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Abstract

Motivation: Microbial species identification based on matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) mass spectrometry (MS) has become a standard tool in clinical microbiology. The resulting MALDI-
TOF mass spectra also harbour the potential to deliver prediction results for other phenotypes, such as antibiotic re-
sistance. However, the development of machine learning algorithms specifically tailored to MALDI-TOF MS-based
phenotype prediction is still in its infancy. Moreover, current spectral pre-processing typically involves a parameter-
heavy chain of operations without analyzing their influence on the prediction results. In addition, classification algo-
rithms lack quantification of uncertainty, which is indispensable for predictions potentially influencing patient
treatment.

Results: We present a novel prediction method for antimicrobial resistance based on MALDI-TOF mass spectra. First,
we compare the complex conventional pre-processing to a new approach that exploits topological information and
requires only a single parameter, namely the number of peaks of a spectrum to keep. Second, we introduce PIKE, the
peak information kernel, a similarity measure specifically tailored to MALDI-TOF mass spectra which, combined with a
Gaussian process classifier, provides well-calibrated uncertainty estimates about predictions. We demonstrate the util-
ity of our approach by predicting antibiotic resistance of three clinically highly relevant bacterial species. Our method
consistently outperforms competitor approaches, while demonstrating improved performance and security by reject-
ing out-of-distribution samples, such as bacterial species that are not represented in the training data. Ultimately, our
method could contribute to an earlier and precise antimicrobial treatment in clinical patient care.

Availability and implementation: We make our code publicly available as an easy-to-use Python package under
https://github.com/BorgwardtLab/maldi_PIKE.

Contact: caroline.weis@bsse.ethz.ch or karsten.borgwardt@bsse.ethz.ch

1 Introduction

Matrix-assisted laser desorption ionization time-of-flight (MALDI-
TOF) mass spectrometry (MS) has become an established tool for
the identification of microbes—such as bacteria and fungi—both in
the clinical routine as well as in microbiological research (De Bruyne
et al., 2011). Microbial samples are typically cultured overnight and
single cultures are transferred to a MALDI-TOF target plate, where
the matrix solution is added. The matrix permits larger molecules to
stay stable while the laser fragments and ionizes the probe. The in-
tensity and mass-to-charge (m=z) ratio of molecules are determined
in a time-of-flight analyser. Despite fragmentation being an inher-
ently stochastic process, the output spectrum over the mass-to-
charge-ratio of the particles is known to be highly characteristic for
different microbes. Each recorded spectrum typically contains sev-
eral ten thousand measurements points in a range of 2–20 kDa.
MALDI-TOF mass spectra provide an overview of the microbial
composition and therefore providing a foundation for predicting

bacterial characteristics, such as species or antimicrobial resistance
properties (Weis et al., 2020). Because the inference of bacterial spe-
cies from MALDI-TOF mass spectra is extremely reliable for most
species, MALDI-TOF MS became the main technique for rapid spe-
cies determination in clinical microbiology. MALDI-TOF MS in-
strument manufacturers (BioMérieux, 2018; Bruker Daltonics,
2018) provide a full pipeline, from performing MALDI-TOF MS
measurements of the cultured isolate to species identification.
Nevertheless, species identification from MALDI-TOF mass spectra
remains an active field of research, with several active research
directions: (i) species-level identification of bacteria [at present some
bacteria, such as Burkholderia cepacia complex or Citrobacter
freundii complex, are not identifiable at the species level; please refer
to the microorganism list at https://www.bruker.com/products/
mass-spectrometry-and-separations/fda-cleared-maldi-biotyper-usa/
overview.html.], (ii) substrain identification (Chen et al., 2015;
De Bruyne et al., 2011; Fangous et al., 2014; Wang et al., 2018) and
(iii) potentially reducing the required 24 h culture time for MALDI-
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TOF measurements by using single-cell MALDI-TOF MS technol-
ogy (Papagiannopoulou et al., 2019).

1.1 Antibiotic resistance prediction
We envision another potentially ground-breaking line of research to
be the prediction of antimicrobial resistance properties from
MALDI-TOF mass spectra. Infections with antimicrobial-resistant
bacteria are associated with high patient mortality and healthcare
costs (Cassini et al., 2019) and rapid introduction of effective anti-
microbial treatment is vital. Current routine methods for antimicro-
bial susceptibility testing require an additional culture step of 24 h
to 72 h after MALDI-TOF MS measurement. Having antimicrobial
resistance phenotyping at the time of MALDI-TOF measurement
would eliminate this critical time delay. Previous work (Ho et al.,
2017; Mather et al., 2016; Sogawa et al., 2017) already recognized
the potential of applying machine learning to MALDI-TOF mass
spectra for antibiotic resistance prediction. However, the scope of
these studies is limited by (i) relatively small numbers of spectra of
often less than 100 isolates, (ii) the use of machine learning algo-
rithms that are not specifically adapted to the application problem,
and (iii) a focus on detecting single peaks (or small subsets of peaks)
for the purpose of providing a full discrimination between resistant
and susceptible samples. This restricts the applicability to highly-
specific scenarios and precludes generalizable classification algo-
rithms. In addition, we find that several aspects of resistance predic-
tion pipelines are not analyzed in sufficient detail, including the pre-
processing and subsequent representation of MALDI-TOF mass
spectra as input features for machine learning classification
algorithms.

Pre-processing and machine learning models. While open-source
(Gibb and Strimmer, 2012, MALDIquant) and commercial software
(Bruker Daltonics, 2018, ClinProTool) are available to process
and analyze MALDI-TOF mass spectra, standard pre-processing
involves several steps with numerous parameter choices, which are
often not justified (see Section 3.1 for a more detailed discussion).

