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Abstract: A high-gain millimeter-wave patch array antenna is presented for unmanned aerial vehicles
(UAVs). For the large-scale patch array antenna, microstrip lines and higher-mode surface wave
radiations contribute enormously to the antenna loss, especially at the millimeter-wave band. Here,
the element of a large patch array antenna is implemented with a substrate integrated waveguide
(SIW) cavity-backed patch fed by the aperture-coupled feeding (ACF) structure. However, in this
case, a large coupling aperture is used to create strongly bound waves, which maximizes the coupling
level between the patch and the feedline. This approach helps to improve antenna gain, but at the
same time leads to a significant level of back radiation due to the microstrip feedline and unwanted
surface-wave radiation, especially for the large patch arrays. Using the SIW cavity-backed patch and
stripline feedline of the ACF in the element design, therefore, provides a solution to this problem.
Thus, a full-corporate feed 32 × 32 array antenna achieves realized gain of 30.71–32.8 dBi with
radiation efficiency above 52% within the operational band of 25.43–26.91 GHz. The fabricated
antenna also retains being lightweight, which is desirable for UAVs, because it has no metal plate at
the backside to support the antenna.

Keywords: aperture-coupled feed; cavity backed patch; gain; lightweight; millimeter-wave; stripline;
substrate integrated waveguide; surface wave; unmanned aerial vehicle

1. Introduction

Unmanned aerial vehicles (UAVs) and drone technologies have seen a rapid growth
of interest due to the breakthroughs in microprocessors and artificial intelligence (AI) [1,2]
to make them more accessible and affordable. UAVs can operate either autonomously
or remotely controlled [3,4] to carry out tasks such as search and rescue operations, se-
curity patrol, cargo transportation, and provide seamless wireless coverage where no
communication infrastructure is available [5–7].

UAV antennas must, therefore, achieve a good trade-off between the commercial
criteria and technical design issues. This includes high performances (i.e., gain), low
power consumption, restrictive physical properties (e.g., size and weight), and low cost [8].
Owing to the trend of miniaturized electronic devices and increasing demands for high
data rates, microstrip patch antennas (MPAs) are better suited for UAV technologies than
other antenna types, especially at the millimeter-wave (mm-wave) band. This is because,
at mm-wave frequencies, the MPAs become small and lightweight. However, the standard
MPAs having huge radiation aperture contradict the high-gain requirement for the UAV
applications due to the lower radiation efficiency. This is because of the significant losses
attributable to higher-mode surface wave radiation, leaky-wave radiation from the feeding
network, and ohmic loss by the dielectric substrate, especially in higher frequencies. Thus,
a large-scale array of standard MPA cannot achieve superior gain results in the millimeter-
wave band. A more innovative design must be investigated.
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Several high-gain horn antennas have been reported in the literature with promising
electrical and physical features [9–11]. For example, they have a compact size for flush-
mounted installation on the UAV platform to improve aerodynamics and broadband for
increased capacity. The horn antenna gain ranges up to 25 dBi, with 10~20 dBi being typical.
Nonetheless, some UAV applications demand extremely high antenna gain above 25 dBi
in order to have a reliable communication link with the ground control stations in higher
frequency bands. This is because the path losses increase with the increase of operating
frequency and distance. In such a situation, the horn antennas cannot be chosen over the
patch array antenna with large radiation aperture.

In this paper, a corporate-fed 32 × 32 patch array antenna is developed at the
millimeter-wave band for UAV applications. To achieve higher gain, the element’s aperture-
coupled feed (ACF) is modified by increasing the coupling slot size. This approach increases
the coupling levels between the patch and the feedline to improve radiation efficiency.
However, at the same time, strong surface waves and back radiation due to the feedline oc-
cur, especially in the large-scale patch arrays in higher frequency bands. This phenomenon
causes significant antenna losses to undermine the gain improvement. Hence, the element
antenna is implemented with SIW cavity-backed patch to create strongly bound input
power and suppress any undesired higher-mode surface wave. Also, a stripline feedline
is used in the ACF scheme to minimize back radiation level. The experimental results
indicated a high gain of 30.71–32.8 dBi with the radiation efficiency of at least 52% within
operational band of 25.43–26.91 GHz. The fabricated antenna retains low weight because it
has no metal plate to back the antenna’s bottom ground plane. Thus, the external WR-28
waveguide-to-coax adapter is mounted directly at the antenna’s backside for measurement.

