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Abstract

Cooperation is ubiquitous in our real life but everyone would like to maximize her own profits. How does cooperation occur
in the group of self-interested agents without centralized control? Furthermore, in a hostile scenario, for example,
cooperation is unlikely to emerge. Is there any mechanism to promote cooperation if populations are given and play rules
are not allowed to change? In this paper, numerical experiments show that complete population interaction is unfriendly to
cooperation in the finite but end-unknown Repeated Prisoner’s Dilemma (RPD). Then a mechanism called soft control is
proposed to promote cooperation. According to the basic idea of soft control, a number of special agents are introduced to
intervene in the evolution of cooperation. They comply with play rules in the original group so that they are always treated
as normal agents. For our purpose, these special agents have their own strategies and share knowledge. The capability of
the mechanism is studied under different settings. We find that soft control can promote cooperation and is robust to noise.
Meanwhile simulation results demonstrate the applicability of the mechanism in other scenarios. Besides, the analytical
proof also illustrates the effectiveness of soft control and validates simulation results. As a way of intervention in collective
behaviors, soft control provides a possible direction for the study of reciprocal behaviors.
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Introduction

Since Darwin’s evolutionary theory, researchers have been long

puzzled by the problem that why there exists wide cooperation

among species [1–3]. As the paradigm of studying reciprocal

behaviors, the Prisoner’s Dilemma has been abstracted to depict

many biological processes [4–8], and it raises a question to us, how

to sustain cooperation in the group of self-interested agents

without centralized control.

As known, in a single shot of two-agent Prisoner’s Dilemma,

mutual defection is the only equilibrium. With the number of

agents increasing, it becomes unfriendly to cooperation either [9].

A large amount of theoretical work have studied assorted scenarios

where cooperation can emerge. They can be mainly divided into

three categories. First, the ‘‘catalysis’’ to sustain cooperation is

studied. A specific proportion of ‘‘Tit for Tat’’ (TFT) in the

population is crucial to the emergence of cooperation but the

strategy of ‘‘Pavlov’’ is the last laughter [10,11]. Punishment is

considered as an important way to support cooperative behaviors

and studied in spatial public goods game [12,13], indirect

reciprocity [14–16], group selection [17,18] or other scenarios

[19–22]. Besides costly punishment, reward can also promote

cooperation [23]. Second, extra abilities or characteristics are

provided to agents. The tag mechanism where an agent’s decision

depends not only on its play strategy but also on arbitrary tags

associated with the agents can make it easy for populations to

reach reciprocal cooperation [24,25]. The mobility of an agent

who interacts with its local neighbors also increases the capability

of cooperation to emerge [26–29]. Third, introducing the

topological structure in games, e.g. the lattice, the random graph

or the scale-free network, has been proved to be an effective way to

support cooperation because local interaction provides an

opportunity for cooperators to cluster, grow and resist against

the invasion by defectors [30–38]. Different samplings of

interaction partners have effect on the cooperation level [39]. In

addition, the introduction of coevolutionary rules combining the

evolution of play strategies and other properties is beneficial to the

prevalence of cooperation [40–49].

In this paper, our purpose is not to study which scenario can

favor cooperation, but to propose a mechanism called soft control

[50,51] to promote cooperation in the unfavorable scenario.

Moreover sometimes original populations and play rules are not

allowed to alter because any change may incur high cost. Thus it is

natural to ask how to promote cooperation under this circum-

stance. According to the basic idea of soft control, a number of

special agents called shills are added to the original group to

intervene in the evolution of cooperation. These shills pose as

normal agents by conforming to play rules, thus they are always

treated as normal agents by truly normal ones. The difference is

that a shill has its own strategy and it can recognize other shills.