In general, pre-processing, followed by an additional binning
step, gives rise to fixed-length feature vectors (De Bruyne et al.,
2011; Mather et al., 2016; Vervier et al., 2015), making it possible
to apply numerous standard machine learning techniques. However,
binning summarizes similar m=z values such that information about
the precise m=z positions is lost. We hypothesize that machine learn-
ing techniques that are capable of handling varying-length (m=z, in-
tensity) pairs can lead to gains in classification performance. Even
though several such techniques exist, the analysis of MALDI-TOF
mass spectra has not been targeted yet by the machine learning com-
munity. To the best of our knowledge, no machine learning methods
have been developed specifically for the task of antimicrobial resist-
ance prediction from MALDI-TOF mass spectra. Moreover, when
providing resistance prediction in a clinical setting, classifiers need
to satisfy additional requirements, the most crucial one being the
need to provide uncertainty estimates for their predictions. This is
because any predictor will be faced with microbial isolates that are
under-represented—or even completely absent—from the training
data. The classification result should yield a reliable answer in such
cases as well. A classifier should therefore be capable of refusing to
provide a prediction if it cannot reliably do so.

Our contributions. We develop a novel approach for resistance clas-
sification from MALDI-TOF mass spectra that exploits information
through a kernel, the Peak Information Kernel (PIKE), that was spe-
cifically developed for MALDI-TOF mass spectra. Together with a
Gaussian process (GP) classifier, PIKE is capable of performing sam-
ple classification with additional confidence estimates. We conduct
a thorough evaluation in several species and antibiotic resistance
prediction scenarios, and compare different pre-processing techni-
ques. In addition, we investigate the confidence estimates of differ-
ent classifiers and show their respective performance when provided
with out-of-distribution samples. To the best of our knowledge, this
article constitutes the first study that considers confidences for

antimicrobial resistance prediction based on MALDI-TOF MS.
Finally, in order to encourage method development by the commu-
nity, we make the code used for the analysis and a Python-based
MALDI-TOF processing library publicly available.

1.2 Dataset
The University Hospital Basel provided 2676 MALDI-TOF
mass spectra from their clinical routine measurements collected
in the year 2018. The spectra include three species, Escherichia
coli (E. coli, n ¼ 1068), Klebsiella pneumoniae (K. pneumoniae,
n¼603) and Staphylococcus aureus (S. aureus, n ¼ 1005). Table 1
summarizes the characteristics of the dataset. All MALDI-TOF mass
spectra were measured using the Bruker Microflex Biotyper instru-
ment, which provided the species label within its flexControl
Software [Bruker Daltonics flexControl v. 3.4; Bruker Daltonics,
2018]. The spectra are stored in the proprietary Bruker flex data
format, which was read and exported to text files using the R pack-
age MALDIquant (Gibb and Strimmer, 2012). We use the suscepti-
bility phenotypes for antibiotics considered in treating the respective
species, namely (i) amoxicillin/clavulanic acid, ceftriaxone and
ciprofloxacin for E. coli, (ii) ceftriaxone, ciprofloxacin, and pipera-
cillin/tazobactam for K. pneumoniae, and (iii) amoxicillin/clavulanic
acid, ciprofloxacin and penicillin for S. aureus. Susceptibility pheno-
types are derived from minimal inhibitory concentration (MIC) val-
ues, which were measured using microdilution assays (BioMérieux,
2018, VITEKVR 2). Following the EUCAST Breakpoint tables v7.1–
8.1 (EUCAST, 2018), the measured MIC values were converted into
three susceptibility categories, namely susceptible, intermediate or
resistant. We binarised the susceptibility categories for classification,
with the positive class assigned to resistant and intermediate samples
and the negative class assigned to susceptible samples. The positive
(resistant and intermediate) class constitutes the minority class for
all species—phenotype combinations except for S. aureus and peni-
cillin. We discard all samples that did not feature one of the suscepti-
bility categories susceptible, intermediate or resistant. Such missing
labels might be due to omitted measurements for that antibiotic or
an ambiguous result of the microdilution assay. Our goal is to pro-
vide the most challenging classification scenario attainable in order
to approximate real-world clinical applications as closely as
possible.

2 Materials and methods

Our methods consist of two separate parts: (i) a novel peak detection
scheme based on a topological sparsification of spectra, which
requires only a single parameter and exhibits beneficial computa-
tional performance, and (ii) a new kernel designed specifically for
working with said sparse spectra representations.

2.1 Topology-based peak detection
We develop a simple peak detection method based on the concept of
persistence from computational topology (Edelsbrunner and Harer,
2010). Given a compact domain D � R

d and a scalar-valued

Table 1 Summary statistics of the dataset that we used for all

experiments in this article

Species Antibiotic # samples % resistant

E. coli amoxicillin/clavulanic acid 1043 28.9

ceftriaxone 1060 20.4

ciprofloxacin 1051 29.7

K. pneumoniae ceftriaxone 597 15.1

ciprofloxacin 596 16.8

piperacillin/tazobactam 576 13.9

S. aureus amoxicillin/clavulanic acid 973 13.7

ciprofloxacin 987 14.7

penicillin 941 71.4
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function f : D! R, the basic idea of persistence involves pairing the
critical points of f, i.e. minima, maxima and saddles, with each
other. Specifically, a (local) maximum is paired with a (local) min-
imum (or, equivalently, a saddle) depending on its relation to other
maxima. This is analogous to a mountain range, in which a peak is
paired with the highest valley that needs to be passed to reach an
even higher peak. Mathematically, this pairing requires analyzing the
superlevel sets of f, i.e. sets of the form Lþf ðcÞ :¼ fx 2 D j f ðxÞ � cg
for c 2 R. If Lþf ðcÞ is non-empty, two points (x, y) and ðx0; y0Þ, with
y ¼ f ðxÞ and y0 ¼ f ðx0Þ are said to be connected in Lþf ðcÞ if the path
between them is a subset of Lþf ðcÞ; we denote this by writing x�cx

