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Abstract: The aim of the study is to improve the performance of thin-film composite (TFC) membranes
with a thin selective layer based on chitosan (CS) via different approaches by: (1) varying the
concentration of the CS solution; (2) changing the porosity of substrates from polyacrylonitrile (PAN);
(3) deposition of the additional ultrathin layers on the surface of the selective CS layer using interfacial
polymerization and layer-by-layer assembly. The developed membranes were characterized by
different methods of analyses (SEM and AFM, IR spectroscopy, measuring of water contact angles
and porosity). The transport characteristics of the developed TFC membranes were studied in
pervaporation separation of isopropanol/water mixtures. It was found that the application of the
most porous PAN-4 substrate with combination of formation of an additional polyamide selective
layer by interfacial polymerization on the surface of a dense selective CS layer with the subsequent
layer-by-layer deposition of five bilayers of poly (sodium 4-styrenesulfonate)/CS polyelectrolyte pair
led to the significant improvement of permeance and high selectivity for the entire concentration
feed range. Thus, for TFC membrane on the PAN-4 substrate the optimal transport characteristics in
pervaporation dehydration of isopropanol (12–90 wt.% water) were achieved: 0.22–1.30 kg/(m2h),
99.9 wt.% water in the permeate.

Keywords: thin-film composite membrane; interfacial polymerization; pervaporation

1. Introduction

Distillation, low temperature crystallization, adsorption and extraction are common separation
methods for liquid mixtures, but these methods, as a rule, are energy-intensive, labor-intensive and
have a negative impact on the environment [1–3]. In addition, the distillation method cannot separate
the azeotropic mixtures of liquid substances without using the additional third agents like benzene or
cyclohexane, which may cause an impurity in the product. Membrane processes are an alternative
to traditional separation methods. Pervaporation is one of the most efficient membrane methods for
the separation of low molecular weight liquid mixtures, which is widely used for the dehydration
of alcohols and other organic substances [4–9] and characterized by high efficiency with low energy
consumption, a compact equipment, environmental friendliness and the ability of the automation [10].
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Pervaporation is also a promising and perspective technology for the separation of azeotropic mixtures
without application of additional reagents.

Various polymeric and inorganic membranes have been developed for the pervaporation
dehydration of alcohols [4–6,11–17]. Polymeric membranes are more attractive due to the fabrication
simplicity, flexibility and cost-effectiveness compared to inorganic membranes. Green water-soluble
polymers, such as polyvinyl alcohol (PVA), chitosan (CS), alginates (Alg) are the widely applied and
popular membrane materials for pervaporation dehydration of alcohols because of environmental
friendliness and high selectivity to water [14]. Today, CS is likely the most explored biopolymer in the
membrane fabrication due to its biocompatibility. However, membranes based on this polymer require
additional cross-linking as they swell uncontrollably in an aqueous medium reducing mechanical and
thermal instability [18]. And it is also worth noting that cross-linking of CS membranes by various
ways, as a rule, leads to a decrease in membrane permeability. The low permeability and mechanical
strength of pervaporation CS membranes are limiting factors for the widespread adoption of these
membranes in industrial processes of alcohol dehydration.

One of the relevant ways to obtain the high-performance membranes is to apply a thin non-porous
selective polymeric layer on ultra- or microfiltration membranes (substrates). This type of membrane is
known as thin-film composite membrane (TFC). It is very important to select the suitable substrate and
the polymer layer that provides selective separation and high permeability (due to the small thickness
of the layer). The substrate should have (1) a highly porous structure of the upper selective layer and
the substructure to minimize resistance to mass transfer; (2) a thin defect-free upper selective layer
with a small pore diameter and a narrow pore size distribution to prevent the penetration of polymer
solution into the substrate and for the formation of selective polymer layer without defects [19,20];
(3) the absence of large pores (macrovoids) in the substrate substructure to ensure high mechanical
strength. The non-porous and defect-free polymer selective layer should be as thin as possible to
obtain high membrane separation selectivity, what can be achieved by varying the concentration of the
polymer solution used for thin selective layer formation. One of the key advantages of TFC membrane
preparation is that a thin selective layer and a substrate can be optimized independently of each other
to achieve the desired membrane morphology and to maximize separation efficiency.

The achievement of high flux and selectivity of membranes for hydrophilic pervaporation is
also possible by creating a membrane with a hierarchical structure with the deposition of additional
ultrathin layers by interfacial polymerization (IP) and layer-by-layer (LbL) assembly on the membrane
surface, which can also contribute to healing of the thin selective polymer layer defects of the TFC
membrane and to change membrane surface properties.

Interfacial polymerization is a method of synthesizing an ultrathin functional polymer layer at the
phase boundary during the reaction between two immiscible solutions, such as an aqueous solution
of an amine and a solution of an acyl chloride in an organic solvent [19,20]. Membranes prepared
by IP can be cost effective and promising for industrial production and application [21]. Recently,
membranes created by the IP method have found application in pervaporation [1,3,22–29]. It was
shown that using IP technology for the manufacture of membranes it was possible to achieve improved
transport characteristics of the membrane in pervaporation separation of a water/ethanol mixture
(permeation flux up to 13.9 kg/(m2h) and 4491 separation factor) due to the formation of ultrathin
heterogeneous polyamide selective layers [22]. The development of pervaporation membranes with IP
method is a complex technological and scientific task due to the large number of parameters that need
to be controlled (substrate structure, composition and method of forming the PA layer, drying and
cross-linking conditions, etc.). The number of papers devoted to the development of pervaporation
TFC membranes by interfacial polymerization is relatively few, which is associated with the high
difficulty of the problem, the need to control a large number of parameters, and the difficulty of creating
an ultrathin defect-free selective layer on the surface of a porous substrate.

One of the modern methods for controlling the surface properties of membranes is the
layer-by-layer assembly (LbL) for the deposition of nanosized polyelectrolyte (PEL) layers on the surface
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of a membrane [30,31]. This technology consists of sequential alternating deposition of polycations
and polyanions on the membrane surface, which allows controlling the thickness and properties of the
membrane surface (for example, hydrophilicity, roughness, surface charge, etc.) varying conditions
such as types and the number of PEL layers, PEL ionic strength, pH of PEL, etc. One of the wide
spread approaches to carry out the surface modification by LbL is via dip-LbL method. In our
previous studies [15,32,33] it was demonstrated that changing various parameters of LbL assembly
such as the selected pair of polycation–polyanion, the order of their deposition, the number of cycles,
and additional bulk modification of membranes significantly affected the transport characteristics of
the membranes.

Thus, this work is devoted to the improvement of the pervaporation isopropanol dehydration
performance of TFC membranes with a thin selective layer based on chitosan by several approaches:
(1) varying concentration of the CS solution; (2) varying the porosity of PAN membranes (substrates);
and (3) deposition of the additional ultrathin layers on the surface of the chitosan layer by interfacial
polymerization and the layer-by-layer assembly. The paper performs step-by-step development and
characterization by different methods of thin-film composite membranes with hierarchical structure
starting from the anisotropic porous membrane-substrate and creation of selective layers via physical
adsorption, interfacial polymerization and layer-by-layer assembly techniques.