This allows shills to share their knowledge of interacting with

normal agents and take appropriate action in games based on

knowledge. We think that this assumption is reasonable in some

scenario of real life. Consider e-commerce: in order to publicize

products, some sellers may employ a number of shills to

compliment products in web media. Those shills recognize each
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other if the seller informs them, but ordinary consumers cannot

differentiate. The preliminary result of soft control to promote

cooperation in the particular scenario can be found in [52].

In following parts we study the performance of soft control

under different settings by numerical experiments, which include:

(1) the short-term vs. long-term RPD; (2) noise-free vs. noisy

interaction; (3) complete vs. incomplete population interaction.

For (1), our purpose is to show how the mechanism takes effect

upon a wide range of the finitely RPD. Here note that albeit the

finitely RPD is considered in this paper, we always assume that the

time period of games is unknown to all players (i.e. normal agents

and shills). So under this circumstance the finitely RPD is usually

considered as the infinitely RPD. There are many theoretical

studies based on the finitely RPD [1,53–56]. For (2), the sensitivity

of soft control to noise is presented where noise derives from

mistakes to take the opposite action. The motivation of this

experiment is to check whether the mechanism is robust to noise

because any single-bit error in action between two TFT agents will

destroy cooperation. It is called ‘‘cascade of curse’’. For (3), we

derive our main results in this paper on considering complete

population interaction, i.e. every player plays with all others. A

case of incomplete interaction is studied to demonstrate the

applicability of soft control in other scenarios. In addition, we also

give the analytical proof of the effectiveness under complete

interaction (see in Appendix S1) to validate and complement

simulation results.

Methods

In the Prisoner’s Dilemma, both players make their choices

simultaneously, cooperation (C) or defection (D). Their payoffs

depend on which action they choose. The payoff matrix

considered in this paper is written as the following form:

C D

C

D

R,Rð Þ S,Tð Þ

T ,Sð Þ P,Pð Þ

 !

where parameters in the matrix satisfy TwRwPwS and

Rw(TzS)=2.

According to the above matrix, note that in a single stage of the

game D is the best option for a player regardless of its opponent’s

choice. As a result both obtain P points. But if they had

cooperated with each other, they would have received higher

payoffs, R points. This is the dilemma between individual and

collective rationality. Meanwhile playing C continuously is better

than doing C and D alternatively for the study of reciprocal

behaviors in the RPD.

Basic model: populations and play rules
Consider the mixed reactive strategy [57] for each normal

agent, which is described as (y,p,q)[R½0,1�3, where y is the

probability of cooperating on the first stage, p and q are the

conditional probability of taking cooperation on the current stage

responding to the opponent’s last move defection and cooperation

respectively. The space of reactive strategies displays plentiful

phenomena and has rich analytical results [10,24,54,57–59]. It

can also describe the fundamental element in decision makings, i.e.

the mapping from stimulus to response, similar to if-then rule.

Let NA denote as the number of normal agents, b as the time

period of games (e.g. b~10 means the 10-stage RPD) and t as the

index of generations. Let A~f1,2, . . . ,NAg. We assume the

number of the population to be constant in each generation.

This paper mainly studies complete population interaction, i.e.

each normal agent interacts with all others (in simulations, the

incomplete interaction cases are also provided). In t generation

(t§0), every pair of agents play the b-stage RPD once. The

pairing order is random, but it does not influence an agent’s

payoff. Agent i (i[A) updates its payoff after each RPD game. Let

fij(t) denote as the total payoff agent i receives from playing with

agent j for the b-stage RPD. Then agent i’s total payoff

fi(t)~
P

j[A\fig fij(t). At the end of a generation, all agents self-

reproduce. The expected number of agent i’s offspring in tz1
generation, denoted as Ef#i(tz1)g, is calculated as follows:

Ef#i(tz1)g~ fi(t)X
k[A

fk(t)
NA Vi[A ð1Þ

As we will show in the simulation section, cooperation is

impossible to emerge in the self-organized group of normal agents.