0.
Since Lþf ðcÞ � L

þ
f ðc0Þ for c0 � c, points that satisfy x�cx

0 also satisfy
x�c0x

0 for all c0 � c. It is therefore sufficient to find the first, i.e. the
largest, value of c for which the two points are connected. We refer to
this value as the partner of x. The following function assigns each
point (x, y) with f(x) ¼ y to its partner by evaluating a pairing func-
tion pf : D! R defined by

x 7! supfc � f ðxÞ j 9x0 6¼ x : f ðx0Þ � f ðxÞ ^ x�cx
0g: (1)

The function pf maps a point x 2 D to a function value c such that it
is possible to reach a point with a higher function value from x with-
in Lþf ðcÞ. For the global maximum, where no such point exists, we
set sup1 :¼ minx f ðxÞ.

Intuitively, the pairing can be seen as calculating a topographic
prominence of a peak in mountaineering: a point has low promin-
ence if pf ðxÞ � f ðxÞ, whereas a point has high prominence if
pf ðxÞ � f ðxÞ. For d ¼ 1, we can compose f and pf to obtain a
prominence map Df : D! R�R

x 7!
�

f ðxÞ; f 	 pf ðxÞ
�

(2)

that maps each point x 2 D to a point in the Euclidean plane. Given
x 2 D and Df ðxÞ ¼ ða; bÞ, we refer to the quantity ja
 bj as the
persistence—or prominence—of x and denote it by persðxÞ. The
map described by Equation (2) is known to be stable with respect to
perturbations (Cohen-Steiner et al., 2007); two functions f and f 0

that are close to each other (with respect to the Hausdorff distance)
will result in close maps according to Equation (2). The case for MS
data, where d ¼ 1, has two advantages: (i) persistence values can be
calculated in Oðn log nÞ, with n denoting the cardinality, i.e. the
number of points in the spectrum, and (ii) the persistence values can
be used directly to transform the spectrum. Specifically, for any
spectrum f : R! R, most of the points will be mapped directly to
the diagonal by Df ; only critical points of f, i.e. maxima, minima,
and saddles, exhibit non-trivial assignments and non-zero persist-
ence values.

Persistence transformation. Given a point x 2 R in the domain of a
spectrum f, we transform it to its persistence values so that we ob-
tain a new transformed spectrum ~f : R! R with ~f ðxÞ :¼ persðxÞ,
and refer to this operation as the persistence transformation (PT).
Figure 1 depicts an example. The PT automatically results in a peak
detection because local maxima exhibit high persistence values by
construction. Moreover, the transformed spectrum can be repre-
sented as a sparse set of tuples by considering only the k largest
peaks and their corresponding position; this also implies that PTs
form a nested sequence of subsets for increasing values of k. The re-
sult is a set of k tuples with values from R

2; we will subsequently
show how to build a classifier that can exploit the sparsity to pro-
vide high-quality predictions with additional confidence estimates.

2.2 PIKE: peak information kernel
Kernels constitute a class of functions that can be employed to quan-
tify the similarity of objects by evaluating an inner product in a
reproducing kernel Hilbert space (RKHS). The appeal of kernel
methods stems from their versatility and their expressivity: it is pos-
sible to apply them in contexts such as classification, regression, or
visualization, and an infinite-dimensional RKHS is capable of
describing nuances in the data. This contributes to the popularity of

these methods in numerous application domains (Borgwardt, 2011;
Schölkopf et al., 2004). Here, we develop PIKE, the Peak
Information Kernel. PIKE is inspired by heat diffusion on structured
objects (Belkin and Niyogi, 2002; Reininghaus et al., 2015) and can
capture the interactions between individual peaks. It is specifically
geared towards working with sets of tuples and does not require a
spectrum to be represented by a fixed-length feature vector.

Subsequently, we will work in the space of square-integrable
functions over the real line, i.e. functions in L2ðRÞ. We assume that
each spectrum is a set of tuples S :¼ fðx1; k1Þ; ðx2; k2Þ; . . .g, with xi

denoting a m=z value, and ki 2 R>0 denoting an intensity. For
x 2 R, let dx denote a Dirac delta function centred at x. Moreover,
let u(x, t), with u : R� R>0 ! R, denote the solution to the follow-
ing heat diffusion partial differential equation:

@u

@t
¼ r2u (3)

lim
t!0

uðx; tÞ ¼
X

i

kidxi
; (4)

We write the boundary condition in Equation (4) as a limit because
Dirac delta functions are not L2ðRÞ functions but they can be
approximated by them. Intuitively, the limit means that each spec-
trum is represented as a sum of Dirac delta functions, with appropri-
ate scale factors ki 2 R>0 that correspond to the height—the
intensity—of a peak. This PDE affords a closed-form solution (Roe,
1988, Chapter 7) as

uðx; tÞ ¼ 1

2
ffiffiffiffiffi
pt
p

X
i

ki exp 
ðx
 xiÞ2

4t

� �
; (5)

which satisfies uðx; tÞ 2 L2ðRÞ because the individual functions are
square-integrable and L2ðRÞ is a Hilbert space, which is closed with
respect to addition of functions. In terms of kernel theory, the solu-
tion u(x, t) can also be seen as a feature map, i.e. a map from the
space of functions into L2ðRÞ. Given a spectrum S and t 2 R, we de-
note this feature map by UtðSÞ :¼ uSðx; tÞ, where the additional
index indicates that S was used as an input. The feature map UtðSÞ
affords an intuitive description, with t taking on the role of a
smoothing parameter that controls the influence of other peaks in
the spectrum. For increasing values of t, the spectrum will become
progressively more smooth, and individual measurements will not
be as pronounced any more. Figure 2 depicts this smoothing
process.