2. Materials and Methods

2.1. Materials

Polyacrylonitrile (PAN) ultrafiltration membranes developed at the Institute of Physical Organic
Chemistry of the National Academy of Sciences of Belarus (Minsk, Belarus) were used as porous
membrane-substrates for the formation of TFC membranes. Poly(acrylonitrile-co-methyl acrylate)
copolymer (ratio of acrylonitrile and methyl acrylate monomer units: 93.6:6.4, Mw = 76,000 g/mol,
Mw/Mn = 2.88; ηsp = 0.76, Haihang Industry Co., Ltd., Jinan, China) was used as the membrane
material for the preparation of casting solutions for ultrafiltration PAN membranes (substrates) via the
non-solvent induced phase inversion (NIPS). N,N-dimethylformamide (DMF, reagent grade, Khimmed,
Moscow, Russia) was used as a solvent.

Chitosan (CS) (with medium molecular weight, “Sigma-Aldrich Co.”, St. Louis, MO, USA) was
applied as a polymer material for the formation of a thin selective sublayer (the first dense layer) on
ultrafiltration substrates. The maleic acid (MA, “Sigma-Aldrich Co.”, St. Louis, MO, USA) was used as
cross-linking agent to stabilize the thin dense CS layer. MA was applied without additional treatment.

Triethylenetetramine (TETA, ≥96%, “BASF”, Ludwigshafen, Germany) as the amine component
and trimesoyl chloride (TMC, ≥99%, “Sigma-Aldrich Co.”, St. Louis, MO, USA) as an acyl component
were used for the formation of a second (upper) ultrathin selective layer on the TFC membrane
by the interfacial polymerization technique. Distilled water was used to prepare TETA solutions,
and «NEFRAS S2» (80/120, “Vershina” LLC, St. Petersburg, Russia) was used as an organic solvent for
TMC. «NEFRAS S2» is a mixed type gasoline solvent, which contains not more than 50% hydrocarbons
of each group; low boiling fraction of dearomatized gasoline of catalytic reforming.

Isopropanol (chemically pure, “Vecton”, St. Petersburg, Russia) and distilled water without
additional treatment were used in pervaporation experiments.

Bovine serum albumin (BSA, M = 68,000 g/mol, “PanReac AppliChem”, Moscow, Russia) with
a concentration of 0.5 g/L in phosphate buffer solution at pH = 7, aqueous solution of PVP K-30
(Mn = 40,000 g/mol, “Fluka”, Munich, Germany) and PVP K-15 (Mn = 10,000 g/mol, “Fluka”, Munich,
Germany) with a concentration of 3 g/L were used as model solutions for rejection tests in ultrafiltration.

Poly (allylamine hydrochloride) (PAH, Mw = 50,000 g/mol, “Sigma-Aldrich Co.”, St. Louis, MO,
USA) and chitosan (with medium molecular weight, “Sigma-Aldrich Co.”, St. Louis, MO, USA) were
used as cationic polyelectrolytes, and poly (sodium 4-styrenesulfonate) (PSS, “Sigma-Aldrich Co.”,
St. Louis, MO, USA) was used as an anionic polyelectrolyte in layer-by-layer assembly.
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2.2. Membrane Preparation

2.2.1. Porous PAN Membrane (Substrate) Preparation

Porous anisotropic membranes (substrates) were prepared via non-solvent induced phase
separation (NIPS) using a polyester non-woven fabric (JSC «Komiteks», Syvtyvkar, Komi Republic,
Russia) as a mechanical support. To obtain flat porous PAN membranes by NIPS, a polymer solution
(at 20 ◦C) was cast on a polyester non-woven support fixed to a glass plate using a casting blade
(the thickness of the polymer layer was 160 µm). A glass plate with a layer of casting solution on a
polyester non-woven support was immersed in a coagulation bath with distilled water at 25 ◦C. Four
porous membranes from PAN were prepared marked as PAN-2, PAN-3, PAN-4, PAN-5 which feature
different structure, pore size, porosity of the selective layer and performance. The compositions of
the casting solution were selected according to [34]. PAN-2 membrane was prepared from 16 wt.%
PAN casting solution in DMF, PAN-3—from 15 wt.% PAN solution in DMF. To obtain PAN-4 and
PAN-5 membranes 14 wt.% and 13 wt.% PAN casting solutions were used respectively. The obtained
ultrafiltration membranes were impregnated by 10% glycerol aqueous solution to prevent the capillary
contraction of pores of the selective layer. The membranes were dried at room temperature.

2.2.2. Formation of the First Dense Selective Layer on Porous PAN Membranes (Substrates)

The method of physical adsorption was used to form the first dense selective CS layer on porous
membranes (substrates). TFC membranes with a thin selective layer based on chitosan were prepared
by deposition of two layers of a chitosan solution on ultrafiltration PAN substrates with different
porosity, followed by evaporation of the solvent for 24 h at 25 ◦C. For chitosan-based membranes 1 and
0.5 wt.% polymer solutions were prepared in a 1 wt.% solution of acetic acid in water with vigorous
stirring and addition of maleic acid (35 wt.% MA with respect to the CS weight). After evaporation of
the solvent CS membranes were heated at 110 ◦C for 120 min.

2.2.3. Formation of the Second (Upper) Layer by Interfacial Polymerization

0.1 wt.% aqueous TETA solution and 0.05 wt.% TMC solution in NEFRAS S2 were used to obtain
ultrathin selective layer via interfacial polymerization technique. IP was carried out according to the
following procedure: the membranes were soaked in TETA solution for 10 s, thereafter, the excess of
an aqueous amine solution was removed using filter paper and the membrane was dried at ambient
temperature for 15 min, then the membrane was immersed in a TMC solution for 10 s (Figure 1).
Thereafter the membrane was left at room temperature until NEFRAS S2 evaporated completely.
To remove residual monomers the membrane was immersed in ethanol for 10 min and then dried to
evaporate the alcohol in oven at 30 ◦C for 24 h.
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Figure 1. Reaction between TETA and TMC in the interfacial polymerization.

2.3. Membrane Investigation Methods

2.3.1. Scanning Electron Microscopy (SEM)

SEM micrographs of the cross-section and the selective surface structure of CS-based TFC
membranes and PAN substrates were obtained using Zeiss Merlin SEM (Carl Zeiss SMT, Oberhochen,
Germany). The cross-section of samples was obtained by submerging the sample in liquid nitrogen for
10–20 s and subsequent splitting perpendicular to the surface. SEM images were obtained at a voltage
of 1 kV.

2.3.2. Atomic Force Microscopy (AFM)

The topography of the selective layer surface of CS-based TFC membranes and PAN porous
anisotropic membrane-substrates were studied on an NT-MDT nTegra Maximus atomic force
microscope with standard silicon cantilevers with a rigidity of 15 N·m−1 (“NT-MDT”, Moscow,
Russia) in tapping mode.