Model with soft control: shills and their strategies
To promote cooperation, a number of shills are added to the

original group. Let NS denote as the number of shills. Again, we

assume the number of the population N~NAzNS to be constant

in each generation. Let P~f1,2, . . . ,Ng. As mentioned above,

shills are treated as normal agents by conforming to play rules.

Meanwhile it is assumed that shills know nothing about normal

agents’ strategies, but they can remember and share the action

sequence of normal agents playing with shills in the current

generation. With this knowledge, they can estimate the level of

cooperativity of normal agents and take suitable action. The

simplest way of estimating a normal agent’s strategy based on the

action sequence is to calculate the frequency of cooperation. And

then a shill uses it to decide appropriate reaction: to cooperate if

the normal agent has high frequency of cooperation, otherwise to

defect. This is what we called Frequency-based Tit for Tat (F-

TFT). Note that F-TFT is a different form of strategy from normal

agents’ reactive strategy (y,p,q). But this is allowed in soft control

because shills can use their own strategies as long as they conform

to play rules in the original group. We utilize F-TFT as a shill’s

strategy in the following part.

In each generation, all shills share knowledge (mi,ni) for normal

agent i (i[A), where mi is how many stages agent i has interacted

with shills so far and ni is the number of cooperation in mi stages.

At the beginning of each generation mi and ni are initialized as 0.

Then a shill with F-TFT uses (mi,ni) to make decisions: if mi~0,

the shill cooperates; otherwise it cooperates with the probability

ni=mi. After a stage, mi is increased by 1, and ni is increased by 1 if

agent i cooperates at that stage. Because each shill can access

(mi,ni), F-TFT is always based on the history of shills interacting

with agent i so far. Therefore at the end of each generation,

mi~b:NS and ni is the total number of cooperation that agent i
takes while playing with shills.

For any k[P, player k’s total payoff fk(t)~
P

j[P\fkg fkj(t)
where fkj(t) is the total payoff player k receives from interacting

with player j. Rewrite Eq. (1) as below:

Ef#i(tz1)g~ fi(t)X
k[P

fk(t)
N Vi[A ð2Þ

According to Eq. (2), note that the role of shills is to intervene in

a normal agent’s payoff through interacting with it. In fact, shills

Special Agents Can Promote Cooperation
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playing F-TFT reward cooperative behaviors and punish defective

ones so as to promote cooperation.

Results

The performance of soft control is studied through a series of

numerical experiments. Simulation results presented in figures are

averaged on 100 independent random realizations where

NA~500 and a normal agent’s strategy is uniformly generated

in R½0,1�3. Besides, we assume that any player can be influenced

by noise to take the opposite action with the probability pn in each

stage. In experiments let R~3, T~5, S~0 and P~1 [1]. But our

analytical proof (see in Appendix S1) illustrates the effectiveness of

soft control under complete interaction for arbitrary R,S,T ,P
which satisfy TwRwPwS and Rw(TzS)=2.

Survival of the fittest
Actually Eq. (2) reflects the idea of ‘‘survival of the fittest’’, i.e.

the more payoff one player gets, the more offspring it reproduces.

Because shills are assumed to pose as normal agents, we first study

the case that shills are also subject to ‘‘survival of the fittest’’. In

this scenario, we define the frequency of cooperation fc as the

fraction of cooperation taken by players (i.e. normal agents and

shills) in all games of one generation.

The simulation results (Fig. 1) demonstrate that no matter in the

short-term (b~10) or long-term (b~100) RPD, even though there

is a small proportion (not less than 5% in the figure) of shills in the

population, they will become the majority at last. Thus fc mainly

derives from shills’ action. So the cooperation level can be high

since shills like to cooperate when the opponent cooperates. Soft

control seems effective in this sense. But it is mainly due to the fact

that shills win the game of ‘‘survival of the fittest’’ and replace

normal agents. This is not so fair since shills get more information

than normal agents. So we restrict the number of shills NS to be

constant in following parts of simulations to see how soft control

works. Therefore, fc is defined as the fraction of cooperation taken

by normal agents in all games of one generation.

