the
tumor microenvironment through the expression of proteases such as matrix metalloproteinase (MMP),
cathepsin S, urokinase type plasminogen activation factor, and matrix remodeling enzymes, such as
lysyl oxidase and SPARC [122]. These proteases cut the extracellular matrix and create free space
around the tumor, thus stimulating the secretion of growth factors, such as heparin-binding epidermal
growth factor (HB-EGF) and resulting in tumor infiltration and metastasis [122].

Macrophages also play an important role in tumor neovascularization. TAMs secrete
neovascularization factors, such as VEGF, TNF, IL-1β, IL-8, PDGF, and FGF and are thus, involved in
the stimulation of neovascularization around the tumor [126]. In the tumor microenvironment, a low
oxygen supply (hypoxia) can arise from malnutrition, extracellular pH reduction, and insufficient blood
flow. For cancer cells to survive, hypoxia needs to be avoided by inducing neovascularization and
increasing blood flow to the tumor environment—the hypoxia inducible factor (HIF) plays an important
role in this process. Excessive activation of HIF by TAM is often seen, resulting in the stimulation of
VEGF expression and enhancement of neovascularization [127]. The molecular mechanism for this
process has been increasingly elucidated. Recent studies have demonstrated that the lactic acid formed
by cancer cell’s energy metabolism stabilizes TAM, resulting in the induction of VEGF expression [128].

The involvement of macrophages in tumor metastasis has also been observed in various studies.
For example, in the foci of lung cancer metastasis, a small blood clot collecting cancer cells is first formed.
Then, CCL2 is secreted from these cancer cells and recruits CCR2+Ly6c+ inflammatory monocytes,
resulting in differentiation into Ly6c-metastasis associated macrophage (MAM) [129,130]. The monocytes
and MAM recruited into the foci of metastasized tissue stimulates extravascular migration of cancer
cells through VEGF expression. Moreover, cancer cell VECAM1 (CD106) is linked to MAM’s integrin α4
(VECAM1 counter-receptor), and MAM is involved in increases in metastatic cancer cell viability and
tumor growth [129,130]. Likewise, defects in MAM inhibit tumor growth [125]. As illustrated below,
TAM enables the tumor to escape immunity through diverse mechanisms (Figure 8).
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Figure 8. Roles of TAM in the tumor environment. TAM has the nature of M2-macrophage,
directly suppressing the CTL, but also producing mediators involved in neovascularization, tumor
infiltration/metastasis, and Treg migration/maintenance. The immunosuppressive activity is represented
as a blue line and the tumor-stimulating activity as a red line.



Int. J. Mol. Sci. 2020, 21, 597 14 of 34

9. Methods of Overcoming Tumor Immunoediting

9.1. Success of Immune Checkpoint Inhibitors in NSCLC Patients

The anti-CTLA-4 antibody is the first immune checkpoint inhibitor used for effective cancer
treatment [131]. Its primary action points are the effective T cells and Tregs in the priming phase
(Figure 9). Animal models and human samples reveal the induction of effector T cell activation
and decrease the number of Treg in the regional lymph node and tumor following anti-CTLA-4
treatment [132,133].

The anti-PD-1 antibody is an immune checkpoint inhibitor that was clinically introduced after the
anti-CTLA-4 antibody [134]. Its primary action is the activation of cancer-specific effective cells in the
effector phase (Figure 9). Uncombined anti-PD-1 antibody treatment results in long-lasting anti-tumor
activity against various types of cancer, including lung cancers [135]. In a clinical study concomitantly
using anti-CTLA-4 antibody in patients with melanoma, treatments with this antibody yielded a high
response rate of 52% [136].

PD-L1 is a ligand for PD-1 and is expressed primarily on APCs and tumor cells. It binds to PD-1
expressed on cytotoxic lymphocytes and suppresses the function of these lymphocytes. The expression
of PD-L1 is correlated with a poor prognosis of many types of cancer, including melanomas, ovarian
and pancreas cancer [137,138]. Anti-PD-L1 is also clinically available at present. The response rate
reported to date is slightly lower than that of anti-PD-1 antibody, but a similar clinical efficacy has
been reported [139].