2.3.3. The Standard Porosimetry Method

The porosity of the porous PAN membrane-substrates was determined by the standard porosimetry
method on a Porosimeter 3.1 instrument (Porotech Ltd., Ottawa, ON, Canada) at 30 ◦C. n-Octane was
used as the reference liquid.

2.3.4. Ultrafiltration

PAN porous substrates (ultrafiltration membranes) used for the preparation of supported CS-based
membranes were studied in ultrafiltration to evaluate their performance (pure water flux, flux of
BSA or PVP solutions, rejection coefficients of BSA or PVP, flux recovery ratio). The measurements
were carried out on a laboratory setup (stirred ultrafiltration cell) at room temperature (25 ◦C) with
a transmembrane pressure of 1 bar and a stirring speed of 250–300 rpm (Figure 2). BSA solution
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(0.5 g/L) prepared in a phosphate buffer solution (pH = 7) was used as a protein foulant to study
antifouling performance.Membranes 2020, 10, x FOR PEER REVIEW 6 of 26 
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Figure 2. Ultrafiltration setup: 1—nitrogen tank, 2—pressure regulator, 3—manometer, 4—membrane,
5—stirred ultrafiltration cell, 6—magnetic stirrer, 7—container for permeate.

The flux was determined as follows: ultrafiltration of pure water at 1 bar and room temperature
was carried out for 30 min to reach the stationary ultrafiltration mode of the membrane and to wash it
from glycerol. Thereafter, pure water flux was determined. Then a solution of BSA or PVP was placed
into the cell and filtered for 30 min under the same conditions. Thereafter the BSA or PVP solution flux
was measured. The flux J (L/m2h) was calculated according to the equation:

J =
V

A× t
, (1)

where V (L) is the volume of liquid passing through the membrane (permeate), A (m2) is the membrane
area and t (h) is the time of ultrafiltration.

The BSA concentration in the feed solution and permeate was determined using SF-102
spectrophotometer at a wavelength of 280 nm. The PVP concentration was determined using
LIR-2 interferometer («Zagorsk optical and mechanical plant», Sergiev Posad, Russia). The rejection
coefficient R (%) was calculated according to the equation:

R =

(
1−

Cp
C f

)
× 100%, (2)

where Cp (g/L) is the BSA or PVP concentration in permeate, C f (g/L) is the BSA or PVP concentration
in the feed solution.

The pure water flux was measured 30 min after ultrafiltration to assess the antifouling properties of the
membranes in ultrafiltration of BSA solution. Then the BSA solution was filtered for 1 h. Thereafter water
was again passed through the membrane for 30 min and pure water flux was measured again. The flux
recovery ratio FRR (%) was calculated according to the equation:

FRR =

(
J
J0

)
× 100%, (3)

where J (L/(m2h)) is the pure water flux after BSA solution ultrafiltration and J0 is the initial pure
water flux.
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2.3.5. Fourier-Transform Infrared Spectroscopy (IR Spectroscopy)

IR spectra of the selective layer surface of TFC membranes were obtained on a BRUKER-TENSOR
27 IR Fourier spectrometer (Bruker Optik GmbH, Billerica, MA, USA) in the range of 700–4000 cm−1 at
25 ◦C to confirm the formation of polyamide upper layer by IP method.

2.3.6. Pervaporation

The transport characteristics of the developed membranes were studied by vacuum pervaporation
in a steady-state laboratory setup (Figure 3) for the separation of the isopropanol/water mixture in a
wide concentration range (12–100 wt.% water in the feed) and at various temperatures (28, 35 and
50 ◦C). The pervaporation condition was the pressure < 0.01 mmHg in the submembrane space.
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Figure 3. Pervaporation setup: 1—pervaporation cell, 2—temperature controller, 3—membrane,
4—trap cooled by liquid nitrogen, 5—permeate; 6—manometer and 7—vacuum pump using to control
the pressure.

The composition of the feed and the permeate was determined using SHIMADZU GC-2010 gas
chromatograph. The permeation flux J (kg/(m2h) was calculated according to the equation:

J =
W

A× t
, (4)

where W (kg) is the permeate weight passing through the membrane, A (m2) is the membrane area and
t (h) is the measurement time.

The permeance (P/l) (component flux normalized for the driving force) was calculated according
to the equation:

P
l

=
ji

pi f − pip
, (5)

where ji is the partial flux of the i component, pi f and pip are the component vapor pressures of the feed
and the permeate, respectively, l is the membrane thickness.

The selectivity (β) which is the ratio of component permeances was calculated according to the
equation:

β =
Pi/l
P j/l

, (6)

where Pi/l (GPU) is the water permeance and Pj/l (GPU) is the isopropanol permeance.
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The membrane flash index (MFLI) was calculated according to the equation [35]:

MFLI =
yPV

i

yVLE
i

, (7)

where yPV
i is the component concentration in the permeate (wt.%), yVLE

i is the component vapor
concentration (the equilibrium distillation value) (wt.%).

2.3.7. Contact Angle Determination

Water contact angles for the selective layer surface of PAN ultrafiltration membranes (substrates)
were determined by the attached bubble technique using the LK-1 goniometer (“Otkrytaya nauka”,
Krasnogorsk, Russia) in the “membrane surface-water-air bubble” system to study the changes of
surface properties. Water contact angles for CS-based TFC membranes were determined by sessile
drop method using LK-1 goniometer. The measurements were carried out only from the side of the
selective layer to study the surface characteristics of the membranes.

2.3.8. Layer-by-Layer Assembly

Membranes with polyelectrolyte nanolayers were prepared using the ND Multi Axis Dip ND-3D
11/5 robot (Nadetech, Navarra, Spain), which had a wide range of membrane immersion rates
in solutions (1–2000 mm/min) providing high reproducibility of the deposited layer thickness.
The deposition of polyelectrolyte (PEL) layer was carried out as follows: a membrane fixed on
special substrate was immersed in a polyanion solution of PSS (10−2 mol/L) for 10 min, then in water to
wash and thereafter in a polycation solution of PAH (10−2 mol/L, pH = 4) or CS (4.7 wt.%) for 10 min,
then membrane was washed again. Thus, one bilayer of PEL was created on the surface. In this work
the optimal number of cycles (depositions) is five bilayers.

3. Results

Various conditions of the formation of a chitosan selective layer on the surface of anisotropic
porous PAN membranes (substrates) were studied. The study of the influence of the PAN substrate
porosity on the structure and performance of CS-based TFC membranes was carried out. The effect of
the concentration of CS solution on the structure and performance of TFC membranes was investigated.
The effect of the additional ultrathin selective layer formation via IP and layer-by-layer assembly
methods was studied. Section 3.1 is devoted to the characterization of PAN substrates, and Section 3.2
covers the characterization of TFC membranes obtained by deposition of a selective layer from
CS on the PAN substrates with or without ultrathin selective layers formed via IP method and
layer-by-layer assembly.