2. Radiating Element Design

The geometry of the proposed array element is shown in Figure 1, which is a multilayer
structure with three dielectric substrates made of Taconic TLY-5 (i.e., Substrate #1, Substrate
#2, and Substrate #3, εr = 2.2, tanδ = 0.0009, height h = 0.508 mm). It also consists of three
copper layers, i.e., top layer GND #1, middle or isolating layer GND #2, and bottom layer
GND #3. The radiating patch resides on substrate 1, as shown in Figure 1a. Several metal
vias spaced along the rectangular opening are installed in the substrate and connected to
the top and middle ground planes (GND #1 and GND #2), thus forming the SIW cavity
that is the backing of the patch. The metal vias’ diameter dv, and spacing sv are carefully
optimized to reduce the leakage loss and provide feasible fabrication. The rectangular
patch on the top surface of substrate #1 is fed by a stripline feedline integrated on substrate
#2 and substrate #3 through the coupling slot or aperture in the isolating ground plane
GND #2, thus constituting the ACF scheme (see Figure 1a). The coupling slot is centrally
positioned under the patch to produce lower cross-polarization due to the symmetry of the
configuration [9] according to the X- and Y-axis, as illustrated in Figure 1b.

The implemented feeding configuration in this element design is similar to the conven-
tional ACF. The only difference is at the coupling-slot size. In contrast to the conventional
ACF that contains a small non-resonant coupling slot, the proposed element antenna has a
relatively large coupling aperture whose width ws is about seven times larger than that of
the conventional coupling slot. This modification shows a significant improvement of the
coupling levels (see Figure 2a) as the magnetic polarization of the slot (a dominant mecha-
nism for the coupling) is highly dependent on the size and shape of the aperture or slot [12].
Although maximum coupling between the feedline and the patch is obtained in Figure 2a
with larger coupling-aperture size, a smaller non-resonant aperture produces lower back
radiation with a better impedance matching to result in less spurious radiation and better
efficiency. Thus, a large coupling aperture utilized in this element antenna causes signif-
icant spurious radiation due to the strong higher-mode surface wave and transmission
line radiations to lower efficiency, especially in large-scale patch array in higher frequency
bands. Also, the microstrip line of the ACF underneath the patch causes undesired reactive
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loading effects at the element antenna’s input port because of the distortion in the electric
field between the isolating ground plane and the patch [13].
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Figure 2. Simulated current distributions on element antenna at 26.2 GHz. (a) Conventional versus
proposed slot size. (b) Conventional versus SIW cavity-backed microstrip patch.

To overcome these drawbacks of the ACF with large aperture size, SIW cavity-backed
patch has been combined with a stripline feeding line to implement the radiating structure,
as shown in Figure 1. This configuration significantly suppresses undesired higher-mode
surface waves, as illustrated in Figure 2b, as well as back radiation to maximize the radiation
efficiency. Figure 3a indicates that increasing the slot width ws leads to a corresponding
increase in radiation efficiency. This validates this design concept since the radiation
efficiency peaks at ws = 0.146λ, which is better than conventional ACF. Hence, the element
antenna exhibits gain variation less than 1 dBi from 7.82 to 6.89 dBi within the band of
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interest, as shown in Figure 3b. A peak gain of 7.82 dB occurs at 26.4 GHz with a radiation
efficiency of more than 89%. See Figure 4a, the simulated model of element antenna
operates from 25.58 to 27.04 GHz for |S11| < −10 dB (5.2%). The simulation results in
Figure 4b indicates half power beamwidth (HPBW) of 70◦ and 73◦ in the XOZ- and YOZ-
plane, respectively. The level of cross-polarization in the boresight direction is less than
−20 dB. The geometric dimensions of the radiating element can be found in Table 1.
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Table 1. Dimensions of the Element Patch Antenna.