Lymph nodes Tumor tissue

naïve T cells activated T cells

CD80/86

CD28
CTLA-4

tumor cells

anti-CTLA-4 Ab

PD-L1

PD-1

anti-PD-1 Ab

dendritic cells

A B

Figure 9. Immune checkpoint structure between tumor cells and immune cells. Tumor antigens
are presented to T cells via the interaction between the major histocompatibility complex and T cell
receptors, which is the primary signal for activating T cells. Several sub-signals function as negative
modulators of the immune response at different molecular checkpoints. (A) The cytotoxic T-lymphocyte
associated protein 4 (CTLA-4) is induced in T cells at the time of the priming phase. CTLA-4 is
expressed on the cell surface in proportion to the amount of antigen stimulation, and then CTLA-4
binds to CD80/86 with greater affinity than CD28, leading to specific T cell inactivation; (B) The binding
of programmed cell death ligand 1 (PD-L1) to PD-1 prevents T cells from killing tumor cells in the body.
Blocking the binding of PD-L1 to PD-1 with an immune checkpoint inhibitor allows the T cells to kill
the tumor cells. This figure is adapted from our previous article [63].

Immune checkpoint inhibitors (ICIs) significantly advanced the treatment of NSCLC. The efficacy of
ICIs targeting the PD-1/PD-L1 axis in NSCLCs has been demonstrated even in early-stage patients [140–143].
Long-term follow-up data demonstrate that immunotherapy has great potential for a long-term response.
The results of KEYNOTE-024 and -042 support the monotherapy of pembrolizumab, immunoglobulin
(Ig) G4-kappa monoclonal antibody against PD-1, as the first-line treatment for PD-L1-positive NSCLC
patients [78,144]. Specifically, KEYNOTE-024 (randomized, open-label, phase III trial) showed that
pembrolizumab significantly improved progression-free and overall survival (OS), as compared to
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platinum-based chemotherapy in patients with previously untreated NSCLC with PD-L1 high expression.
Subsequent analysis of KEYNOTE-024 showed that the median OS was 30.0 months (95% CI, 18.3 months
to not reached) with pembrolizumab and 14.2 months (95% CI, 9.8–19.0 months) with chemotherapy
(hazard ratio, 0.63; 95% CI, 0.47–0.86). The first-line pembrolizumab monotherapy demonstrated an OS
benefit over chemotherapy in previously untreated NSCLC patients [145].

Landmark analyses of pooled data from large clinical trials of nivolumab, IgG4 monoclonal
antibody directed against PD-1, in previously treated NSCLC patients (CheckMate 017, 057, 063,
and 003) showed that the four-year OS rate with nivolumab was 14% (95% CI 11–17) for all patients—19%
for patients expressing PD-L1 and 11% for those without PD-L1 expression [146]. Thus, NSCLC
patients treated with nivolumab achieved greater response durations compared with patients treated
with docetaxel, resulting in a long-term survival benefit.

It has been reported that platinum-based chemotherapy can increase the sensitization of tumors
to ICIs by increasing tumor-infiltrating immune cells [147]. KEYNOTE-021 was the first trial that
successfully combined platinum-based chemotherapy and ICIs for previously untreated advanced
NSCLC patients [148]. Recently, KEYNOTE-189 and -407 showed significantly improved patient
survival rates following the administration of pembrolizumab combined with conventional cytotoxic
chemotherapy. Intriguingly, the magnitude of survival benefits was similar irrespective of PD-L1
expression [149,150]. The randomized phase III clinical trial, IMpower150, reached their primary
endpoint and demonstrated that enrolled patients gained better survival and fewer risks from the
combination therapy: atezolizumab and chemotherapy, as compared to monotherapy with chemical
agents. This trial concluded that the combination therapy resulted in better progression-free survival
(PFS) rates than the monotherapy in the PD-L1 high expression and negative groups; in contrast,
there were no significant differences of PFS between treatment groups in the PD-L1 low expression
group, indicating that biomarkers for patient selection need to be further explored [151,152].