3.1. Characterization of Porous PAN Substrates

The morphology of ultrafiltration membranes (substrates) was studied by AFM and SEM to
assess the effect of the structure of the prepared PAN substrates on the properties of TFC CS-based
membranes. SEM micrographs of the cross-section and the surface of the selective layer of the PAN
substrates are shown in Figure 4.



Membranes 2020, 10, 153 9 of 25

Membranes 2020, 10, x FOR PEER REVIEW 8 of 26 

 

(“Otkrytaya nauka”, Krasnogorsk, Russia) in the “membrane surface-water-air bubble” system to 

study the changes of surface properties. Water contact angles for CS-based TFC membranes were 

determined by sessile drop method using LK-1 goniometer. The measurements were carried out 

only from the side of the selective layer to study the surface characteristics of the membranes. 

2.3.8. Layer-by-Layer Assembly 

Membranes with polyelectrolyte nanolayers were prepared using the ND Multi Axis Dip 

ND-3D 11/5 robot (Nadetech, Navarra, Spain), which had a wide range of membrane immersion 

rates in solutions (1–2000 mm/min) providing high reproducibility of the deposited layer thickness. 

The deposition of polyelectrolyte (PEL) layer was carried out as follows: a membrane fixed on 

special substrate was immersed in a polyanion solution of PSS (10−2 mol/L) for 10 min, then in water 

to wash and thereafter in a polycation solution of PAH (10−2 mol/L, pH = 4) or CS (4.7 wt.%) for 10 

min, then membrane was washed again. Thus, one bilayer of PEL was created on the surface. In this 

work the optimal number of cycles (depositions) is five bilayers. 

3. Results 

Various conditions of the formation of a chitosan selective layer on the surface of anisotropic 

porous PAN membranes (substrates) were studied. The study of the influence of the PAN substrate 

porosity on the structure and performance of CS-based TFC membranes was carried out. The effect 

of the concentration of CS solution on the structure and performance of TFC membranes was 

investigated. The effect of the additional ultrathin selective layer formation via IP and layer-by-layer 

assembly methods was studied. Section 3.1 is devoted to the characterization of PAN substrates, and 

Section 3.2 covers the characterization of TFC membranes obtained by deposition of a selective layer 

from CS on the PAN substrates with or without ultrathin selective layers formed via IP method and 

layer-by-layer assembly. 

3.1. Characterization of Porous PAN Substrates 

The morphology of ultrafiltration membranes (substrates) was studied by AFM and SEM to 

assess the effect of the structure of the prepared PAN substrates on the properties of TFC CS-based 

membranes. SEM micrographs of the cross-section and the surface of the selective layer of the PAN 

substrates are shown in Figure 4. 

 Cross-section Surface 

PAN-2 

  

PAN-3 

  

1 µm 

1 µm 

Membranes 2020, 10, x FOR PEER REVIEW 9 of 26 

 

PAN-4 

 

 

PAN-5 

  

Figure 4. SEM micrographs of the cross-sections and surfaces of the selective layers of the porous 

PAN membranes (substrates). 

It was shown that all studied porous PAN membranes featured anisotropic structure typical of 

membranes prepared by NIPS with a thin selective layer on the porous membrane matrix pierced by 

macrovoids (Figure 4). The following differences are observed in SEM cross-sectional micrographs 

of PAN substrates: the size of the macrovoids of the cross-section increases in the series PAN-2 < 

PAN-3 < PAN-4 < PAN-5. The cross-section of the PAN-2 substrate has a uniform and dense 

structure with uniformly distributed voids in its structure. The cross-section of the PAN-3,4,5 

substrates have a characteristic structure (“finger-shaped” pores), which is typical for 

high-performance ultrafiltration membranes. The pore distribution of PAN-4 and PAN-3 substrates 

are comparable to each other in the internal pore volume, while in PAN-5 substrate macrovoids are 

wider. 

SEM surface microphotographs of the PAN membranes demonstrate that the pore size and 

porosity of the surface of the selective layer of membranes increase in the series: PAN 2 < PAN 3 < 

PAN 4 < PAN 5 (Figure 4). The surfaces of the PAN-3 and PAN-4 membranes have rougher structure 

compared to PAN-2. The surface of the PAN-5 substrate has the most compacted structure of the 

selective layer with large pores on the surface. 

The surface topography of PAN substrates was studied by AFM. AFM images of PAN 

substrates with a scan size 5 × 5 µm are shown in Figure 5. The surface of the selective layer features 

the typical nodular structure for membranes prepared via NIPS. The size of nodules and valleys 

between them was found to be bigger for PAN-5 membrane increasing as follows: PAN-2 < PAN-3 < 

PAN-4 < PAN-5. 

1 µm 

1 µm 

Figure 4. SEM micrographs of the cross-sections and surfaces of the selective layers of the porous PAN
membranes (substrates).

It was shown that all studied porous PAN membranes featured anisotropic structure typical
of membranes prepared by NIPS with a thin selective layer on the porous membrane matrix
pierced by macrovoids (Figure 4). The following differences are observed in SEM cross-sectional
micrographs of PAN substrates: the size of the macrovoids of the cross-section increases in the
series PAN-2 < PAN-3 < PAN-4 < PAN-5. The cross-section of the PAN-2 substrate has a uniform and
dense structure with uniformly distributed voids in its structure. The cross-section of the PAN-3,4,5
substrates have a characteristic structure (“finger-shaped” pores), which is typical for high-performance
ultrafiltration membranes. The pore distribution of PAN-4 and PAN-3 substrates are comparable to
each other in the internal pore volume, while in PAN-5 substrate macrovoids are wider.

SEM surface microphotographs of the PAN membranes demonstrate that the pore size and porosity
of the surface of the selective layer of membranes increase in the series: PAN 2 < PAN 3 < PAN 4 < PAN 5
(Figure 4). The surfaces of the PAN-3 and PAN-4 membranes have rougher structure compared to PAN-2.
The surface of the PAN-5 substrate has the most compacted structure of the selective layer with large
pores on the surface.
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The surface topography of PAN substrates was studied by AFM. AFM images of PAN substrates
with a scan size 5 × 5 µm are shown in Figure 5. The surface of the selective layer features the typical
nodular structure for membranes prepared via NIPS. The size of nodules and valleys between them
was found to be bigger for PAN-5 membrane increasing as follows: PAN-2 < PAN-3 < PAN-4 < PAN-5.Membranes 2020, 10, x FOR PEER REVIEW 10 of 26 
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The roughness characteristics (root-mean-square roughness (Rq) and average surface roughness
(Ra)) of ultrafiltration PAN-2,3,4,5 membranes were calculated based on the obtained AFM images and
presented in Table 1.

Table 1. Roughness characteristics and water contact angles for porous PAN membranes (substrates).
The mean accuracy was <±2% for roughness characteristics and ±2◦ for contact angle.

