
Discovery of genistein derivatives
as potential SARS-CoV-2 main
protease inhibitors by virtual
screening, molecular dynamics
simulations and ADMET analysis

Jiawei Liu1, Ling Zhang2, Jian Gao3, Baochen Zhang1, Xiaoli Liu1,
Ninghui Yang1, Xiaotong Liu1, Xifu Liu1* and Yu Cheng1*
1Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University,
Shijiazhuang, China, 2School of Chemical Technology, Shijiazhuang University, Shijiazhuang, China,
3College of Plant Protection, Southwest University, Chongqing, China

Background: Due to the constant mutation of virus and the lack of specific

therapeutic drugs, the coronavirus disease 2019 (COVID-19) pandemic caused

by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still

poses a huge threat to the health of people, especially those with underlying

diseases. Therefore, drug discovery against the SARS-CoV-2 remains of great

significance.

Methods:With the main protease of virus as the inhibitor target, 9,614 genistein

derivatives were virtually screened by LeDock and AutoDock Vina, and the top

20 compounds with highest normalized scores were obtained. Molecular

dynamics simulations were carried out for studying interactions between

these 20 compounds and the target protein. The drug-like properties,

activity, and ADMET of these compounds were also evaluated by DruLiTo

software or online server.

Results: Twenty compounds, including compound 11, were screened by

normalized molecular docking, which could bind to the target through

multiple non-bonding interactions. Molecular dynamics simulation results

showed that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had the best binding

force with the target protein of SARS-CoV-2, and the absolute values of binding

free energies all exceeded 50 kJ/mol. The drug-likeness properties indicated

that a variety of compounds including compound 11 were worthy of further

study. The results of bioactivity score prediction found that compounds 11 and

12 had high inhibitory activities against protease, which indicated that these two

compounds had the potential to be further developed as COVID-19 inhibitors.

Finally, compound 11 showed excellent predictive ADMET properties including

high absorption and low toxicity.

Conclusion: These in silico work results show that the preferred compound 11

(ZINC000111282222), which exhibited strong binding to SARS-CoV-2 main

protease, acceptable drug-like properties, protease inhibitory activity and
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ADMET properties, has great promise for further research as a potential

therapeutic agent against COVID-19.
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Introduction

In recent years, the coronavirus disease 2019 (COVID-19)

has had a severe negative impact on the world’s health and

economy, which is caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) (Hu et al., 2021). At present, the

main measures to deal with the disease are vaccination and

symptomatic treatment with drugs, but the existing drugs have

limited inhibitory effect on the virus (Murugesan et al., 2021;

Male 2022). Moreover, as the virus continues to mutate, its

infectivity is enhanced and the effectiveness of vaccines can be

compromised, and the COVID-19 pandemic still poses a huge

threat to the health of people, especially those with underlying

diseases (Marjot et al., 2021; Araf et al., 2022). Therefore, the

rapid discovery and development of novel, effective and safe

drugs for the treatment of COVID-19 remains current the focus

of research in countries around the world.

Soy isoflavones isolated from soybeans have received

extensive attention for their ability to prevent osteoporosis

(Rodríguez et al., 2022), inhibit the growth of cancer cells

(Yamashita et al., 2022), reduce the risk of cardiovascular

disease (Im and Park, 2021) and relieve menopausal

symptoms (Chen and Chen, 2021). They are a class of

flavonoids with C6-C3-C6 as the nucleus and researchers

from various countries have isolated 12 types of soy

isoflavones from plants. These soy isoflavones can be divided

into four categories, which are free aglycones (genistein, daidzein,

and glycitein) (Figure 1), β-glycosides (genistin, daidzin, and

glycitin), acetyl β-glycosides (acetyl genistin, acetyl daidzin, and
acetyl glycitin) and malonyl β-glycosides (malonyl genistin,

malonyl daidzin, and malonyl glycitin). (Kim et al., 2022)

Naturally, 50%–90% of soy isoflavones in soybeans exist in

the form of glycosides, but studies have shown that daidzein,

genistein and glycitein are the main active substances for soybean

isoflavones to exert their pharmacological functions, among

which genistein has the highest activity. (Izumi et al., 2000;

Handa et al., 2014) Genistein can block the proliferation of

cancer cells by various mechanisms, such as upregulating

p21 level (Park et al., 2019) and inhibiting the activity of

tyrosine-specific kinase (Uckun et al., 1995). It also exhibits

anti-angiogenic and antioxidant activities and is used to

prevent heart disease and cardiovascular disease. (Jaiswal

et al., 2019; Nazari-Khanamiri and Ghasemnejad-Berenji,

2021) In addition, the viral RNA transcripts and protein

synthesis such as rotavirus can also be inhibited by genistein

(Huang et al., 2015). Therefore, genistein has potential as a lead

compound for screening of antiviral drug molecules.