Calculating the kernel. To use the feature map as a kernel, i.e. for
calculating the similarity between two spectra, we calculate the

Fig. 1. A schematic illustration of our proposed pre-processing workflow for a raw

spectrum (top) without any alignment or pre-processing steps. Our persistence

transformation (bottom) yields a simplified and cleaner representation of the spec-

trum. The interpretation of the y-axis changes from an intensity to a persistence.

The transformed spectrum can be easily converted to sparse tuples by taking the k

most persistent peaks
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inner product of L2ðRÞ. Given spectra S and S0 (of potentially differ-
ent cardinalities) with m=z values xi and x0j, plus intensities ki and k0j,
respectively, this inner product is defined as

ktðS; S0Þ :¼ hUtðSÞ;UtðS0ÞiL2ðRÞ :¼
ð
R

UtðSÞUtðS0Þdx; (6)

for which we can obtain a closed-form approximation as

ktðS; S0Þ �
1

2
ffiffiffiffiffiffiffi
2pt
p

X
i;j

kik
0
j exp 


ðxi 
 x0jÞ
2

8t

 !
: (7)

It is also possible to solve Equation (7) exactly, but this solution will
involve additional error function factors, which for all practical val-
ues of spectra are equal to 1, so we ignore them in our implementa-
tion. As a sum of exponential functions of a squared Euclidean
distance with positive weights ki and k0j, Equation (7) is known to be
positive definite (Feragen et al., 2015), making it a valid kernel.
However, while Equation (7) is positive definite for positive inten-
sities, we need to ensure that each intensity k satisfies k � 1. Else,
the product of two intensities will become progressively smaller,
resulting in a lower similarity between two spectra. This issue can be
easily mitigated in practice by applying an additional normalization
step to mass spectra.

Properties. PIKE is capable of assessing interactions between differ-
ent peaks. Following Equation (7), we see that the distance between
all pairs of peaks is used in its calculation. The advantage of this is
that no feature vectors are required; PIKE can operate directly on
sets of tuples, corresponding to a set of peaks. Thus, PIKE is highly
flexible and automatically deals with spectra of different cardinal-
ities. This flexibility comes at the price of scalability: since all pairs
of peaks are compared, PIKE cannot be readily (it would be possible
to restrict Equation (7) to ‘nearby’ peaks, but we consider such
extensions to be future work) applied to thousands of measure-
ments. This is not a limitation in practice, though, as most spectra
feature only hundreds of ‘true’, i.e. non-noisy, peaks. In addition,
PIKE only features a single parameter, i.e. t, that controls the

smoothing. Since Equation (7) is differentiable with respect to t, this
parameter can be optimized by any classifier to obtain a kernel that
is specifically tailored to a given problem domain. Specifically, keep-
ing a single spectrum S fixed, we have

@ktðS; SÞ
@t

¼ ktðS; SÞ
X

i;j

�
ðxi 
 xjÞ2 
 4t

�
4t2

; (8)

which can be efficiently implemented, thus making the kernel amen-
able to standard optimization techniques. Depending only on a sin-
gle parameter also simplifies choosing one PIKE instance in practice:
if PIKE is optimized on different splits of a dataset, the mean of the
respective t parameters can be used to create an overall model. We
will demonstrate the utility of this procedure in the experimental
section.

Related work. Despite the prevalence and prominence of kernel
methods in other domains, there are few kernel approaches for deal-
ing with MS data so far. Zhan et al. (2015) describe several kernels
for metabolomics data that are obtained from MS measurements.
Their kernels are restricted to structured feature vectors. In contrast,
PIKE can handle spectra (or their subsets) directly. Brouard et al.
(2016) define kernels for comparing spectra with each other, but
their methods require the existence of fragmentation trees, i.e. add-
itional information about the fragmentation process of a molecule.
Such information cannot be easily obtained in our application scen-
ario; in fact, many additional kernels (Dührkop et al., 2015;
Heinonen et al., 2012; Shen et al., 2014) rely on the existence of
such a tree, whereas PIKE does not require any external information
beyond the spectra themselves.

2.3 Gaussian processes for classification
In this work, we rely on GPs for classification based on the derived
kernel. This is motivated by the ability to (i) select the kernel hyper-
parameters using type II maximum likelihood, and (ii) reject out-of-
distribution samples due to well-calibrated confidence estimates.
Item (ii) is particularly relevant in clinical settings, where we prefer
a method to notify practitioners if a decision, i.e. a classification,
cannot be performed reliably. Briefly put, GP is a stochastic process
for which every finite collection of variables follows a multivariate
Gaussian distribution. GPs can be used as lazy learners that predict
the outcome of a task, such as classification, based on a kernel. The
subsequent introduction follows the book by Rasmussen and
Williams (2006). In general, a GP can be seen to describe a distribu-
tion over functions f ðxÞ where f : X ! Y and X represents the data
domain and Y the prediction domain. A GP can be completely speci-
fied by its mean function mðxÞ and kernel function kðx;x0Þ which,
based on an observed function f ðxÞ, are defined as:

mðxÞ :¼ E½f ðxÞ�
kðx; x0Þ :¼ E½ðf ðxÞ 
mðxÞÞðf ðx0Þ 
mðx0ÞÞ� (9)