Evolution of fc and strategies
Fig. 2 demonstrates the performance of soft control with various

NS . When NS~0, normal agents with smaller p and q (i.e. less

likely to cooperate when the opponent defects or cooperates in the

last move respectively) get more payoff, which leads to the

prevalence of defection. When defection prevails, p is more

important than q on determining a normal agent’s payoff. So the

red line in Fig. 2 (A) fits to the red line in Fig. 2 (C) well.

Comparatively when NS~450, there are sufficient shills to make

normal agents with larger q get more payoff by cooperating with

them. Thus cooperation is beneficial such that cooperation

dominates defection. Interestingly note that when NS~150, fc

has a first decrease and then increases. The reason is that although

cooperation is sustained by shills all the time, in the first period the

number of shills is not large enough to ensure cooperation more

profitable, which leads to the dominance of defection. But later,

defection is no longer advantageous. On one hand defection is not

supported by shills; on the other hand, playing defection only

receives P points rather than T points in most interaction due to

the prevalence of defection. But by contrast cooperation is more

beneficial because it is supported by shills. Consequently fc

increases after the first period.

Above results indicate that after adding shills, cooperation is

promoted. In the following part, we study soft control under other

Figure 1. Shills are subject to survival of the fittest. (A) & (B) how the proportion of shills changes with different initializations when b is 10 and
100 respectively. (C) & (D) the relationship between the proportion of shills and fc on t~300 with different initializations when b is 10 and 100
respectively.
doi:10.1371/journal.pone.0029182.g001
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settings, which include the short-term (b~10) vs. long-term

(b~100) RPD, noise-free (pn~0) vs. noisy (pn~0:05) interaction,

and sharing vs. non-sharing knowledge.

Different settings
Simulation results (Fig. 3 (A) & (B)) illustrate the robustness of

the mechanism to noise. We find that soft control is slightly

sensitive to noise. It is because the strategy F-TFT is on a basis of

shared knowledge but noise causes shills’ knowledge to be

inaccurate. Also shills’ own action is subject to noise. But mixed

reactive strategies contain randomness, so noise in the interaction

does not have a significant impact on the performance. In the

meantime, we find that soft control is still efficacious to promote

cooperation no matter in the short-term or long-term RPD. At this

point, soft control is robust.

In order to evaluate the importance of knowledge on soft

control, we compare the difference between sharing knowledge

and non-sharing knowledge among shills for both the short-term

and long-term RPD (Fig. 3 (C) & (D)). For the short-term RPD,

sharing knowledge is better. Otherwise a shill does not have

enough knowledge to estimate accurately the cooperativity of

normal agents. In this situation, shills need to help each other, so

sharing knowledge is crucial. However for the long-term RPD, this

difference is no longer evident. It is because b~100 is sufficient for

a shill to estimate its opponents even without knowledge providing

from other shills. Thus sharing knowledge is not essential in this

case. As a whole, sharing knowledge is rudimentary for the short-

term RPD while it becomes dispensable for the long-term RPD.

Additionally, note that there is an inversely proportional

relationship between b and NS . That is, to attain a given fc, the

required NS decreases as b grows. The reason is that, for smaller b
there have to be more shills to accumulate enough knowledge to

estimate a normal agent accurately. Therefore as long as b is

sufficiently large, theoretically one shill can promote cooperation

of the group.