Drug discovery is a capital- and time-intensive process,

and an efficient way to achieve this goal is through computer-

aided drug design in the preclinical phase of drug discovery

(Gurung et al., 2021; Salman et al., 2021). Among the many

methods, virtual screening is the main method of computer-

aided drug design, among which, molecular docking methods

have been widely used in virtual screening to help simplify the

search, especially when the three-dimensional crystal

structure of the protein receptor is available (Khan et al.,

2018; Gentile et al., 2022). The purpose of molecular

docking is to predict the binding conformation and

intermolecular affinity of ligands and receptors. However,

the use of single-molecule docking methods is prone to

false positive results, that is, the sampling algorithm cannot

generate the correct binding conformation or the scoring

function cannot pick out the correct binding conformation

after scoring and sorting (Pagadala et al., 2017; Vidal-Limon

et al., 2022). The use of different molecular docking software

has the potential to enhance the correct rate of molecular

docking results and some studies have found that among more

than 10 molecular docking software used so far, LeDock has

FIGURE 1
Structure of daidzein, genistein, and glycitein.
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the best sampling performance, while AutoDock Vina has the

best scoring performance (Wang et al., 2016; Abelyan et al.,

2020; Santos et al., 2020). Therefore, the simultaneous use of

LeDock and AutoDock Vina is beneficial to improve the

accuracy of molecular docking results.

Furthermore, it is well known that most molecular docking

software estimates binding energies through force field

calculations guided by quantum mechanics and

experimental data. However, precise binding energies can

only be determined by ab initio methods such as DFT and

molecular dynamics simulations (Honarparvar et al., 2014;

Sabe et al., 2021). Because aspects such as protonation and

solvation are taken into account, molecular dynamics

simulations can yield more information about these

preliminary results. (Sabe et al., 2021) Molecular dynamics

simulation is one of the necessary follow-up computational

methods for complete drug virtual screening technology, and

it is a supplement to molecular docking. More importantly, in

addition to binding energies, molecular dynamics simulation

can also validate the protein-ligand complex results obtained

by molecular docking by analyzing the stability of the

established complex, the interactions between atoms, and

the volatility of the simulation system (Menchon et al.,

2018). Therefore, the combined use of molecular docking

and molecular dynamics simulations contributes to the

speed and accuracy of drug discovery. At present, many

biologically active molecules, including anti-coronavirus

drugs, have been discovered in this way. (Kumar et al.,

2020) In addition to the affinity between the drug molecule

and the target, some drug-related properties of the molecular

entity itself should also be considered, such as drug-likeness,

absorption, distribution, metabolism, excretion, and toxicity.

At present, the COVID-19 pandemic still poses major

challenges to the public health of countries around the

world. Scientists from all over the world have made great

efforts and achieved remarkable results in the research on the

structural biology, epidemiology and antiviral intervention of

SARS-CoV-2. But there are still few drugs that are effective

FIGURE 2
Schematic diagram of the discovery of genistein-based anti-SARS-CoV-2 drug molecules.
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against viral infections. Based on the above considerations,

genistein have a wide range of biological activities, molecular

docking can quickly realize virtual screening, and molecular

dynamics simulation as an effective supplement to molecular

docking can reveal the noncovalent interactions between drug

molecules and target proteins at the molecular level. In this

manuscript, genistein, the main biologically active ingredient

in isoflavones, was used as the parent structure, and genistein-

derived compounds were enriched from ZINC20 library. The

enriched isoflavone compounds were molecularly docked with

the main protease of SARS-CoV-2 by two different molecular

docking methods (LeDock and AutoDock Vina). Finally,

further molecular dynamics simulations were performed on

the top 20 compounds screened by molecular docking, and

their activity, absorption, distribution, metabolism, excretion,

and toxicity were also calculated. (Figure 2) The above

research results will provide theoretical guidance for the

development of novel anti-COVID-19 drugs based on

genistein and insights into the mechanism of drug action.