We can then denote a GP as f ðxÞ � GPðmðxÞ; kðx; x0ÞÞ, which is
equivalent to defining a prior over functions, where the kernel k cap-
tures how the function can vary over its domain. GPs are particular-
ly attractive because its conditional distributions are themselves
Gaussian distributions and may thus be computed in a closed form.
We are interested in the posterior distribution of function values f�
at the location of the test points X�, while conditioning on the train-
ing data X. For regression tasks, we want to compute the predictive
distribution f�jX�;X; f, which can be written as a normal distribu-
tion, parameterized by a covariance matrix, which is in turn eval-
uated using the kernel function, between the instances in the
training set and the test set, respectively. This gives rise to conven-
tional GP regression, where we optimize or sample the kernel and
noise parameters according to the marginal likelihood of the model
pðyjXÞ ¼

Ð
pðyjf;XÞpðfjXÞdf, which can be computed analytically.

Afterwards, the predictive mean and predictive variance can be
derived in closed form.

Fig. 2. A depiction of the feature map u(x, t) of a given spectrum. The initial raw

spectrum consists of single peaks whose influence is slowly diffused over the whole

space. Increasing t minimizes the influence of a single peak
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Extension to classification scenarios. We are primarily interested in
using GPs in a classification scenario. For a binary classification
problem, the latent function f� is transformed using the logistic func-
tion r to represent probability estimates of the classes, resulting in a
distribution of label predictions p�. The prediction consists of two
steps. First, the distribution of the latent function f� at the test points
x� is computed conditional on the observed training data and labels
via

pðf�jX; y;x�Þ ¼
ð

pðf�jX; x�; fÞpðfjX; yÞdf; (10)

where pðf jX; yÞ ¼ pðyjfÞpðfjXÞ=pðyjXÞ is the posterior over the la-
tent variables. Afterwards, predictions can be made based on the dis-
tribution of f� by passing the function values through r and
computing the expectation of the label distribution, i.e.
pðy� ¼ 1jX; y; x�Þ ¼ E½p�� ¼

Ð
rðf�Þpðf�jX; y; x�Þdf�. These integrals

cannot be computed in a closed form and require approximation
techniques. Following standard practice (Rasmussen and Williams,
2006, Chapter 3.4), we use a Laplace approximation, where the pos-
terior pðfjX; yÞ in Equation (10) is approximated by a Gaussian dis-
tribution around the maximum of the posterior. All GPs in this
work were trained by applying type II maximum likelihood opti-
mization on the training data with respect to the kernel hyperpara-
meters using the non-linear L-BFGS-B optimization algorithm
(Pedregosa et al., 2011).

3 Experiments

In the following, we describe our experimental setup. We address two
different scenarios, namely (i) a thorough analysis of classification per-
formance, and (ii) an analysis of classifier confidence estimates.

3.1 MALDI-TOF MS pre-processing
The conventional open-source software to pre-process MALDI-TOF
mass spectra is the MALDIquant package. We employed this pack-
age to execute the following commonly used eight-step pre-process-
ing pipeline: (i) transforming the measured intensities using the
square-root method, (ii) smoothing the spectra using the Savitzky–
Golay method with a half-window size of 10, (iii) removing the
baseline using the SNIP method with 20 iterations, (iv) normalizing
the intensity using the total ion current (TIC) method, such that the
intensities of every spectrum sum to 1, (v) detecting peaks with a sig-
nal-to-noise ratio (SNR) of 2, with the noise estimated by the MAD
method and using a half-window size of 20, (vi) among the detected
peaks, defining reference peaks with a minimum frequency of 90
and a tolerance of 0.004, (vii) warping the spectra/peaks along the
m=z-axis using common reference peaks using a linear warping
function and a tolerance of 0.002 and finally (viii) trimming the
spectra/peaks to a m=z range of 2–20 kDa. All pre-processing com-
ponents written in italics are methods and parameter choices that
can be adjusted. To reflect the common practice, we have selected
parameters provided in the official MALDIquant documentation
(Gibb, 2019). The reference peak detection deviates from the docu-
mentation, as the tolerance parameter had to be loosened from
0.002 to 0.004 in order to find common warping peaks among the
dataset. Our selected MALDIquant parameters are consistent with
previous work (Mather et al., 2016).

These pre-processing steps are contrasted by our PT pipeline,
which, after applying the topology-based peak detection, only
requires a single normalization procedure as in step 4 of the conven-
tional pre-processing pipeline, making it possible to subsequently
extract the k largest peaks. While we could consider k to be a hyper-
parameter for the PT pre-processing, we restricted our experiments
to k ¼ 200 peaks to remain comparable with the MALDIquant pre-
processing, which keeps 216 peaks on average.

3.2 Experimental setup and LR baseline
Setup. We evaluate all classifiers on five different random splits,
each consisting of 80% training and 20% testing data. The splits are

stratified, such that the class ratio is consistent for training and test-
ing. We report the mean and standard deviation of performance
measures with respect to these splits. In order to select the hyper-
parameters of the logistic regression classifier, 5-fold cross valid-
ation is applied to each random split individually. The classifier was
then refit on the complete training data using the derived hyperpara-
meters for each split. The cross-validation procedure is not necessary
for the GP classifier, as we can derive the values for continuous
hyperparameters by maximizing the log marginal likelihood of the
data.