CTLA-4 is the first known immune checkpoint and is exclusively expressed on T cells [153].
Ipilimumab, IgG1 monoclonal anti-CTLA-4 antibody, was the earliest ICI approved by the FDA.
The randomized phase III trial of ipilimumab combined with paclitaxel and carboplatin did not
prolong OS of patients with advanced squamous NSCLC compared to the chemotherapy alone [154].
The combination of anti-PD-1 and anti-CTLA-4 ICIs has shown a manageable tolerability profile with
anti-tumor activity and clinical benefit [155]. Based on this result, TMB has emerged as a potential
biomarker of benefit, and a phase III trial was conducted to examine PFS with nivolumab plus
ipilimumab versus chemotherapy among NSCLC patients with high TMB (≥10 mutations/Mb) [156].
The median PFS was 7.2 months (95% CI, 5.5–13.2 months) with nivolumab plus ipilimumab versus
5.5 months (95% CI, 4.4–5.8 months) with chemotherapy (hazard ratio, 0.58; 97.5% CI, 0.41–0.81).

As described above, ICIs have demonstrated durable survival benefits for advanced NSCLC
patients. However, response rates to ICIs remain suboptimal, and many patients who initially
respond to treatments ultimately developed progressive disease during follow-up monitoring [157,158].
Therefore, the next steps in developing novel immunotherapies are essential.

9.2. Treg-Targeting Treatment

Generally, effective anti-tumor immune reactions can be induced by gaining an upper hand
in the quantitative and functional balance between the tumor-attacking effector T cells and Treg
in a direction favoring the former. This can be achieved by monoclonal antibodies with various
immunobiological activities (e.g., cytotoxic, blocking, and agonistic activities) to a variety of functional
molecules. Prolonged systemic removal/decrease of Treg and suppression/attenuation of its function
may induce autoimmunity as seen following anti-CTLA-4 antibody treatment [93,159]. However,
short-term or local administration of this antibody, setting a target at a Treg subset, can induce strong
anti-tumor immune responses without the side-effect of autoimmune diseases. The following may be
listed as new regimens of cancer treatments targeting the Treg.
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The use of anti-CCR4 antibodies enables the removal of CCR4-expressing Treg that invades the
cancer tissue and could reinforce the induction of cancer-specific T cells [160]. The percentage of cancer
antigen-specific cytotoxic lymphocytes has been shown to increase after treatment with an anti-CCR4
antibody from the pretreatment level in patients with adult T cell leukemia [109]. Simultaneously,
treatment with the CCR4 antibody can prevent autoimmunity because the naïve Treg in blood and
lymph tissue is preserved. Thus, as an intrinsic factor, anti-CCR4 antibody mogamulizumab is now
under a phase I trial for its use in combination with nivolumab, etc., for the treatment of solid cancers
(e.g., NSCLC).

Both OX-40 and GITR are expressed on activated T cells and are molecules belonging to the TNF
superfamily [22]. OX-40 and GITR are constitutively expressed on Treg. These molecules suppress the
function of Treg and activate the effector T cells. In mice, treatment with agonist antibodies to OX-40
and GITR result in a decrease of Treg and reinforced anti-tumor immune responses in the presence of
various cancers [161,162]. In humans, the anti-tumor immune responses of OX-40 against malignant
melanoma and renal cell carcinoma have already been confirmed in a phase I study [163]. Presently,
clinical trials on OX-40 are underway (including its use in combination with anti-PD-L1 antibody) in
patients with various types of cancer.

What is immunologically important for various methods of cancer treatment, is that effective
anti-cancer immune responses may be suppressed if Treg is recruited and stimulated by the autoantigen,
tumor antigen, or local inflammation released or induced because of the injury of the cancer cells.
The removal/decrease of Treg or attenuation of Treg’s suppressive activity is expected to reinforce the
efficacy of other anti-cancer immunotherapies [135]. For example, the anti-tumor activity of cancer
vaccines administered independently is usually insufficient, but the efficacy of cancer vaccinations
after Treg removal deserves evaluation. Furthermore, if the immune checkpoint therapy effectively
activates the effector T cells, its anti-tumor activity may be reinforced by a decrease or removal of
Treg [135]. Thus, advances in new anti-cancer immunotherapy targeting the Treg are promising.