Computational method

Receptor preparation

Recent studies have shown that main protease (Mpro) is the

most promising drug target against SARS-CoV-2. (Zhang

et al., 2020) In this manuscript, the three-dimensional

crystal structure (PDB ID: 6LU7) of the main protease of

SARS-CoV-2 in complex with a peptide-like inhibitor N3 was

obtained from the RCSB PDB (https://www.rcsb.org/).

(Hatada et al., 2020) The crystallographic structure was

imported into Discovery Studio 2019 Client program to

detect the centre of the active site according to the position

of N3 in the structure [center of the active site: x = −10.73, y =

12.42, and z = 68.82 (Å)]. AutoDockTools-1.5.6 was used to

prepare the protein by removing water and N3 from the active

site, adding polar hydrogen atoms, and converting the protein

PDB files to a PDBQT format.

Ligand preparation

ZINC20 is a small molecule database commonly used for

drug virtual screening, with more than 1.4 billion compound

molecules. Arthor (https://arthor.docking.org) is a small

molecule structure search tool newly added to ZINC20 and

is by far the fastest method for substructure and pattern

searches at the atomic level. (Irwin et al., 2020) In this

manuscript, the nucleus of genistein was used as the initial

structure, and the approximate derivative structure was

searched in Arthor, and a total of 9,650 derivatives of

genistein were obtained. Since 36 derivatives of genistein

contained atoms that were not recognized by the docking

software, only 9,614 derivatives of genistein in PDB format

were used as input files for subsequent molecular docking of

LeDock and AutoDock Vina.

Molecular docking

For AutoDock Vina, the grid box’s center points and

dimensions were set to target the active site of the main

protease, with the center at x = −10.73, y = 12.42, and z =

68.82 (Å), and the grid box’s dimensions set to X: 30, Y: 30, and

Z: 30 (Å). The parameters of exhaustiveness and num_modes

were considered to be 16 and 20, respectively. The binding

affinities of the compounds were calculated and ranked

according to their highest negative values, which

corresponded to their best binding affinities. A molecular

docking study was performed using the AutoDock Vina to

determine the protein’s interacting residues with specific

ligands. Re-docking 6LU7 with its crystallographic inhibitor

N3 was performed to validate docking studies. 2D and 3D

representations of protein-ligand complexes were visualized

using Discovery Studio 2019 Client and Pymol Graphic

Viewer software, respectively. (Nguyen et al., 2020; Arévalo

and Amorim, 2022)

For LeDock, PDB format files of proteins and ligands were

used as input files. The site and dimension of the grid box was

identified according to the positive ligands in the crystallographic

complex and are consistent with those in AutoDock Vina. The

parameter of number of binding poses was considered to be 20.

After the active pocket was placed and the parameter was set,

LeDock calculations were performed for molecular docking. (Sun

et al., 2021)

Molecular docking data processing

The first step is to standardize the results obtained and

establish a common docking assessment system. In our

manuscript, 100 units correspond to the compound with the

highest binding energy, and one unit corresponds to the

compound with the smallest binding energy. For each

molecular docking, the binding energies of each compound

were normalized accordingly. The second step is to add the

resulting normalized binding energies for each compound. The

third step is to rank these compounds based on the total

normalized binding energy. Consequently, compounds with

false positives or weak activity will be ranked as low as

possible in the list of normalized binding energies. The top

20 compounds in the list will be used as initial configurations

for subsequent molecular dynamics simulations and the

analysis of drug-likeness property, biological activity and

ADMET.
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Molecular dynamics simulation
procedures

Molecular dynamics (MD) simulation of 200 ns was carried

out on the first 20 molecular docking systems screened. The

GROMACS 5.1.4 software was used for the MD simulation

studies, and the force field used was the GROMACS G54A7FF

all-atom force field. Topology files for small molecule ligands

were generated using the ATB server (http://atb.uq.edu.au/index.

py). In a cube box with periodic boundary conditions, SPCmodel

water molecules were added. Sodium or chloride counterions

were added to neutralize each simulated system. Energy

minimization was performed for 5,000 steps using steepest

descent algorithm with a tolerance value of 100 kJ/mol/nm.