Logistic regression baseline. Logistic regression is often used to ana-
lyze MALDI-TOF MS spectra. This powerful method requires a
fixed-size feature vector for all samples. Following the literature, we
construct the feature vector by distributing the MALDI-TOF MS
peaks into a histogram with bins of equal size. If two peaks fall into
the same bin, we accumulate their weight. To enable comparability
with the GP classifier (see Section 2.3), we balance the class ratio of
the training data by performing oversampling on the minority class,
which in eight out of nine cases is the resistant class. Strictly speak-
ing, this is not required for logistic regression, though. Moreover,
we do not apply this procedure when testing the classifiers. The full
classification pipeline consists of the binning step, followed by a
standardization step (ensuring that the feature vectors in the training
set have mean zero and unit variance). We finally train a logistic re-
gression classifier on the resulting vectors, using a detailed hyper-
parameter grid that varies the number of bins (300, 600, 1800 and
3600), the logistic regression regularization (L1, L2, elastic net, and
no regularization), and the penalty factor C (10
4; 10
3,
10
2; 10
1, 100, 101, 102, 103 and 104).

3.3 Antibiotic resistance prediction
In the first experimental scenario, we analyze the performance of
different models for predicting antibiotic resistance, following the
labels defined in Section 1.2. Given the class imbalance in the testing
data, we use the area under the precision–recall curve (AUPRC) as a
performance metric. Higher values are desirable, as they indicate
that a classifier is capable of predicting the minority class.

Summary of the results. Table 2 depicts all results for this scenario.
We apply both logistic regression (LR) and GP to spectra that were
either transformed by a conventional MALDIquant pre-processing
(MQ) or by an agnostic topological pre-processing (PT) method. For
the GP classifiers, we use our novel PIKE kernel, which works with
inputs of varying size, and a standard RBF kernel, which requires
fixed-length feature vectors (similar to the LR classifiers). Since RBF
kernels are known to perform well in other applications (Zhan
et al., 2015), we employ them here in order to disentangle to what
extent classification performance is driven by the GP or by the
choice of a kernel. Using the conventional pre-processing, our pro-
posed method MQ–GP–PIKE reaches the best performance for every
species–antibiotic combination, in many cases outperforming the
LR classifier by a large margin. We generally observe that different
experiments reach markedly different levels of improvement over
the baseline. For example, while K-CIPRO and K-PIPTAZO have
similar prevalences (Table 1), the improvements for K-PIPTAZO are
much higher. There are several potential reasons for this, such as (i)
different mechanisms leading to resistance that might not be cap-
tured to a similar extent by MALDI-TOF mass spectra, or (ii) resist-
ance mechanisms that can be transferred horizontally (e.g. through
bacterial conjugation), leading to a less pronounced correlation be-
tween phylogenetic composition and resistance properties.
However, analyzing the specific causes would require a separate
analysis for each scenario (antibiotic and species), which is beyond
the scope of this article. In the following, we will analyze our results
primarily from a classification perspective.

Superior performance of the MQ–GP–PIKE method. The superior
performance of our kernel in conjunction with a GP can be
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explained by two factors. First, we note that PIKE is capable of con-
sidering non-linear interactions between peaks. This is particularly
important for MALDI-TOF mass spectra because (i) during the de-
sorption steps of MALDI-TOF MS, intact proteins can be frag-
mented into several smaller ions; the presence of a protein in the
original cell will need to be indicated at several positions, and (ii)
while most fragments receive a single charge during ionization,
some fragments receive a higher charge and are measured at smaller
m=z-values. A second advantage of PIKE is its compatibility with a
GP classifier. A GP classifier performs a continuous maximum likeli-
hood optimization through optimization such as L-BFGS-B. In con-
trast, other (kernel-based) classification algorithms such as support
vector machines, optimize their hyperparameter via cross-validated
grid searches over pre-defined parameter ranges, making it harder to
find the best values for continuous parameters.

Variance between splits of spectra. For all experiments, we observe
that even though train-test splits are stratified by class, the classifica-
tion performance varies highly between different splits. This phe-
nomenon is independent of the classifier. We hypothesize that this
behaviour might be a result of the underlying phylogenetic structure
of the microbial MALDI-TOF MS data. Bacterial strains are subject
to constant evolutionary change, with separate events causing anti-
biotic resistance in different evolutionary branches. Therefore, there
is a latent structure in the data that may lead to distributional differ-
ences between training and testing data, for instance in case all re-
sistant spectra of a specific evolutionary branch get sampled into the
testing data. Controlling for these differences would require add-
itional measurements of the respective samples. In terms of the sta-
bility of parameters, however, we observe that the two GP–PIKE
methods converge to similar parameter values of t for every split,
making it possible to create a ‘joint’ classifier by taking the mean of
t. In contrast, the LR classifier optimization scheme results in differ-
ent parameters for each split—not even the choice of regularization
scheme is consistent. While this does not adversely impact classifica-
tion performance on individual splits, we observe that in several
cases, taking the optimal parameters from one split and applying
them to another split leads to convergence errors. Such a behaviour
is problematic when designing a classifier for clinical applications,
as it prevents training a final classifier with a single set of
parameters.

Influence of GPs. As the GP columns in the table demonstrate, the
choice of kernel is crucial for obtaining good classification perform-
ance. A simple RBF kernel, which is unable to handle interactions
between peaks, is always outperformed by MQ–LR, except for
K-CEF, where the large standard deviation precludes a general as-
sessment. On the other hand, PT–GP–PIKE, using our topology-

based pre-processing, outperforms MQ–LR, the conventional pre-
processing, in four experiments—in the case of K-CEF even by a
large margin. It is outperformed by MQ–GP–PIKE in all cases,
though, which prompted an analysis of the influence of the pre-
processing.