Incomplete population interaction
Above discussions are made in the complete population

interaction case. But in real world systems it is not always like

that. We should also consider how soft control works in the case of

incomplete interaction, that is, players can interact with a

proportion of the population. This proportion is denoted by

a[R½0,1� called the interaction locality (in the case of complete

interaction, the proportion a is equal to 1). In one generation,

player i (i[P) is chosen at random and then it randomly selects

another one from F i to play the b-stage RPD once, where F i

denotes as the set of players that player i has never interacted with

in the current generation. For normal agents, because they have

no knowledge of others, their selection is random. But for shills,

they can share knowledge and make full use of it. In this case, each

shill k (k[P\A) keeps its own knowledge (mk
i ,nk

i ) for normal agent

i where i[A. Shill k prefers to choose normal agents whose

cooperative level (judged by nk
i =mk

i , according to its knowledge) is

higher than a threshold, d[R½0,1�, called the selection level. The

set of these ‘‘qualified normal agents’’ is denoted as Gk. Shill k
randomly selects a normal agent from F k\Gk if not empty;

otherwise it chooses from F k at random. After interacting with a

normal agent, shill k shares its knowledge with a proportion of

other randomly chosen shills. This proportion is called the share

proportion, denoted as ps. Above selection and interaction

Figure 2. The evolution of fc and strategies with different NS . When pn~0 and b~10, the evolution of fc , �yy, �pp and �qq are demonstrated as NS

varies, where �yy~
PNA

i~1 yi=NA, �pp~
PNA

i~1 pi=NA and �qq~
PNA

i~1 qi=NA .
doi:10.1371/journal.pone.0029182.g002
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processes repeat until on average each player interacts with a:N
players. Then they reproduce offspring based on Eq. (2).

Fig. 4 (A) illustrates the efficacy of soft control under incomplete

interaction. And it also demonstrates an inversely proportional

relationship between b and NS . Note that compared to the case of

complete interaction, cooperation is sustained for much smaller b
and NS because shills’ knowledge are used to choose opponents

from normal agents as well. This dramatically enhances the

performance of soft control.

In addition, the parametric sensitivity of soft control is studied

for different values of d, ps and a. Fig. 4 (B) shows that for d, there

is a tradeoff in the selection scheme of shills, which is similar to the

relationship between exploration and exploitation. When d is

large, there are few normal agents getting benefits from shills;

whereas when d is small, shills’ selection is almost random such

that cooperative behaviors cannot get more rewards than defective

ones. As a result playing cooperation is not advantageous. We also

find that even though a shill shares its knowledge with a small

proportion of other shills, soft control is still effective. Thus shills

do not need to share with all others to promote cooperation (Fig. 4

(C)). It is noted that in Fig. 4 (D) as a increases, incomplete

interaction degenerates into complete interaction gradually such

that shills lose the advantage on selection. Thus for a given fc, the

required NS is proportional to a.

Mutation
We know that randomness derives not only from the strategy

per se and noise in the interaction, but sometimes from strategy

reproduction. So in the case of incomplete interaction, we

investigate how soft control performs if randomness exists in

strategy reproduction. Here y,p,q in a normal agent’s strategy are

represented as 10-bit binary string apiece. During reproduction,

each bit in the string mutates from 0 to 1 or from 1 to 0 with the

probability pm which is called the mutation probability. In Fig. 5

(A)–(D), we find that soft control can still promote cooperation

when the order of magnitude of pm is no larger than 10{2.

Meanwhile note that with the increase of pm, the capability of the

mechanism becomes worse. This is due to the fact that for larger

pm, offspring are more different from their predecessor. As a

result, any possible equilibrium becomes unstable any longer.

Hence as long as pm is not very large, cooperation is always

promoted by adding shills. In Fig. 5 (E) & (F) it can be found that

rare mutation (pm is not larger than 10{3) in reproduction is

beneficial to increase the capability of soft control. In fact, small

pm can increase the diversity of the strategy space such that there

would be a possibility to incorporate higher cooperativity of

normal agents while it does not destroy the established

equilibrium.