Then, the Mpro-ligand system was equilibrated with a position

restriction of 500 ps (250,000 steps) using NVT and NPT

ensembles, respectively, using V-rescale and Parrinello-

Rahman method. The heating of the systems was gradually

increased from 0 to 309.15 K, and the pressure of the systems

was set to 1 atm for the NVT and NPT ensembles, respectively.

Finally, production run for simulation was carried out at a

constant temperature of 309.15 K and a pressure of 1 atm

using V-rescale and Parrinello-Rahman algorithms,

respectively. The LINCS method was used to constrain all

bonds. Verlet scheme was used for the calculation of non-

bonded interactions. The calculation method of long-range

electrostatic interaction was PME, and the cut-off value of

electrostatic action was set to 1.2 nm. Periodic boundary

conditions (PBC) were used in all x, y, z directions. The final

step of molecular dynamics simulation took 200 ns, with each

step lasting 2 fs. The same molecular dynamics simulation was

also performed for wild Mpro with the same parameters.

Trajectory analysis of molecular dynamics
simulation

The trajectory files generated by the MD simulation were

used for the analysis of RMSD, SASA, H-bond numbers, and

RMSF, and the analysis tools were derived from the methods

provided by GROMACS 5.1.4. Hydrogen bond occupancy was

also analyzed, using a method derived from a separate python

script.

Binding free energy and energy
decomposition analysis

The binding free energy between protein and ligand was

calculated using theMMPBSAmethod and the g_mmpbsa script.

(Kumari et al., 2014) Molecular mechanical potential energy

(electrostatic + van der Waals interaction energy) and solvation

free energy (polar + nonpolar solvation energy) were used to

calculate binding free energy, which were calculated at 500 ps

intervals using 200 poses in the last 100 ns of the MD trajectory.

Drug-likeness property

The drug-likeness property of the compounds screened by

molecular docking was analyzed using DruLiTo software. (Joshi

et al., 2021) According to the physicochemical properties of

biologically active compounds, Lipinski’s rule was adopted for

filtering it.

Biological activity prediction

The biological activity of the compounds screened by

molecular docking was predicted using the Molinspiration

Cheminformatics online server (https://www.molinspiration.

com) (Othman et al., 2020).

ADMET

ADMET (absorption, distribution, metabolism, excretion,

and toxicity) characteristic was predicted on selected

biologically active ligands by pkCSM server (http://biosig.

unimelb.edu.au/pkcsm/) (Pires et al., 2015). Combined with

the molecular docking results, the SMILES structure files of

these 20 compounds were retrieved from the

ZINC20 database and used as input files for the pkCSM

online tool.

Results

Molecular docking

Soy isoflavones are secondary metabolites produced during

soybean growth and have many biological activities, among

which genistein has the best activity. At present, many

flavonoids have been studied against the SARS-CoV-2, but

less research on the anti-COVID-19 based on genistein.

(Santana et al., 2021; Alzaabi et al., 2022) In this work, firstly,

the docking protocol had been validated by re-docking the

coordinated ligand (N3) from the crystallographic structure of

SARS-CoV-2 main protease (PDB ID: 6LU7) into the substrate-

binding pocket. Then, LeDock and AutoDock Vina were used to

conduct molecular docking studies on 9,614 genistein derivatives

and the Mpro of SARS-CoV-2, respectively. The docking results

showed a similarity between the ligand pose and coordinated

pose (Figure 3) and the RMSD values didn’t exceed 2 Å, the

binding affinity were −9.59 and −7.7 kcal/mol (Table 1) by

LeDock and AutoDock Vina, respectively. The obtained
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results display that the docking protocol used in this study is

reliable. The ZINC20 ID of top 20 ligands (the same score shows

only one of the ligands) and their binding energies to the target

are shown in Table 1. The first column represents the order of the

molecular docking scoring results. The second and third columns

represent the names of the ligands docked by LeDock and the

corresponding scores, respectively. The fourth and fifth columns

represent the names of the ligands docked with AutoDock Vina

and the corresponding scores, respectively. It can be found from

Table 1 that after docking with LeDock, lots of genistein

derivatives had good affinity with the main protease, and the

absolute value of the score exceeded 10. After docking with

AutoDock Vina, it was found that some ligands also showed good

binding force to the target protein, and some of them even

FIGURE 3
The superimposition between the N3 in the crystal structure (magenta) and the N3 from docked conformation (cyan) by AutoDock Vina (A) or
by LeDock (B).