Membrane Ra, nm Rq, nm Water Contact Angle, ◦

PAN-2 2.000 2.501 41
PAN-3 2.562 3.260 41
PAN-4 2.607 3.258 41
PAN-5 2.593 3.271 41

It was shown that the smallest average roughness was observed for the PAN-2 substrate (2 nm),
all other substrates PAN-3,4,5 had a slightly higher roughness (~2.5–2.6 nm), which was almost similar
to each other. In general, the studied PAN membranes had a low degree of surface roughness of the
selective layer.

It was found that the water contact angle for all PAN substrates was equal to 41◦ ± 2◦, which was
due to the similar roughness of the selective layer with the same membrane-forming polymer (Table 1).

Analysis of the pure water and PVP K-30 solution flux, PVP K-30 rejection coefficient of the
membranes (substrates) suggests a significant difference in pore size and degree of porosity of the
studied substrate selective layer (Table 2).

Table 2. PAN membrane performance in ultrafiltration of PVP K-30 and BSA solutions and total
membrane porosity.

Membrane
Pure Water

Flux, L/(m2
·h)

Flux, L/(m2
·h) R, % FRR, %

(BSA)
Total

Porosity, %PVP K-30 BSA PVP K-30 BSA

PAN-2 20–40 10 23 >99 96 100 41
PAN-3 72–100 30 80 90 98 97 64
PAN-4 130–160 60 101 75 95 79 73
PAN-5 180–200 40 110 67 95 78 94

PAN-2 membrane is characterized by the lowest pure water and PVP K-30 solution flux. The PVP
K-30 rejection coefficient for PAN-2 membrane is more than 99% due to the high molecular weight
of PVP K-30 and small pore size of the selective layer. For a more detailed investigation PVP K-15
(with a lower molecular weight Mn = 10,000 g/mol) solution with a concentration of 3 g/L was also
used in ultrafiltration experiments for PAN-2 membrane. It was found, that the flux was equal to
14–15 L/(m2h) and the rejection coefficient was also >99%. Thus, it was shown that the PAN-2 membrane
is characterized by the smallest pore size of the selective layer (molecular weight cut-off—10 kDa). It is
known that the membrane rejection coefficient depends on the pore size of the selective layer and the
interaction of the solute molecules with the membrane material, and pure water flux is a characteristic
of the pore size and the degree of porosity of the selective membrane layer. Based on the analysis of
permeation flux values and PVP rejection coefficient, it was shown that an increase of the average
pore size and degree of porosity of the selective layer of the studied porous membranes (substrates)
occurred in the following series: PAN-2 < PAN-3 < PAN-4 < PAN-5 (Table 2).

The performance of PAN-2,3,4,5 membranes was also evaluated in the ultrafiltration (UF) of BSA
solution at a constant pressure of 1 bar and room temperature. Transport properties (pure water and
BSA solution flux, rejection coefficient (R), flux recovery ratio (FRR)) of PAN substrates are presented
in Table 2. The total porosity of the substrates was also measured and presented in Table 2. It is known
that the porosity of the membrane matrix makes the main contribution to the total membrane porosity,
while the permeation flux and selectivity of ultrafiltration membranes are determined by the porous
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structure and thickness of the selective layer. At the same time the porosity of the selective layer makes
a small contribution to the total porosity, therefore the total porosity rather serves as a characteristic of
the membrane matrix porosity. However, an increase in the total porosity of the membranes in the series
PAN-2 < PAN-3 < PAN-4 < PAN-5 indicates a decrease in membrane matrix mass transfer resistance
in membrane separation processes. It was shown that all studied ultrafiltration PAN membranes
were characterized by a high BSA rejection coefficient (R ≥ 95%). It was found that BSA solution flux
increased in the series PAN-2 < PAN-3 < PAN-4 < PAN-5 (Table 2), what was consistent with the data
of the total porosity, SEM, AFM and transport properties of the membranes in ultrafiltration of the
PVP K-30 solution. It should be noted that due to the high molecular weight of BSA and its strong
interaction with the membrane material (PAN), there are no differences in BSA rejection coefficient
for the studied PAN membranes despite differences in pore size and degree of porosity. However,
FFR values are an indirect indicator of differences in pore size (Table 2). As it is known, membrane
antifouling performance depends on the membrane material, contact angle, degree of roughness,
surface charge and pore size of the selective membrane layer [35]. It was shown that in the case of the
studied PAN-2,3,4,5 membranes, membrane material (hence the surface charge), the contact angle,
degree of roughness were almost similar. It was reported that ultrafiltration membranes prepared from
poly(acrylonitrile-co-methyl acrylate) copolymer demonstrate negative zeta-potential of the selective
layer surface at pH = 7 [36].

It is worth mentioning that high FRR values for all studied PAN membranes are due to the
negative zeta-potential of the surface of the selective layer and negative charge of BSA macromolecules
at pH = 7 which yields the efficient electrostatic repulsion of protein macromolecules from membrane
surface [37–39].

The differences in the flux recovery ratio are primarily associated with different pore sizes of the
selective layer. It is known that membranes with a large pore size are more prone to fouling during
ultrafiltration and characterized by lower FRR values. Thus, membranes with a small pore size (PAN-2
and PAN-3) are characterized by high FRR values, and the large-pore membranes PAN-4 and PAN-5
show smaller but close FRR values equal to about 78–79%.

3.2. Characterization of TFC CS-Based Membranes

This section presents the study using various physicochemical methods of TFC membranes with
a thin selective layer based on CS deposited on PAN-2,3,4,5 substrates without and with the ultrathin
polyamide selective layer formed via IP. To explain the effect of the substrates and mass transfer through
the selective CS layer, substrates of the same series were selected, which differ in their porous structure
and pure water flux (Table 2). The formation of the polyamide layer as a result of the reaction between
TETA and TMC during interfacial polymerization was confirmed by IR spectroscopy (Figure 6).

The IR spectra of all investigated TFC membranes with a selective chitosan layer with or without
ultrathin polyamide selective layer were almost identical. Figure 6 demonstrates as example the IR
spectra of a TFC membrane obtained on a PAN-4 substrate. It should be noted that formation of a very
thin selective polyamide layer on the surface of a cross-linked chitosan layer by IP may lead to the
overlapping of the peaks of the chitosan cross-linked by maleic acid and the polyamide layer in the
spectrum obtained by the attenuated total reflectance (ATR) method, as evidenced by the large width
of the peaks in the range of 1800–1300 cm−1.

The occurrence of amide bonds (-CONH-) confirms the formation of a polyamide layer as a result
of IP using TETA and TMC and is associated with the following spectral changes: the peak intensity
increases in the range of 3400–3200 cm−1 and a shift of the peak from 1559 to 1562 cm−1 indicates the
stretching vibrations of the N-H bond of the amide group [40], as well as the appearance of an intense
peak at 1645 cm−1 and a wide peak at 1447 cm−1, which correspond to stretching vibrations of C=O
and C-N bonds of amide (-CONH-) group [40,41].
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To study the changes in the hydrophilic-hydrophobic properties of the selective layer surface
of TFC CS/PAN membranes after the formation of a thin selective polyamide layer via IP the water
contact angles were measured using the sessile drop method. The obtained values of the contact angles
of water are presented in Table 3.