Parameters Value Parameters Value

dv 0.50 mm wf 0.50 mm
xs 0.50 mm wp 4.50 mm
ys 0.50 mm ws 5.50 mm
sv 0.75 mm ls 3.58 mm
lfx 1.25 mm lp 2.58 mm
lf 4.00 mm

The geometry of the element antenna in Figure 1, however, can lead to power leakage
to the parallel plate mode due to the use of the stripline feed to cause a decrease in radiation
efficiency. Figure 5 shows the parallel plate mode of the stripline, indicating the electric
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field lines due to the voltage |Vs| applied to the coupling slot. Thus, the amount of parallel
plate mode is contingent on the amplitude of |Vs|. The impedance seen looking from
the slot toward the patch is purely real (Ra) at resonance for the aperture-coupled antenna
(ACA), as illustrated in the circuit model in Figure 6a [14]. As seen from Figure 6b, Ra
is very low compared to the 60-Ω input impedance of the element antenna within the
operating frequency band. The patch, therefore, appears to behave like a circuit that shorts
out the slot at these resonant frequencies, resulting in the parallel plate mode suppression.
It should be noted that Lf and Cf represent the feedline, whereas the patch is characterized
by Lp, Cp, and Rp.
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3. Array Antenna Design

The structure of the 32 × 32 array based on the proposed element antenna is shown
in Figure 7a. The antenna’s geometry comprises three substrate layers with a corporate
feeding network to distribute power among the constituent elements. Its feeding network
has Tee-junctions, which are two-way equal power dividers to ensure uniform distribution
of power. Some sections of the feeding lines are bent to achieve 180◦ phase shift between
adjacent elements in the x-axis for in-phase excitation, as illustrated in Figure 7b. The
center-to-center distance between adjacent radiating patches is 7.2 mm in the x-direction
and 8 mm in the y-direction. The entire radiation aperture of the full-corporate feed 32× 32
array antenna covers an area of 232.6 mm (20λ0) × 257 mm (22.5λ0) (x × y). The height of
the antenna is 1.664 mm (0.14 λ0). The paths of the input signals to the radiating patches
are detailed in Figure 5 as Block III→ Block I.

Block III: Waveguide-to-stripline Transition-The launched signal in the waveguide
excites the matching patch of the transition at 26.2 GHz. The matching patch is located in
the feed aperture in the bottom ground plane of substrate #3.
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Block II: Feed network-The input signals are electromagnetically coupled to the feed-
line on the top surface of substrate #3 from the matching patch. The signals are then
transferred to and evenly distributed in the feeding network.

Block I: Radiating part-The SIW cavities on substrate #1, comprising coupling aper-
tures and metal vias, are designed to transfer power between the substrate layers. Thus,
the uniformly distributed signals in the feeding network are also coupled electromagneti-
cally through the apertures or slots, which are etched in the middle ground plane, to the
patches. The signals are subsequently re-radiated by the patches without the influence of
the higher-mode surface waves due to the cavity-backed technique.Sensors 2021, 21, x FOR PEER REVIEW 7 of 12 
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3.1. Block II: Feed Network

As pointed out previously, the feed network (see Figure 7b) adopts a Tee-junction
for signal division. It also contains a microstrip bend (i.e., delay line), which follows
the Tee-junction to achieve a 180-degree phase difference between the adjacent elements
because the delay line length is adjusted to λg/2 (where λg is the guided wavelength at
the center frequency. With reference to Figure 7b, no additional metal vias were installed
along the feedlines of the feed network to suppress the surface waves from feed structure
and ground planes (i.e., stripline shielding). This is because it will further increase the
complexity of the full array structure. The prototyping of the antenna, thus, becomes more
difficult to perform, making the antenna more susceptible to fabrication errors, which
eventually deteriorate the measured antenna performance. In addition, the metal via
itself could also radiate, especially at a higher frequency, as the size is comparable to the
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operating wavelength to result in radiation losses. It is, therefore, imperative to take into
consideration the coupling between the feedlines without the stripline shielding. Figure 8a
shows the coupling coefficients between the feedlines in terms of |S12|, |S21| and |S23|,
and |S32|. It can be seen that the coupling coefficient is lower than −30 dB over the
frequency range of 24.5–27.5 GHz. This suggests that less than 0.1% of the input power
contributes to the coupling between feedlines, which is negligible to reduce efficiency.
Figure 8a also indicates that a 180-degree phase difference is achieved by the delay line.