TABLE 1 Top 20 results after 9,614 ligands docked with receptor by LeDock or AutoDock Vina.

Rank Ligands
docked by LeDock

LeDock score (kcal/mol) Ligands docked by
AutoDock vina

AutoDock vina score
(kcal/mol)

1 ZINC000253529553 −12.3 ZINC000072110832 −10

2 ZINC000253529555 −11.9 ZINC000096114211 −9.9

3 ZINC000253529554 −11.6 ZINC000072111338 −9.8

4 ZINC000253529552 −11.1 ZINC000085877721 −9.7

5 ZINC000253388752 −11 ZINC000096114537 −9.6

6 ZINC000085911544 −10.9 ZINC000169337465 −9.5

7 ZINC000169634432 −10.8 ZINC000002116527 −9.4

8 ZINC000085893593 −10.7 ZINC000059930660 −9.3

9 ZINC000253501057 −10.6 ZINC000085876477 −9.2

10 ZINC000059728719 −10.5 ZINC000014811805 −9.1

11 ZINC000197927867 −10.4 ZINC000001751803 −9

12 ZINC000238745543 −10.3 ZINC000002106564 −8.9

13 ZINC000082149236 −10.2 ZINC000002666274 −8.8

14 ZINC000085644998 −10.1 ZINC000002294283 −8.7

15 ZINC000150371810 −10 ZINC000000756489 −8.6

16 ZINC000067910683 −9.98 ZINC000002090387 −8.5

17 ZINC000150596901 −9.92 ZINC000005158973 −8.4

18 ZINC000072110371 −9.91 ZINC000001280533 −8.3

19 ZINC000150596856 −9.9 ZINC000001660868 −8.2

20 ZINC000253501059 −9.89 ZINC000000538127 −8.1

Reference inhibitor N3 −9.59 N3 −7.7
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exceeded the WHO-recommended drug Remdesivir [score by

AutoDock Vina: −9.4 (Yalçın et al., 2021)] against COVID-19.

Moreover, there are many genistein derivatives that score better

than N3, both from LeDock and AutoDock Vina. However,

comparing the results of the two molecular docking, it was

obvious that the score ranking of the ligands in different

molecular docking procedures was not consistent. For

example, the highest scoring ligand ZINC000253529553 in

the LeDock ranked less than the top 20 in the AutoDock

Vina, while in the AutoDock Vina, the highest scoring ligand

ZINC000072110832 was also not in the forefront of LeDock

molecular docking. This may be caused by different algorithms

adopted by different molecular docking software. In order to

reduce the probability of false positive results, an effective

method is to use a combination of different molecular

docking methods. In addition, a statistical analysis on the

docking scores of all ligands were also conducted, and found

that the number of docking ligands showed a trend of more in the

middle (about −7.5) and less on both sides with the distribution

of docking scores (Figure 4), and the distribution trend of

docking scores between the two molecules was highly

consistent, which indicates that the two molecular docking

results are related, and further correlation can be made.

In order to reduce the chance of false positives caused by

single-molecule docking results, the results of two molecular

docking were normalized. The evaluation results and molecular

structures of the top 20 compounds after normalization are

shown in Table 2 and Figure 5. The first column represents

the ordering of the normalized scoring results. The second

column represents the name of the ligand under that rank.

The third and fourth columns represent the normalized

scoring results corresponding to LeDock and AutoDock Vina

FIGURE 4
In LeDock and AutoDock Vina, the number of ligands with the
same score.

TABLE 2 ZINC20 ID and normalized scores of the top 20 genistein derivatives after normalization of molecular docking results.