Table 3. PAN membrane performance in ultrafiltration of PVP K-30 and BSA solutions and total
membrane porosity. The mean accuracy for contact angle was ±2◦.

TFC Membranes
Contact Angle of Water, ◦

Reference TFC Membrane TFC Membrane with Polyamide Layer

CS/PAN-2 76 59
CS/PAN-3 77 66
CS/PAN-4 74 68
CS/PAN-5 72 65

As follows from the data in Table 3, the contact angles for all studied CS/PAN membranes were in
the range 72–77◦, and after IP the contact angles decreased to 59–68◦ indicating the hydrophilization of
the surface of the selective layer, which was due to the excess of a more hydrophilic TETA compared to
TMC during IP. This effect was also considered in [42].

The surface topography of the CS-based membranes and their roughness before and after IP were
studied by atomic force microscopy (AFM). AFM images of the surface of TFC membranes without
and with a polyamide layer formed via IP with a scan size 5 × 5 µm are presented in Figure 7.
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Figure 7. AFM images of TFC membranes (a) CS/PAN-2, (b) CS/PAN-3, (c) CS/PAN-4, (d) CS/PAN-5
without and with polyamide layer formed by IP.

Based on the obtained AFM images the roughness characteristics (values of root-mean-square
surface roughness (Rq) and average surface roughness (Ra)) of the selective layer surface of the
membranes with a thin selective layer based on CS deposited on PAN-2,3,4,5 substrates with and
without polyamide layer formed by IP were calculated and presented in Table 4.
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Table 4. CS-based membrane roughness characteristics. The mean accuracy for roughness characteristics
was <±2%.

TFC Membranes
Reference TFC Membrane TFC Membrane with Polyamide Layer
Ra, nm Rq, nm Ra, nm Rq, nm

CS/PAN-2 1.035 1.356 0.994 1.384
CS/PAN-3 1.155 1.532 0.719 0.985
CS/PAN-4 1.003 1.293 1.061 1.444
CS/PAN-5 1.885 2.570 0.963 1.314

The data presented in Table 4 demonstrate that the average roughness of the surface for thin
layer from CS on PAN-2,3,4 substrates is practically similar (~1 nm), and for CS/PAN-5 membrane it is
slightly higher (1.885 nm). It was found that formation of the polyamide layer via IP on the surface
of CS/PAN membrane decreased the roughness of TFC membranes on PAN-2,3,5 substrates, which
might indicate the elimination of possible defects of a thin selective layer by the formation of an upper
thin polyamide layer after IP. At the same time roughness of CS/PAN-4 membrane practically did not
change (1.003 and 1.061 nm, respectively) after the formation of a polyamide selective layer via IP.
It should be noted that all membranes have a fairly smooth surface, i.e., no significant changes are
observed after polyamide selective layer formation via IP.

The surface and cross-section morphology of TFC membranes was studied by SEM. SEM micrographs
of the surface and the cross-section of TFC membranes with a thin selective layer based on CS deposited
of PAN-2,3,4,5 substrates with and without polyamide layer formed by IP are shown in Figure 8.
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Figure 8. SEM cross-sectional and surface micrographs of the TFC membranes (a) CS/PAN-2,
(b) CS/PAN-3, (c) CS/PAN-4, (d) CS/PAN-5 with and without polyamide layer formed by IP.

In all cases the SEM cross-sectional micrographs clearly demonstrate the thin dense CS-based layer
with a thickness about ~600–700 nm and the thin layer (second upper layer) on its surface after IP with
a thickness about ~10 nm. The surface morphology of membranes with and without the polyamide
selective layer formed by IP did not differ significantly and the structure of this layer was similar for
all membranes, with the exception of the CS/PAN-5 membrane. Formation of the polyamide thin
selective layer on the surface of CS/PAN-5 membrane via IP yielded the formation of a denser uniform
surface structure significant decreasing its average roughness (AFM data, Table 4), which could lead
to membrane permeation flux decrease compared to the CS/PAN-4 membrane with polyamide layer
(Table 5).

It is shown in the next section that the hydrophilic-hydrophobic properties and the surface
roughness of the prepared TFC membranes, as well as the pore size and degree of porosity of the
selective layer of the selected ultrafiltration membrane (substrate), significantly affect the transport
characteristics of the membranes depending on the selected type of PAN membrane (substrate).

3.3. Transport Properties of TFC CS-Based Membranes

The transport properties of TFC membranes with a thin dense layer based on chitosan deposited on
PAN substrates with different porosity with and without a polyamide layer formed by IP were studied
in pervaporation for separation of azeotropic isopropanol/water (88/12 wt.%) mixture. The results of
pervaporation experiments of the developed membranes are presented in Table 5.
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Table 5. Transport characteristics of TFC CS-based membranes with and without polyamide layer
formed by IP in separation of azeotropic isopropanol/water (88/12 wt.%) mixture. The mean accuracy
was <±1% for water content in permeate and <±8% for permeation flux.

TFC Membranes
Reference TFC Membrane TFC Membrane with Polyamide Layer

Permeation Flux
kg/(m2

·h)
Water Content in
Permeate, wt.%

Permeation Flux
kg/(m2

·h)
Water Content in
Permeate, wt.%

1%CS/PAN-2 0.025 99.9 0.022 98.7
1%CS/PAN-3 0.090 97.5 0.130 99.9
1%CS/PAN-4 0.108 99.9 0.233 99.9
1%CS/PAN-5 0.130 96.4 0.160 92.9

0.5%CS/PAN-2 0.023 99.6 0.022 97.0
0.5%CS/PAN-3 0.120 96.5 0.120 95.3
0.5%CS/PAN-4 0.120 99.4 0.200 98.6
0.5%CS/PAN-5 0.120 95.9 0.190 94.6

The data in Table 5 demonstrate high selectivity with respect to water for all membranes with a
thin selective layer prepared using 1 wt.% CS solution (96.4–99.9 wt.% water in the permeate depending
on the porous substrate used to prepare the TFC membrane). It is also worth noting that changes
of permeation flux for the TFC membranes on PAN substrates are in agreement with the data of the
measured performance and total porosity of these substrates (PAN-2,3,4,5). The low degree of porosity
of the upper (selective) layer of the ultrafiltration membrane (substrate) leads to the formation of a low
permeable TFC membrane despite the same thickness of the selective chitosan layer (Figure 8). This is
due to the fact that mass transfer of components slows down due to non-porous regions of the selective
layer of the ultrafiltration substrate, where some of the penetrant molecules get after diffusion through
the selective layer of chitosan. At low porosity of the selective layer of the ultrafiltration substrate,
penetrant molecules still need to diffuse through the non-porous regions of the selective layer of the
ultrafiltration substrate, which can have a thickness of up to 0.5 µm. Thus, differences in permeation
performance of TFC CS/PAN membranes are due to the difference in the pore size, degree of porosity
and thickness of the selective layer of PAN substrates. It should be noted that almost the same low
permeation flux was observed for supported 1%CS/PAN-2 and 0.5%CS/PAN-2 membranes, which was
sharply different from the rest TFC membranes. So the concentration (and therefore also viscosity) of
the chitosan solution almost does not affect the permeation flux of TFC membrane based on PAN-2.
That indicates that the chitosan-based selective layer is formed in each case in the same way and there
is no leakage of the solution into the membrane pores of the selective layer of PAN-2 membrane due to
their small size. However, the low porosity of the selective layer of PAN-2 substrate and possibly its
large thickness slows down mass transfer through the membrane during pervaporation.