9.3. TAM-Targeting Cancer Treatment

Because TAM regulates the development, progression, and metastasis of tumors, cancer treatment
methods targeting the macrophages are now under development. For example, because the chemokine
CCL5 of cancer cell origin is important in recruiting macrophages, a CCL5 receptor inhibitor was
administered to mouse models of breast cancer [164]. This resulted in a decrease in the macrophages
invading the tumor and a reduction of the tumor size. In addition, CCR2 inhibitors are now
being developed to inhibit the CCL2-CCR2 interactions, which induce the migration of peripheral
blood monocytes to the tumor tissue. When the CCR2 inhibitor was administered independently,
the anti-tumor activity was limited. However, more potent anti-tumor activity was reported when it
was used in combination with conventional chemotherapy [165].

M2 macrophages contribute to anti-inflammatory reactions and tumor growth, while M1 macrophages
(proinflammatory macrophages) are involved in anti-tumor responses. Based on this view, an attempt
is now being made to suppress tumorigenesis by causing polarization of TAM into M1 macrophages.
For example, the administration of CpG and anti-IL-10 antibody to mice induced polarization of M2
macrophages into M1 macrophages, resulting in tumor cell death [166]. Furthermore, inhibition of SHIP1,
an important phosphatase inducing M2 macrophages from M1 macrophages, has been shown to inhibit
the polarization of M1 macrophages into M2 macrophages and cause an increase in M1 macrophage
invasion, resulting in intensified anti-tumor responses [167]. In humans, close attention has been paid to
the CSF-1R inhibitor/inhibitory antibody. This is now under clinical trials for development to remove
TAM by inhibiting the signals of CSF-1 (a macrophage survival/differentiation factor). Drugs targeting
the signal transduction pathway mediated by NF-κB or STAT3 and anti-D40 agonistic antibody, PI3Kγ

inhibitors and histone deacetylase inhibitors are also expected to manifest anti-tumor activity through
regulation of TAM’s immunosuppressive activity, particularly through stimulation of differentiation into
M1-like macrophage and activation of anti-tumor immunity [112,168].
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Treatment aimed at reactivation of macrophage phagocytosis is an approach targeting the
modification of TAM using antibodies such as the CD47 inhibitory antibody. The antibody is expected
to reinforce anti-tumor immunity by promoting antigen presentation triggered by phagocytosis. In a
clinical study involving malignant lymphoma patients, approximately half of the patients responded
to the treatment with this antibody when combined with an anti-CD20 antibody [169].

These drugs targeting the TAM are expected to improve the efficacy of existing chemo-, radio-,
and immuno-therapies by activating anti-tumor immune responses and have the potential of expanded
applicability to patients poorly responding to existing therapies.

9.4. Phagocytosis Checkpoint Inhibitors

The innate immune response is vital for activating the adaptive immune system through a process
of cross-priming, wherein APCs mediate the processing and presentation of antigens to naïve T cells,
leading their activation [170]. Integral to this bridging process between innate and adaptive immunity
is the ability of APCs to engulf tumor cells through phagocytosis—a multistep cellular event, including
recognition of the target cell, cellular engulfment, and lysosomal digestion, which are regulated
by receptor–ligand interactions between the target cell and the APCs (Figure 10) [171]. Although
non-cancerous cells can escape phagocytosis by expressing anti-phagocytosis molecules, tumor cells
heavily depend on similar mechanisms to evade the immunosurveillance by APCs (Figure 10) [171,172].
Hence, the therapeutic use of phagocytosis checkpoints in tumor cells might open a new avenue for
the development of immunotherapies to inhibit tumor immune escape. The CD47-signal-regulatory
protein α (CD47-SIRPα) axis is the first identified tumor phagocytosis checkpoint (Figure 10) [173,174].
Inhibiting the CD47-SIRPα interaction promotes the phagocytosis of tumor cells, which can be achieved
therapeutically using anti-CD47 or anti-SIRPα antibodies. In the clinical setting, CD47-SIRPα axis
blocking agents are nowadays being evaluated in many clinical trials, either as monotherapies or in
combination therapies (Table 2) [175]. In vitro, dual blockade of the PD-1-PD-L1 axis and CD47-SIRPα
induced immune cell activation and suppressed tumor growth and metastases in a mouse xenograft
model. The combination of the CD47-SIRPα axis and PD-1-PD-L1 axis blockade therapies could serve
as next-generation immunotherapy to inhibit innate and adaptive immune checkpoints (Table 2) [176].
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Figure 10. Innate immune checkpoint. The intercellular signal CD47-SIRPα system, formed by the
signal regulating protein (SIRP) α and membranous protein CD47 located in the cell membrane of
macrophages with phagocytosing capability functions as an innate immune checkpoint. (A) If the SIRPα
on macrophage binds to CD47 on cancer cells, the cancer cells release a phagocytosis avoidance signal
for macrophages to escape phagocytosis; (B) If this checkpoint function is inhibited, the macrophage
begins tumor cell phagocytosis.
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Table 2. Clinical trials investigating phagocytosis checkpoint blockades.