Discussion

In this paper we propose a mechanism called soft control to

promote cooperation. For a group of agents playing the finitely

but end-unknown RPD, the self-organized evolution of the

population does not favor cooperation. However simulation

results show that cooperation is promoted after introducing shills

without violating play rules in the original group. Meanwhile the

Figure 3. The performance of soft control under different settings. fc on t~300 is shown because mostly after 100th generation, fc is
convergent. (A) & (B) the sensitivity of the mechanism to noise when b is 10 and 100 respectively. (C) & (D) the importance of sharing knowledge
when pn~0, b~10 and pn~0, b~100 respectively.
doi:10.1371/journal.pone.0029182.g003
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performance of soft control is studied under different settings,

which include short-term vs. long-term RPD, noise-free vs. noisy,

and complete vs. incomplete population interaction. We find that

the mechanism is slightly sensitive to noise but still effective. At

this point, soft control is robust to noise. In the short-term RPD,

sharing knowledge is essential to shills while it becomes

unimportant in the long-term RPD. Cooperation can be

promoted by shills in both complete and incomplete interaction

case. Yet with selection based on knowledge, it is more efficient

for shills to promote cooperation in the incomplete interaction

case than in the complete interaction case. We find that shills also

perform well in both the complete and the incomplete interaction

case even with mutation in strategy reproduction, and rare

mutation is beneficial to increase the capability of soft control.

Our results demonstrate that, to achieve a given cooperation

level, the required number of shills is inversely proportional to the

time period of games, but proportional to the interaction locality.

In addition the effectiveness of soft control under complete

interaction is proven analytically in the appendix.

There are several literatures relevant to the intervention in

individual behaviors [60,61]. In [60], authors investigate how a

teacher guides a learner to cooperate in the Prisoner’s Dilemma.

The role of the teacher is similar to that of a shill, but they focus

on the learning scheme in 2-agent games. Authors in [61] explore

the effect of three different kinds of special agents, namely

radicals, revolutionaries and reactionaries, on the transition of

regimes. It has dramatically changed the transition time.

Different from shills, those agents utilize strategies without

feedback knowledge.

In our study it is required that shills should pose as normal

agents by complying with play rules. This is the main point of soft

control, to keep play rules in the original group unchanged. What

is more, it has additional reasons in this paper: if shills are treated

as special agents, a normal agent may behave differently on

interacting with shills and other normal agents. It may pretend to

be a cooperator in order to get benefits from shills, but act as a

defector to exploit other normal agents. In this situation mutual

defection is still the only consequence. Therefore we stress the

importance of a shill being treated as a normal agent by truly

normal ones.

This paper is the first step to study soft control in the well-mixed

population, and more extensions deserve our further efforts to

explore. It is interesting to study soft control based on other

strategy sets besides reactive strategies, such as deterministic finite

automata [56,62], look-up table [1], Turing machines [63] and

neural networks [64]. In our further study, we will also investigate

whether F-TFT is the best strategy for shills and the properties of

the best strategy for the specific scenario.

We will extend soft control to structured populations and study

the influence of different spatial structures (e.g. the regular

network, the random network and the scale-free network) on the

mechanism. In fact, the network topology appears in many real-

world systems. The models with the spatial structure display

different properties (such as pattern formation and diffusion

[31,65]) from the mean-field type model. Consider soft control in

the case of structured populations: except the number and the

strategy of shills, we also need to decide which nodes (normal

agents) these shills should link to and how many links there are for

Figure 4. Effectiveness of soft control and its parametric sensitivity under incomplete population interaction. In this case if there is no
extra declaration, parameters are a~0:2, d~0:9, pn~0 and ps~1. fc on t~300 is demonstrated. (A) the relationship between fc and NS when b is 2
and 4 respectively. (B)(C)(D) the sensitivity to d, ps and a where NS~50 and b~4.
doi:10.1371/journal.pone.0029182.g004
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each shill. Different networks might need different linking

schemes. We know that in many networks, some nodes (such as

hubs, nodes with high centrality, etc.) have more impact than the

others on the overall performance. So it is crucial for shills to select

important nodes to affect. The linking scheme will influence the

performance of soft control. Notice that the importance of a node

is also related to the dynamics of the system. So there might not

exist a general heuristics of node selection for all systems. But some

common principles might be discovered. On the other hand,

adding links will increase cost in some systems. The trade-off

between the performance and the cost will be another important

topic of soft control.