It was shown that the formation of a polyamide layer by IP method on the TFC CS/PAN membrane
surface in most cases led to the increase of permeation flux in the pervaporation separation of the
azeotropic isopropanol/water mixture with the exception of the 1%CS/PAN-2 membrane. It should be
noted that in all cases with the exception 1%CS/PAN-3 and 1%CS/PAN-4 membranes a decrease in the
water content in the permeate was observed after formation of a thin polyamide-based layer by IP
compared to the unmodified TFC CS/PAN membranes. 1%CS/PAN-4 membrane was found to feature
the optimal transport characteristics in pervaporation separation of the azeotropic isopropanol/water
mixture: a significant change in the permeation flux after the formation of a polyamide layer by IP
from 0.108 to 0.233 kg/(m2h) maintaining a high selectivity level (99.9 wt.% water in the permeate).
An increase of permeation flux and a decrease of selectivity after the formation of polyamide layer
via IP could be associated with a chitosan hydrogen bond system disruption due to the formation of
polyamide chains. An aqueous TETA solution in contact with a chitosan layer impregnates the chitosan
layer. Despite that chitosan is cross-linked, it is able to swell in water and the amine inserts between the
chitosan chains. At the moment of contact of the membrane with an acyl chloride solution in a nonpolar
solvent the following may occur: (1) TETA reacts with TMC and moves apart the chitosan chains
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by the growing polyamide chain, disrupting the dense packing of chitosan chains in the sublayer;
(2) hydroxyl or amine chitosan groups react with TMC instead of TETA, polyamide does not form or the
growing polyamide chains break, but most important is the disruption of the chitosan hydrogen bond
system and a decrease of the packing density in the cross-linked selective chitosan layer. As a result,
the polyamide does not form a dense defect-free layer. The polyamide partially breaks off, partially
intertwines with chitosan. Consequently, IP often may not lead to increasing the water content in the
permeate (especially in the case of 0.5% CS/PAN membranes, where the chitosan layer may be thinner
and easier to slightly disrupt due to the implementation of polyamide chains). Also, permeation flux
increasing and water content in the permeate decreasing after polyamide layer formation could be
associated with increasing of the water sorption on the more hydrophilic and less rough surface of the
selective layer, what led to a greater selective layer swelling degree during pervaporation.

To increase the permeability by reducing the selective dense layer thickness, TFC membranes
were prepared by deposition of 0.5 wt.% CS solution to the same ultrafiltration membranes (substrates)
(Table 5). It was shown that using a lower polymer solution concentration (lower viscosity) led to
decreasing in selectivity of TFC membranes and to different changes of permeation flux compared to
membranes prepared from 1 wt.% CS solution. Identical permeation performance values were obtained
for TFC membranes on PAN-3,4,5 substrates. The formation of a thin polyamide layer by IP method
for TFC membranes on PAN-2,3,4,5 substrates led to decreasing in water content in the permeate
maintaining the same permeation flux level or a slight increasing in permeability. For example,
permeation flux of 0.5%CS/PAN-2 and 0.5%CS/PAN-3 membranes did not change after IP, but for
membranes on more porous substrates (PAN-4,5) led to increase of permeability ~1.6 times compared
to same reference membranes without polyamide layer.

Thus, the formation of a selective CS layer on PAN substrates by physical adsorption and its
subsequent cross-linking (the introduction of MA and heat treatment at 110 ◦C for 120 min) led to the
formation of TFC membranes with high selectivity and relatively high permeation flux, especially
for membranes on PAN substrates with higher porosity. Formation of an ultrathin selective layer
by IP for TFC membranes with a correctly selected preparation conditions (selection of polymer
solution concentration and viscosity, structure of porous membrane-substrate) increased the membrane
permeability. Based on the obtained data, it can be concluded that the developed TFC membrane with
a thin selective layer formed from 1 wt.% CS solution and deposited on a porous PAN-4 substrate
(CS/PAN-4 membrane) with the subsequent heating at 110 ◦C for 120 min possessed the best transport
characteristics after the formation of a thin selective polyamide layer by IP for pervaporation separation
of azeotropic isopropanol/water mixture (changes after IP: permeation flux from 0.108 to 0.233 kg/(m2h)
maintaining a high selectivity of 99.9 wt.% water in the permeate). This membrane was selected for
further study.

3.3.1. Transport Properties of the Best TFC Membrane

Transport properties of the best developed TFC membrane CS/PAN-4 with a polyamide layer
(CS/PAN-4/IP membrane) were studied in pervaporation for isopropanol dehydration in a wide
concentration range (12–100 wt.% water in the feed) (Figure 9) and for dehydration of the azeotropic
isopropanol/water mixture (88/12 wt.%) at various temperatures (28, 35, 50 ◦C) (Figure 10). The reference
membrane CS/PAN-4 was studied for comparison of the transport properties.
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Figure 9. The dependence of the permeation flux on the water content in the feed (12–100 wt.%) in 

pervaporation dehydration of isopropanol for the reference CS/PAN-4 and CS/PAN-4/IP TFC 

membranes. Water content in the permeate for all membranes was 99.9 wt.%. The mean accuracy for 

permeation flux was ±6%. 

It was shown that the CS/PAN-4/IP membrane had higher permeation flux in ~1.2-2.2 times 

maintaining high selectivity (99.9 wt.% water in the permeate) compared to the reference CS/PAN-4 

Figure 9. The dependence of the permeation flux on the water content in the feed (12–100 wt.%)
in pervaporation dehydration of isopropanol for the reference CS/PAN-4 and CS/PAN-4/IP TFC
membranes. Water content in the permeate for all membranes was 99.9 wt.%. The mean accuracy for
permeation flux was ±6%.

It was shown that the CS/PAN-4/IP membrane had higher permeation flux in ~1.2–2.2 times
maintaining high selectivity (99.9 wt.% water in the permeate) compared to the reference CS/PAN-4
membrane in pervaporation dehydration of isopropanol. Membranes were also tested for permeability
of pure water to evaluate their resistance to water excess and stability of properties. The obtained
data demonstrate that the developed membrane with polyamide thin selective layer (CS/PAN-4/IP) is
promising to use in industrial dehydration processes where feed may contain a large amount of water.
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Figure 10. The dependence of the permeation flux on the temperature (28, 35, 50 ◦C) in pervaporation
separation of azeotropic isopropanol/water mixture for the reference CS/PAN-4 and CS/PAN-4/IP TFC
membranes. Water content in the permeate for all membranes was 99.9 wt.%. The mean accuracy for
permeation flux was ±6%.