Rank Ligands LeDock AutoDock vina Sum

1 ZINC000072110832 53.7289 100 153.7289

2 ZINC000085911544 80.777 71.72 152.497

3 ZINC000255273344 79.404 69.7 149.104

4 ZINC000072111338 49.7472 95.96 145.7072

5 ZINC000096114211 47.6877 97.98 145.6677

6 ZINC000072110371 67.1843 77.78 144.9643

7 ZINC000111282222 58.5344 85.86 144.3944

8 ZINC000255204729 82.15 61.62 143.77

9 ZINC000253529553 100 43.44 143.44

10 ZINC000072110831 62.7907 79.8 142.5907

11 ZINC000098084890 62.6534 79.8 142.4534

12 ZINC000096113784 52.9051 87.88 140.7851

13 ZINC000253501059 66.9097 73.74 140.6497

14 ZINC000169337465 50.2964 89.9 140.1964

15 ZINC000085893593 78.031 61.62 139.651

16 ZINC000085863917 61.4177 77.78 139.1977

17 ZINC000253501058 75.285 63.64 138.925

18 ZINC000111282225 52.9051 85.86 138.7651

19 ZINC000238787301 60.7312 77.78 138.5112

20 ZINC000253501057 76.658 61.62 138.278

Reference inhibitor N3 62.7907 53.54 116.3307
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FIGURE 5
Structure of the top 20 compounds screened by normalized assessment.
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in this ranking, respectively. The fifth column represents the total

normalized scoring results. As can be seen in Table 2, the highest

scoring molecules in LeDock or AutoDock Vina still ranked high

in the normalized results. The screened 20 compounds with high

normalized binding energy had more heteroatoms such as

nitrogen, and oxygen atoms in the structure, and the

molecular structure was rich in hydroxyl and amino groups.

More importantly, the chirality of the molecule has a significant

impact on the strength of the binding force, such as

ZINC000072110831 (compound 2) and ZINC000072110832

(compound 3) due to the difference in the cis-trans isomerism of

the vinyl group in the molecular structure, the normalized

affinity of the two compounds to the target protein was

different. In addition, it was also found that molecules with

more sugars such as ZINC000253501057 (compound 15),

ZINC000253501058 (compound 16), and

ZINC000253501059 (compound 17) did not have the highest

normalized affinity. This may be due to the increased

hydrophilicity of ligand molecules, resulting in weakened

binding to hydrophobic protein sites.

Further, we analyzed the 2D and 3D docking maps of these

20 compounds with the main protease (Figure 6 and

Supplementary Figure S1). It can be seen from Supplementary

Figure S1 that most of the compounds, likeN3, could fit well with

the active pocket of the main protease after molecular docking.

Due to the differences in their own structures and sizes, some

compounds show a significantly different conformation fromN3

when binding to the main protease. For example, when

compound 1 binds to the protease, the molecular

conformation tends to cohesion. However, due to the large

molecular size of compound 14, some groups are exposed

outside the active pocket. In terms of the mechanism of

action (Figure 6), it was found that these compounds could

interact with the main protease by forming hydrogen bonds, van

der Waals forces, π-π stacking, etc., but compared with N3, the

interacting groups are different. For example, the carbonyl,

hydroxyl and amide bonds of the flavonoid fragment in

preferred compound 11 could form multiple hydrogen bonds

with HIS41, SER144, CYS145, and GLN192, respectively, but N3

mainly formed hydrogen bonds with residues such as PHE140,

HIS164, GLU166, GLN189, and THR190 of the main protease.

However, residues such as HIS164, GLU166, GLN189, and

THR190 could interact with compound 11 in van der Waals.

Similarly, residues such as HIS41, SER144, and CYS145 could

also interact with N3 in other non-bonding ways. These results

suggest that these compounds share the active pocket with N3,

the mode of action and the group of action are different.

Molecular dynamics simulation

In order to further study the interaction stability of the

20 compounds screened by molecular docking and the 2019-

nCoV target, MD simulation was used to study the interaction

between these 20 compounds screened and protein receptor. The

root mean square deviation (RMSD) value over time is often used

to check whether a simulation system has reached stability.