Clinical Trials,
Gov Identifier Phase Intervention Trial Design Cancer Type Primary End Points

Monotherapy
Trials

NCT03763149 I Anti-CD47 antibody (IBI188) Dose escalation advanced malignancies
and lymphoma

safety and
tolerability

NCT02678338 I Anti-CD47 antibody (Hu5F9-G4) Dose escalation hematological
malignancies tolerability

NCT02216409 I Anti-CD47 antibody (Hu5F9-G4) Dose escalation solid tumors safety and
tolerability

NCT03834948 I Anti-CD47 antibody (AO-176) Dose escalation
Dose expansion solid tumors safety and

tolerability

NCT03013218 I high-affinity SIRPα fusion
protein (ALX148) Dose escalation solid tumors and

lymphoma
dose-limiting

toxicity

NCT03512340 I Anti-CD47 antibody (SRF231) Dose escalation
Dose expansion

solid tumors
hematological
malignancies

safety and
tolerability

Combination Trials

NCT02367196 I
Anti-CD47 antibody (CC-90002)

alone or in combination with
rituximab

Dose escalation
solid tumors and

hematological
malignancies

safety and
tolerability

NCT02663518 I
SIRPαFc (TTI-621) alone or in

combination with rituximab or
nivolumab

Dose escalation
relapsed/refractory

hematological and solid
malignancies

safety and
tolerability

NCT02890368 I

SIRPαFc (TTI-621) alone or in
combination with an

anti-PD-1/PD-L1 agent,
pegylated IFNα2a, T-VEC or

radiation

non-randomized
parallel

assignment

solid tumors and
mycosis fungoides

optimal delivery
regimen

NCT03248479 Ib
Anti-CD47 antibody (Hu5F9-G4)

alone or in combination with
azactidine

non-randomized AML and MDS safety and
tolerability

NCT02953509 Ib/II Anti-CD47 antibody (Hu5F9-G4)
in combination with rituximab

single-arm,
non-randomized

refractory/relapsed
non-Hodgkin

lymphoma

safety and
tolerability

NCT02953782 I/II Anti-CD47 antibody (Hu5F9-G4)
in combination with cetuximab

single-arm,
non-randomized solid tumors and CRC safety and

tolerability

9.5. Cancer Vaccines

DCs are a diversified group of specialized APCs with main functions in the initiation and regulation
of innate and adaptive immune responses [177]. In the cancer microenvironment, the anti-tumor
functions of DCs are impaired. Reduced availability of FMS-like tyrosine kinase 3 ligand (FLT3L)
in the microenvironment suppresses terminal differentiation of DCs [178], and cytokines, such as
IL-6, IL-10, and TGFβ, can affect both in situ and bone marrow generation of DCs [179]. Tumors can
prevent the infiltration of DCs by limiting the expression of DC chemo-attractants, such as CCL4,
and avoid detection by suppressing the release of activating molecular cues [180]. DC maturation is
prevented by soluble mediators, such as IL-10, TGFβ, IL-6, or VEGF, which interfere with activation
signals [177,180]. The tumor microenvironment is rich with immunosuppressive factors that limit the
immunostimulatory capacity of DCs.