The data of pervaporation separation of the azeotropic isopropanol/water mixture at different
temperatures demonstrate that permeation flux of the reference CS/PAN-4 and CS/PAN-4/IP membranes
increases symbatically with the feed temperature, while membranes remain highly selective (99.9 wt.%
water in the permeate). The formation of the ultrathin selective layer via IP for the CS/PAN-4
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membrane allowed to increase the permeation flux by 1.4–2.2 times maintaining high selectivity level
(Figure 10). The properties of the membranes were stable during the pervaporation experiment at
elevated temperatures. It also indicates the possibility of using developed TFC membranes in industrial
dehydration processes, which are often carried out at elevated temperatures to accelerate the process.

3.3.2. Layer-by-Layer Assembly Application

All prepared membranes had a defect-free thin selective layer. However, to improve the transport
characteristics of the CS/PAN-4/IP membrane five bilayers of polyelectrolytes (PEL) were deposited on
the membrane surface by the layer-by-layer method.

Transport properties of the modified by PEL layers membranes were studied in pervaporation
dehydration of isopropanol in wide concentration range (12–100 wt.% water in the feed) (Figure 11).
The pervaporation data of the reference CS/PAN-4 membrane are also presented in Figure 11
for comparison.
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Figure 11. The dependence of (a) the permeation flux, (b) water content in the permeate and MFLI,
(c) component permeances and (d) selectivity on water content in the feed in pervaporation for
separation of isopropanol-water mixture using the reference CS/PAN-4 and unmodified and modified
by five bilayers PEL (PSS/PAH or PSS/CS) CS/PAN-4/IP membranes. The vapor–liquid equilibrium
(VLE) was calculated using Aspen software. The mean accuracy was <±0.5% for water content in
permeate and <±3% for permeation flux.
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It was found that after applying PEL on the membrane surface the permeation flux and water
permeance increased compared to a membrane without PEL bilayers due to swelling of polyelectrolytes
in water. It was also found that the deposition of five PEL bilayers of PSS/PAH on the CS/PAN-4/IP
membrane (for CS/PAN-4/IP/LbL (PSS, PAH) membrane) led to the increase in permeability ~32–47%
compared to unmodified CS/PAN-4/IP membrane, while applying of five PEL bilayers of PSS/CS led
to the increase in permeation flux ~18–28% for CS/PAN-4/IP/LbL (PSS, CS) membrane. Isopropanol
permeance for all membranes was equal except for the CS/PAN-4/IP membrane modified by PSS/PAH
(which had a decrease in selective properties).

Figure 11b demonstrates that the curves of water content in the permeate for pervaporation
dehydration of isopropanol by using of developed membranes are much higher for the VLE curve for
isopropanol-water mixture, which indicates the separation efficiency. Calculated MFLI for developed
membranes is also presented in Figure 11b. This characteristic allows to compare pervaporation with the
characteristics of elementary flash distillation based only on the separation abilities of these processes.
When the MFLI value is even above 1.1, the separation by pervaporation is already preferable rather
than distillation. The calculated values of MFLI were relatively the same for all membranes 2.4–8.1,
which indicated the high efficiency of the application of membranes for pervaporation dehydration
of isopropanol.

It is worth noting that the deposition of five PEL bilayers of PSS/PAH on CS/PAN-4/IP membrane
causes the decreasing of membrane selectivity (Figure 11d): decrease of water content in the permeate
starts from the separation of 50/50 wt.% isopropanol/water mixture (≥97.7 wt.%) (Figure 11b). At the
same time selectivity was maintained at 99.9 wt.% water in the permeate for the entire concentration
range of the feed for membrane with PSS/CS polyelectrolyte pair (for CS/PAN-4/IP/LbL (PSS, CS)
membrane).

4. Conclusions

TFC membranes with a dense selective layer based on chitosan (CS) on the surface of PAN porous
substrates (membranes) were prepared.

It was demonstrated that changes in the permeation flux of TFC membranes on PAN substrates in
pervaporation isopropanol dehydration were in agreement with the data on the measured permeability
and total porosity of PAN substrates. The low porosity of the upper (selective) layer of the ultrafiltration
membrane (substrate) led to the formation of a low permeable TFC membrane despite the same
thickness of the dense selective CS layer and due to the additional mass transfer resistance of the upper
selective layer of the ultrafiltration membrane. The differences in permeation performance of the TFC
CS/PAN membranes were due to the differences in the pore size, degree of porosity and thickness of
the selective layer of the ultrafiltration membrane (substrate).

It was found that the formation of an additional polyamide (PA) selective layer by the interfacial
polymerization (IP) on the surface of a dense selective CS layer, as a rule, yielded the hydrophilization
of the selective layer surface of the membrane (water contact angle decreased). Moreover, it decreased
surface roughness, increased permeation flux and decreased water content in the permeate in the
pervaporation separation of the azeotropic isopropanol-water mixture. The TFC membrane with a
selective CS layer deposited on the PAN-4 substrate possessed optimal transport characteristics in
pervaporation dehydration of isopropanol (for azeotropic mixture). A significant change of permeation
flux after the formation of thin polyamide layer via IP from 0.108 to 0.233 kg/(m2h) maintaining a high
selectivity level (99.9 wt.% water in the permeate) was found.

Additional layer-by-layer deposition of five bilayers of PSS/PAH or PSS/CS polyelectrolyte pairs
on TFC membrane with a selective PA/CS layers formed on the PAN-4 substrate led to the increase in
membrane permeation flux ~2 times compared to the reference CS/PAN-4 membrane for pervaporation
dehydration of isopropanol. It was due to the additional swelling of the polyelectrolyte layers in
water. Moreover, the application of PSS/CS allowed to maintain high selectivity (99.9 wt.% water in the
permeate) for the entire concentration range of the feed. Thus, the TFC membrane with hierarchical
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structure and ultrathin selective layers was developed which demonstrated the optimal performance
in pervaporation dehydration of isopropanol (12–90 wt.%): 0.22–1.30 kg/(m2h), 99.9 wt.% water in
the permeate.
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Abbreviation

Alg Alginates
AFM Atomic force microscopy
BSA Bovine serum albumin
CS Chitosan
IR Infrared spectroscopy
IP Interfacial polymerization
LbL Layer-by-layer assembly
MA Maleic acid
DMF N,N-dimethylformamide
NIPS Non-solvent induced phase inversion
PAH Poly (allylamine hydrochloride)
PSS Poly (sodium 4-styrenesulfonate)
PAN Polyacrylonitrile
PEL Polyelectrolyte
PVA Polyvinyl alcohol
PVP Polyvinylpyrrolidone
SEM Scanning electron microscopy
TFC Thin-film composite membrane
TETA Triethylenetetramine
TMC Trimesoyl chloride
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