Soft control can be viewed as a way of intervention in collective

behaviors. It does not focus on how to re-design play rules of every

agent for the desired purpose, but on how to induce our desired

collective behaviors without changing play rules. At this point, soft

control provides a possible direction for the study of reciprocal

behaviors and it may be applied to other scenarios like Public

Figure 5. The effect of mutation in the reproduction. (A)–(D), the efficacy of soft control is demonstrated for pm from 10{5 to 10{1 , where (A) &
(B) are under complete interaction with pn~0 and (C) & (D) are under incomplete interaction with the parameters a~0:2, d~0:9, pn~0 and ps~1. (E)
& (F) under complete interaction, fc varies with the increase of NS for different scales of pm.
doi:10.1371/journal.pone.0029182.g005
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Goods Game and Fashion Game, and to hinder the spread of

panic/rumor in crowd or to control dynamical behaviors of other

systems. Additionally it is necessary to study the applicability and

limitation of soft control. Inspired by control theory [66], we will

define and analyze the controllability of soft control in a general

framework, i.e. to search for conditions that soft control can lead

the system to the expected behavior. We believe that the

controllability will relate to the jointly connectivity (or alike) of

the system, which indicates every normal agent should be affected

by shills directly or indirectly. We also believe that there will be a

critical value of shill numbers or impact strength (which varies in

different systems) to achieve the soft-control goal. Research

following this line will provide a deep insight to soft control.

Supporting Information

Appendix S1 The proof of the effectiveness under complete

population interaction.

(PDF)

Acknowledgments

The authors thank the anonymous reviewers for their helpful comments

and suggestions. And we also appreciate meaningful suggestions from Dr.

Zhixin Liu at Academy of Mathematics and Systems Science, Chinese

Academy of Sciences.

Author Contributions

Conceived and designed the experiments: XW JH. Performed the

experiments: XW. Analyzed the data: XW JH. Wrote the paper: XW

JH. Contributed mathematical proof: XW HH.

References

1. Axelrod R (1984) The evolution of cooperation. New York: Basic Books.

2. Nowak MA (2006) Evolutionary dynamics. Cambridge, MA: Harvard

University Press.

3. Sigmund K (2010) The calculus of selfishness. PrincetonNJ: Princeton University

Press.

4. Lombardo MP (1985) Mutual restraint in tree swallows: a test of the tit-for-tat

model of reciprocity. Science 227: 1363–1365.

5. Milinski M (1987) Tit-for-tat in sticklebacks and the evolution of cooperation.

Nature 325: 433–435.

6. Stephens DW, McLinn CM, Stevens JR (2002) Discounting and reciprocity in

an iterated prisoner’s dilemma. Science 298: 2216–2218.

7. Greig D, Travisano M (2004) The prisoner’s dilemma and polymorphism in

yeast suc genes. Proceedings of the Royal Society of London (series B) 271(3):

525–526.

8. Krams I, Krama T, Igaune K, M¨and R (2008) Experimental evidence of

reciprocal altruism in the pied flycatcher. Behavioral Ecology and Sociobiology

62: 599–605.

9. Yao X, Darwen PJ (1998) An experimental study of n-person iterated prisoner’s

dilemma games. Informatica 18(4): 435–450.

10. Nowak M, Sigmund K (1992) Tit for tat in heterogeneous populations. Nature

355: 250–252.

11. Nowak M, Sigmund K (1993) A strategy of win-stay, lost-shift that outperforms

tit-for-tat in the prisoner’s dilemma game. Nature 364: 56–58.

12. Helbing D, Szolnoki A, Perc M, Szabó G (2010) Defector-accelerated
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