Influence and idiosyncrasies of different pre-processing methods.
When comparing the AUPRC of the logistic regression on conven-
tionally pre-processed spectra (MQ–LR) to our agnostic topological
pre-processing (PT–LR), we observe that conventional pre-
processing leads to a higher performance in most cases.
Nevertheless, for the majority of several species–antibiotic combina-
tions, the mean performance of PT–LR is only slightly worse than
that of MQ–LR. In two scenarios, namely S-AMOXCLAV and
K-PIPTAZO, this method even surpasses MQ–LR. This is notable
because the conventional MALDIquant pre-processing is not applic-
able for datasets with large ranges of species, since the warping step
requires common peaks that co-occur in all spectra—if spectra are
too different, no meaningful peaks can be found. Moreover, using
the commonly determined peaks constitutes a form of information
leakage between the train and test dataset, which should be avoided.
Our PT, in contrast, is conceptually simpler and does not exhibit
any leakage. For some scenarios, it may constitute a viable alterna-
tive, in particular considering that non-linear transformations such
as peak warping can still be applied to it. We think that investigating
alternative pre-processing methods is relevant for future research.

3.4 Confidence analysis of antibiotic resistance

predictions
Next to classification scenarios, for which it is relevant to optimize
measures such as AUPRC, we consider an analysis of confidence
estimates (a measure of the reliability of predictions) to be crucial in
two different scenarios. First, for samples situated close to the deci-
sion boundary of a classifier, no confident class assignment can be
performed. Second, for out-of-distribution samples, i.e. samples
coming from outside the training distribution, no class assignment
should be performed because for these samples, no classifier can reli-
ably predict a label, and the best decision would be to reject the sam-
ple, thus refusing to make a prediction rather than performing an
uninformed guess. While the first scenario is common to every clas-
sifier, the second scenario is crucial in clinical settings, particularly
in the case of performing antimicrobial resistance predictions: sam-
ples collected from infected patients are not guaranteed to follow
the same distribution that was used for training, as an infection
could potentially come from a bacterial strain not included in the
training data, e.g. from a strain that was picked up during
travelling.

Table 2 Results of all methods given by mean average precision (AUPRC) 6 standard deviation on the test fold for five random splits

Experiment Species Antibiotic MQ–LR PT–LR MQ–GP–RBF PT–GP–PIKE MQ–GP–PIKE

E-AMOXCLAV E. coli amoxicillin/clavulanic acid 40.96 6 7.41 35.72 6 2.70 32.50 6 8.48 38.89 6 2.03 47.07 6 3.85

E-CEF ceftriaxone 63.22 6 6.08 58.04 6 3.14 46.29 6 24.00 62.78 6 3.19 70.64 6 3.21

E-CIPRO ciprofloxacin 61.37 6 8.52 55.14 6 3.84 34.65 6 10.71 54.02 6 4.04 67.99 6 3.01

K-CEF K. pneumoniae ceftriaxone 58.20 6 9.79 56.47 6 6.26 58.72 6 25.29 72.38 6 9.03 77.04 6 6.82

K-CIPRO ciprofloxacin 41.71 6 9.82 35.04 6 7.74 30.88 6 13.54 40.15 6 13.29 54.63 6 10.12

K-PIPTAZO piperacillin/tazobactam 31.58 6 6.81 38.62 6 8.65 13.79 6 0.00 48.95 6 9.90 56.46 6 9.68

S-AMOXCLAV S. aureus amoxicillin/clavulanic acid 52.88 6 3.91 55.21 6 4.08 13.85 6 0.00 61.02 6 12.45 69.15 6 9.15

S-CIPRO ciprofloxacin 34.11 6 3.26 26.30 6 6.16 23.32 6 11.88 30.51 6 2.95 39.37 6 6.62

S-PEN penicillin 79.66 6 3.34 79.61 6 4.66 74.15 6 3.15 80.67 6 1.92 83.17 6 3.54

Note: In the abbreviated names, a pre-processing method is followed by a classifier, which is in turn followed by a kernel (if applicable). For example, PT–GP–

PIKE refers to persistence-transformed features and a GP classifier with our PIKE kernel. Both the logistic regression (LR) and GP using MALDIquant (MQ) fea-

tures used peaks selected by MALDIquant, with a mean of 216 peaks given per spectrum. The GP using the topological features was trained with k ¼ 200 peaks.

Topological and kernel-based microbial phenotype prediction i35



To estimate the confidences of classifiers, we investigate the
probabilities assigned to the predicted class, i.e. maxcpðcjxÞ, where c
represents a class label and x represents a sample. We will also refer
to this quantity as the maximum class probability (MCP). Ideally,
we want a classifier to be highly confident for all samples it is
trained on, whereas in the out-of-distribution scenario, the classifier
should assign a significantly lower probability to any prediction.
This will permit us to use a threshold h 2 ½0:0; 1:0� such that only
predictions satisfying maxcpðcjxÞ > h are being kept. To motivate
this threshold, we first analyze the distribution of MCP values in dif-
ferent scenarios, showing the difference between in-distribution and
out-of-distribution samples.