Restoring normal DC function is a powerful weapon to combat tumors. Targeted delivery of
tumor antigens and adjuvants to DCs can improve the anti-tumor activity of DCs. C-type lectin
receptors show a diverse expression pattern on DCs and have been used as preferential target receptors,
such as DEC205, CLEC9A, and CLEC4A4 [181–183]. Antibody-conjugated antigens with adjuvant
outperformed non-conjugated antigens. The full-length New York esophageal squamous cell carcinoma
1 (NY-ESO-1) antigen fused to anti-DEC205 antibodies promotes additional CD8+ T cell activation
compared to uncoupled NY- ESO-1 [184]. In a phase I clinical trial, treatment of cancer patients with
cutaneously injected NY- ESO-1 coupled to anti-DEC205 with resiquimod (R-848) and/or poly-ICLC
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increased the production of antigen-specific antibodies and T cells, leading to partial clinical responses
without toxicity [185]. Delivery of adjuvants and antigens to DCs in vivo by targeting DC-restricted
receptors is expected to enhance efficacy and reduce the side effects of adjuvants (Figure 11).
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Figure 11. Diagram for peptide vaccine. If a peptide vaccine originating from a cancer antigen is
inoculated into a patient, the peptide is taken up by the DCs, resulting in the presentation of the antigen
to the CTL. This antigenic stimulus induces proliferation and activation of CTL, resulting in specific
injury/killing of the cancer cells presenting the cancer antigen peptide.

Cancer vaccine therapy is aimed at rejecting cancer through the administration of cancer
antigen-derived CTL epitope peptide into humans and reinforcement of the immune responses
by the peptide-specific CTL (Figure 11) [177]. Cancer vaccines have gained significant popularity
in recent years as a precision medicine approach to cancer immunotherapy. There are currently
three therapeutic cancer vaccines approved by the FDA: Oncophage for kidney cancer, Sipuleucel-T
for hormone-refractory prostate cancer, and BCG for early-stage bladder cancer [186]. In lung
cancer, the self-adjuvanting mRNA cancer vaccine, CV9202, targeting NY-ESO-1, MAGEC1, MAGEC2,
survivin, 5T4, and MUC1 is in clinical trial in combination with radiotherapy for advanced NSCLC
patients [187,188] (Table 3). Another mRNA-derived cancer vaccine, CV9201, was well-tolerated with
median PFS and OS of 5.0 months (95% CI 1.8–6.3 months) and 10.8 months (95% CI 8.1–16.7 months)
from the first administration, respectively. Two- and three-year survival rates were 26.7% and 20.7%,
respectively [188]. The combination of the cancer vaccine and anti-PD-1 ICI treatment is also in clinical
trial for advanced NSCLC patients. Viagenpumatucel-L is a cell-based vaccine derived from a secreted
heat shock protein, gp96-Ig, from an NSCLC cell line that induces antigen-specific T cell activation [189].
A phase II study (NCT02439450) is currently enrolling patients to investigate whether vaccination
with viagenpumatucel-L combined with nivolumab or pembrolizumab is safe for advanced NSCLC
patients stratified based on high or low levels of tumor-infiltrating lymphocytes (TILs).
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Table 3. Tumor-associated antigens used to activate DCs.

Tumor Antigens Proteins Specificity Advantages Disadvantages

Differentiation
antigens

MART1, GP100,
PAP, CEA Low

high prevalence,
cheap off-the-shelf products,

allow conjugation

high probability of
nonspecificity and side

effects

Overexpressed
antigens

WT1, MUC1,
ERBB2 Low

high prevalence, cheap
off-the-shelf products, allow

conjugation

high probability of
nonspecificity and side

effects

Viral antigens HPV-, EBV-derived
proteins High very specific, allow conjugation limited prevalence of

virus-associated tumors

Cancer-Germline
antigens

NY-ESO-1, MAGE,
GAGE, BAGE High specific, cheap off-the-shelf

products allow conjugation not exclusive to cancer

Mutated
neoantigens

mutated tumor
neoantigens Highest very specific, allow conjugation expensive, labor- and