3.2. Block III: Waveguide-to-Stripline Transition Structure

The waveguide-to-stripline transition of the array antenna is shown in Figure 7c. This
transition consists of a rectangular waveguide, feedline, waveguide-short pattern, metal
vias, and matching patch. The top substrate layer (i.e., antenna’s substrate #2) is cladded
with copper layer as the upper ground plane to achieve the stripline configuration. Thus,
any undesired transmission line radiation is suppressed to improve the radiation efficiency,
especially for the large-scale patch array. On top of the lower substrate (i.e., substrate #3)
resides the feeding line. The matching patch is etched on the substrate’s backside with
a short-terminated waveguide using the metal vias. WR-28 waveguide was used with
dimensions of a = 7.112 mm and b = 3.556 mm.

Referring to Figure 7c, the waveguide’s dominant TE10 mode transforms to the
feedline’s quasi-TEM mode through the radiation mode TM01 of the matching patch. Thus,
by adjusting the length and width of the matching patch, the desired operating frequency
and good impedance matching can be realized to lower insertion loss. Figure 8b shows the
simulated reflection |S11| and transition |S21| characteristics of the optimized waveguide-
to-stripline transition in a back-to-back configuration. The transition operates from 24.86 to
28.24 GHz for |S11| < −10 dB (12.7%) with an insertion loss |S21| better than −0.6 dB
from 25 to 27.95 GHz. The insertion loss is due to the transmission line (loss = 0.012 dB/mm)
and the two transition structures (0.1 dB each) for the back-to-back arrangement. Figure 8b
also shows the phase response of the waveguide-to-stripline transition.
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4. Results and Discussion

The photographs of the fabricated 32 × 32 array antenna are shown in Figure 9. It is
observed that the backside of the antenna has no metal plate attached to the bottom ground
plane for lightweight purposes, which is desirable for UAVs. Thus, the WR-28 waveguide
to coax adapter is directly connected to the antenna’s feed point for measurement.
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Figure 9. Photograph of the fabricated 32 × 32 array antenna. (a) Top view. (b) Back view.

Figure 10a,b exhibit the experimental results of |S11|, gain, and radiation efficiency.
There is a good agreement between the simulated and measured results. The measured
|S11| <−10 dB bandwidth is 5.65%, i.e., from 25.43 to 26.91 GHz, while the measured gain
varies between 30.71 and 32.8 dBi within this band. A peak gain of 32.8 dBi is observed at
26.2 GHz. On the other hand, the simulated gain varies between 33.9 and 35 dBi. The overall
disparity between the simulated and measured gain is generally due to the insertion loss
of 0.3 dB of the coaxial waveguide adapter or transition. Other contributing factors include
copper surface roughness, substrate shrinkage, and assembly tolerance, which are difficult
to account for during the full-wave analysis. They significantly affect the performances of
antennas in millimeter-wave bands, especially in multilayered structures. The radiation
efficiency plotted in Figure 10b is above 52% within the band of operation. The simulated
and measured far-field radiation patterns at 25.43, 25.9, 26.2, and 26.9 GHz are shown in
Figure 11, respectively. Well-maintained beam shapes at these three frequencies can be
observed. The measured HPBWs for all the three frequency points are 2◦ and 2.2◦ in XOZ-
and YOZ-plane, respectively.
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5. Conclusions

In summary, this paper presents a millimeter-wave array antenna for unmanned
aerial vehicles (UAVs). The array element utilizes a large coupling aperture (compared
with the conventional ACF slot size) to enhance coupling power between the feeding
line and patch. However, with this design concept, the large-scale patch array results in
significant transmission lines and higher-mode surface wave radiations to increase antenna
loss. The radiating element is therefore implemented with the SIW cavity-backed patch and
stripline feeding line of ACF. Thus, a full-corporate feed 32 × 32 array antenna including
the transition achieves gain between 30.7 and 32.8 dBi with radiation efficiency above 52%
within the band of interest. Also, the fabricated antenna has no metal plate at the backside
to maintain its lightweight attribute, essential for UAV applications.
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