Analyzing maximum class probabilities. Figure 3 depicts the distri-
bution of MCP values of two classifiers, namely MQ–LR and MQ–
GP–PIKE. While the MCP values assigned by the logistic regression
classifier are distributed over the entire ½0:5; 1:0� range for the in-
training S. aureus samples, they are skewed towards larger values
that are close to 1.0. However, samples from the two out-of-
distribution datasets are also assigned values close to 1.0, implying
that the classifier can provide a highly confident prediction here.
This markedly incorrect behaviour is caused by the linear decision
boundary between classes that was calculated during the fitting pro-
cess of MQ–LR: the closer samples lie to the separating hyperplane
boundary, the closer the assigned maxcpðcjxÞ values will be to 0.5.
However, if samples come from a completely different distribution
than the one used for training, samples will tend to lie far away
from the decision boundary and will therefore be assigned MCP val-
ues close to 1.0. Due to this behaviour of logistic regression, we can-
not use its MCP values as confidence estimates because rejecting
samples whose maxcpðcjxÞ values are close to 0.5 will not reject any
out-of-distribution samples. This severely restricts the applicability
of logistic regression classifiers in clinical settings.

For our MQ–GP–PIKE method, we observe a different behaviour
of the MCP distribution (Fig. 3, right). First, MCP values of in-
training samples are more evenly distributed than for logistic regres-
sion, indicating that the GP classifier is not confident about all its
predictions on the test dataset; we argue that this behaviour is

desired because it correctly communicates to what extent a reliable
prediction can be made. Moreover, the MCP values for out-of-
distribution samples indicate that the classifier assigns predominant-
ly low MCP values here. The GP thus recognizes correctly that the
samples come from an unobserved distribution, thus assigning val-
ues close to 0.5, which indicates that both classes are equally prob-
able. This behaviour is caused by the non-linear decision boundary
of the GP, which is based on maximizing the marginal likelihood of
the data through adjusting the t parameter of PIKE, thus permitting
a proper probabilistic classification of unseen samples. In effect, the
GP is equally undecided about the class of out-of-distribution sam-
ples. We argue that this is the desired behaviour for clinical applica-
tions. In fact, the histograms in Figure 3 indicate that rejecting
samples with low MCP values will result in rejecting most out-of-
distribution samples while keeping the majority of in-training sam-
ples, which are assigned higher MCP values. We thus take the MCP
values to be suitable proxies for the confidence of a classifier and
analyze the rejection rates in more detail.

Analyzing rejection rates. Having seen that the MCP values can be
used as confidence estimates, we investigate the rejection ratio of in-
distribution samples and out-of-distribution samples. Figure 4
depicts the trade-off for all possible rejection thresholds h, i.e. all
possible scenarios in which only samples that satisfy maxcpðcjxÞ > h
are being kept. A suitable classifier should be capable of rejecting all
samples outside the training distribution. We observe that for both
out-of-distribution species, rejecting 30% of in-training samples
results in rejecting all out-of-distribution samples, which is a suitable
trade-off for clinical scenarios in which false predictions should be
avoided. In uncertain cases, treatment with broadband antibiotics
can be the safer alternative.

In addition, while rejecting samples with low confidences values
serves to reject out-of-distribution samples, for which no informed
decision can be made, it can also lead to improvements for the main
classification task, namely the labelling of in-training test samples. A
reliable classifier should increase its classification performance if
low-confidence samples are removed. Figure 5 analyzes this by cal-
culating the predictive performance on in-training test samples for

Fig. 3. A histogram showing the different distributions of the maximum class probability maxcpðcjxÞ for the logistic regression (left column) and the Gaussian process classifier

with PIKE (right column) trained on S. aureus. The upper figure depicts the in-training distribution of maximum class probabilities, i.e. class probabilities with respect to S. aur-

eus, while the middle and lower figures show the values for out-of-distributions species (E. coli and K. pneumoniae)
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each rejection threshold h. We observe that the performance of both
MQ–LR and MQ–GP–PIKE improves when giving the classifier the
possibility to reject low-confidence samples. However, LR benefits
less from low-confidence rejection in terms of prediction accuracy,
and we observe a large decrease in performance in the region of high
rejection thresholds (h > 0:95). This suggests that some test samples
received a high class probability—close to 1.0—which were in fact
labelled incorrectly, which further underscores our two earlier
observations, namely that (i) due to bad splits, instances are present
in the testing data that are not represented in the training data distri-
bution, and (ii) instances outside the in-training distribution receive
an MCP value of �1:0, making this classifier unsuitable for clinical
applications.

4 Conclusion

We developed a novel approach for antimicrobial resistance classifi-
cation from MALDI-TOF mass spectra. By using a GP classifier, our
method is specifically designed to stay reliable in the face of real-
world clinical prediction challenges, such as the task of labelling un-
seen bacterial isolates. Using the presented novel kernel—PIKE—
our method outperforms traditional classification algorithms while

being able to provide uncertainty estimates for its predictions.
Moreover, we challenged common assumptions concerning the pre-
processing and developed a novel simplified pre-processing method
based on ideas from computational topology. Our work thus consti-
tutes a crucial step towards the goal of further reducing the time to
provide precise antimicrobial treatments for patients while reducing
the prescription of ineffective antibiotics. We hope that this will en-
courage additional method development for antimicrobial resistance
prediction based on MALDI-TOF mass spectra.
Future work. Further assessment of the influence of pre-processing
parameters on antimicrobial phenotype prediction is needed.
Moreover, the utility of our confidence analysis could also be ana-
lyzed in additional scenarios of the clinical practice. Presenting the
classifier with isolates collected at different geographical locations
would allow to simulate infections contracted outside the local bac-
teria population, such as infections caught during travel. Additional
experiments, such as the comparison of isolates characterized by
both DNA sequencing and MALDI-TOF MS, could provide insights
into how phylogenetic differences are contained in MALDI-TOF
MS spectra and whether they can be recovered. The gained insights
could lead to new approaches for improving the train–test split or
the reformulation of separate prediction problems for different evo-
lutionary strains.
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