technology intensive

Whole tumor
antigens

lysate of cancer
material Variable

no need for neoantigen
identification, contain additional

DC-activating factors

limited cancer material,
uncontrolled material

The clinical use of DC vaccines for cancer has been broadly investigated, with many trials [177].
However, because the number of DCs is small, it is uncertain whether or not the information about the
cancer antigen can be transmitted to the CTL reliably. For this reason, the DC vaccine therapy, involving
the coculture of artificially cultivated DCs with the cancer antigens outside the body and subsequently
returning these cells into the patient’s body, has recently been developed [177]. This approach is
comprised of the isolation or in vitro generation and amplification of autologous DCs, their ex vivo
manipulation, and reinfusion into patients (Figure 12).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 21 of 34 
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Figure 12. Adoptive transfer of autologous, antigen-loaded and activated DCs. Natural DC subsets
and blood monocytes are isolated from blood and monocytes are cultured in vitro, differentiating
into monocyte-derived DCs (MoDCs). After ex vivo activation and antigen loading, autologous DCs
are reinfused into the patient to induce and activate antigen-specific T cells with strong efficacy and
minimal side effects.

These studies have been predominantly performed in patients with prostate cancer, melanoma,
renal cell carcinoma or glioblastoma due to the immunogenic nature of these cancers. Notably,
they demonstrated the clinical efficacy and safety of DC vaccination to induce anticancer immune
responses [190–192]. The only clinically approved DC vaccine to date is sipuleucel-T (Provenge),
which comprises autologous DCs loaded with a recombinant fusion protein composed of GM-CSF
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and prostatic acid phosphatase. It was shown to improve the median OS of patients with prostate
cancer [193]. Recently, the efficacy of DC vaccines is expected to be further improved by tuning the
ideal amount of antigen loading and prompting DC maturation.

It is the quality, not quantity, of tumor neoantigens that may best predict responses to
immunotherapies and the likelihood of long-term survival among patients with cancer [194] (Table 2).
A patient-specific, personal approach targeting multiple epitopes derived from tumor neoantigens
appears to be the most plausible precision medicine approach. Neoepitopes encoded by tumor
mutations are identified and estimated based on sequencing information from tumor and germline
cells, expression validation by RNA sequencing and mass spectrometry, and prediction of peptide
binding to HLA molecules [195]. Personal vaccines directed at neoantigens can induce robust immune
responses in the peripheral blood and trafficking of neoantigen-specific T cells into tumors, leading to
anti-tumor activity in preclinical models [196]. Personal cancer vaccine directed at tumor neoantigens
enabled by recent sequencing techniques and big data analysis is promising and will likely reach the
clinic in recent years.

9.6. Chimeric Antigen Receptor T Cell and Bispecific Antibodies for Lung Cancer

Adoptive immunotherapy with gene-engineered chimeric antigen receptor (CAR) T cells is a
concept involving massive and reliable preparation of T cells with the capability of directly attacking
the cancer cells through genetic engineering and administration of such cells to the patients (Figure 13).
It has obtained clinical proof of concept in hematologic cancers [197]. CAR-T cells can recognize proteins,
sugar chains, and lipids on the cell surface without being restricted by MHCs and can therefore also deal
with the cancer cells from which HLA has been lost [198,199]. In particular, CD19 is an exemplary target
antigen in B cell leukemia and lymphoma [200,201]. However, in solid tumors, it is difficult to design
CAR-T cells, because no surface antigens as specific as CD19 have been identified [202]. Many clinical
trials to investigate the effects of CAR-T cells in advanced lung cancer patients have been initiated,
including tumor-associated antigens of EGFR, HER2, and CEA [203]. One clinical trial of EGFR-specific
CAR-T cells for NSCLC (NCT01869166) had reported its preliminary results—45.5% (5/11) of advanced
NSCLC patients achieved stable disease, and two achieved partial responses. Treatment-related adverse
events were manageable, indicating its potentials for treating NSCLC [204]. However, there are still
some challenges to overcome in CAR-T therapy for solid tumors. First, off-target effects are the primary
causes of increased toxicity. The targeted tumor-associated antigen can be expressed in other tissues or
organs than the lung, which may lead to unexpected treatment-related toxicity. Second, because solid
tumor are highly heterogenous, the CAR-T cells which attack a single target molecule is less effective
against cancer cells with reduced or lacking target molecule. Third, the tumor microenvironment
suppresses the immunoactivity of CAR-T cells. Thus, while promising, CAR-T cell-based therapies
will require some refinements, such as (i) identification of neoantigens with higher tumor specificity;
(ii) development of next-generation CAR-T with elevated potential of gathering in the tumor tissue;
(iii) regulation of immunosuppression in tumor microenvironment, to be used more broadly.
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Figure 13. Cell therapy concept diagram (A) The Fab portion, corresponding to the surface antigen of
the target tumor cell, is utilized in the form of single-chain antibody, and the signal transduction site
(CD3ζ) of the T cell receptor and the CD28 (a co-stimulatory molecule for T cells) are fused to it, to
yield CAR; (B) CAR is introduced by means of gene transfer with a retrovirus vector into T cell, to yield
CAR-T cell. The T cell collected from the patient is genetically modified ex vivo, to yield CAR-T cell,
which is infused into the patient after expanded culture.

10. Future Perspective

For anti-cancer immunotherapies to be effective against more types of cancers in a larger number
of patients, it is important to develop composite anti-cancer immunotherapy made of a combination
of various treatment methods. The basic concept is combining multiple treatment strategies capable
of correcting and reinforcing each step during the “cancer immune cycle” (Figure 1) [8]. The cancer
immune cycle involves numerous immunocompetent cells/molecules and gene anomalies, and the
steps developing disorders, often in combination, and their cause vary from one patient to another.
To create effective anti-cancer immunotherapies, it is essential to assess the entirety of the immune
status in each tumor and reactivate the cancer immune cycle through the rational combination of
treatment methods so that anti-tumor immune reactions may be induced. For example, the combination
of Treg suppressor and immune checkpoint inhibitor and the combination of immunocompetent cell
activation promoter and immune checkpoint inhibitor are promising. For now, it is expected that the
development of various composite anti-cancer immunotherapies based on the PD-1/PD-L1 blockade
will be advanced and introduced clinically, further elevating the importance of immunotherapy in
cancer treating strategies.

11. Conclusions

The cancer immunosurveillance and immunoediting mechanism hypotheses began with
the proposal of the attractive concept “recognition of the immune system by cancer” and has
stimulated discussion over the effective, but incomplete control of cancer by the immune system.
Thus, the importance of neoantigens based on individual cancer mutations has begun attracting
close attention. The extreme success of ICIs in advanced tumors, especially in lung cancer and
melanoma, has elucidated how our immune system can be leveraged to eradicate cancers. ICIs have
broken new ground in the cancer therapy field. However, there are still many patients suffering from
advanced cancers with no hopeful treatment options. Moreover, a new challenge is that tumors can
acquire resistance to ICIs. To overcome these problems, we will need to more deeply understand
the fundamental mechanisms of cancer escape from the immune system and develop new treatment
strategies. The fight against cancer to utilize the immune system has just begun and is still budding.
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We anticipate that the next generation of cancer immunotherapies will be one step closer to the
eradication of cancer.
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MHC I Major histocompatibility complex class I
PD-L1 Programmed cell death ligand 1
CTLA-4 Cytotoxic T-lymphocyte associated protein 4
NK Natural killer
HLA Human leukocyte antigen
LOH Loss of heterozygosity
NSCLCs Non-small-cell lung cancers
TCGA The Cancer Genome Atlas
TRACERx TRAcking Cancer Evolution through Therapy (Rx)
TCR T cell antigen receptor
ICIs Immune checkpoint inhibitors
Ig Immunoglobulin
OS Overall survival
PFS Progression-free survival
TMB Tumor mutation burden
APCs Antigen-presenting cells
CD47-SIRPα CD47-signal-regulatory protein α

DCs Dendritic cells
FLT3L FMS-like tyrosine kinase 3 ligand
TGFβ Transforming growth factor- β
CCL CC-chemokine ligand
VEGF Vascular endothelial growth factor
NY-ESO-1 New York esophageal squamous cell carcinoma 1
TILs Tumor-infiltrating lymphocytes
CAR Chimeric antigen receptor
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