Figure 7 shows the RMSD values of main protease as a

function of time at different simulation system. The RMSD

values for the Mpro shown on the y-axis in Figure 7 are based

on all backbone C-alpha atoms relative to the corresponding

FIGURE 6
2D presentations of interactions of the top 20 genistein
derivatives and N3 with SARS-CoV-2 main protease, respectively.
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starting structures of all trajectories for the simulated Mpro-ligand

system and wild Mpro. The RMSD values of most systems

fluctuated very little after 25 ns, indicating that the vast

majority of the protein-ligand complexes and wild Mpro

attained a stable conformation during the simulation runs. In

addition to the RMSD, solvent accessible surface area (SASA) and

the number of H-bonds are also two important thermodynamic

parameters. (Ogunyemi et al., 2022) SASA refers to the level of

the solvent accessibility surface of the proteins. H-bonds reflects

the interaction between the complex and the solvent throughout

the simulation. It can be seen from Figure 8 that for all complex

systems and wild Mpro, the SASA values remained between

140 and 160 nm2 throughout the simulation process, with no

large fluctuations, which indicates that the interaction between

the main protease and the surrounding solvent is less affected by

the ligand throughout the simulation. As for the number of

H-bonds (Figure 9), the simulation results for all complex

systems and wild Mpro are similar to SASA except compound

6 and compound 7. Although the number of hydrogen bonds of

compound 6 and compound 7 is higher than that of other

compounds, the two simulation systems are relatively stable

throughout the simulation process. These results show that all

FIGURE 7
RMSD of backbone C-alpha atoms of COVID-19 Mpro relative to the starting complexes at different ligand systems or wild Mpro during 200 ns
MD run.

FIGURE 8
The SASA plots of COVID-19 Mpro in a MD simulation system containing different ligands or wild Mpro.
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simulated systems reach an equilibrium state. In addition, the

root mean square fluctuation (RMSF) diagram of each residue of

side chain and main chain of the protein on the MD trajectory

was also calculated, as shown in Figure 10. The RMSF values of

most residues in all simulated complexes were within 3.0 Å, and

the RMSF values of the amino acid residues adjacent to the head

and tail were larger, which may be due to the fact that these

residues are less bound by weak intramolecular interactions and

their conformation in the solvent big change. The hydrogen bond

occupancy during the interaction between ligands and main

protease was also analyzed and the results are shown in

Table 3. The first column represents the name of the

compound. The second column indicates that atoms of this

compound form hydrogen bonds with residues of the main

protease. The third column indicates the probability of this

hydrogen bond occurring. Plenty of ligands were able to form

stable hydrogen bonds with protein receptor (the hydrogen bond

occupancy was over 50%) such as compounds 2, 7, 9, 10, 12, 13,

18, and 19, especially, compound 7 could form multiple stable

hydrogen bonds with amino acid residues of main protease, such

as GLU166 and ARG188, etc. From the two-dimensional

diagram of molecular docking, it can be seen that the

guanidine and carboxyl hydrogen atoms and carbonyl oxygen

atoms of main protease were mainly responsible for the

FIGURE 9
The changes in the number of H-bonds during the MD trajectory of different Mpro-ligand system or wild Mpro.

FIGURE 10
RMSF per residue of backbone C-alpha atoms of COVID-19Mpro relative to the starting complexes at different ligand systems orwild Mpro during
200 ns MD run.
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interaction with compound 7. Although other ligands were also

capable of forming hydrogen bonds with protein receptor, but

hydrogen bond occupancy did not exceed 50%, indicating

that the interaction between other ligands and the target

protein may be dominated by other weak interactions such as

van der Waals.

Most molecular docking software estimates binding energies

through force field calculations guided by quantum mechanics.

However, precise binding energies can only be determined by ab

initio methods such as DFT and molecular dynamics

simulations. To further study the interaction between ligands

and protein receptor, the binding free energies of ligands and

protein receptor were calculated using g_mmpbsa, and the

energy contributions were also decomposed. The results are

shown in Figure 11 and Table 4. It can be seen from

Figure 11 that compounds 2, 4, 5, 11, 13, 14, 17, and 18 had

a good binding effect with the target, and the binding free energy

was less than −50 kJ/mol, which is very worth for further

research. Especially for compound 14, its binding effect with

the target was far more than other compounds, and the binding

free energy reached −211.032 kJ/mol. In addition, it was also

found that the binding free energies of compounds 10 and 12

were positive, which indicates that these two compounds cannot

spontaneously bind to target protein. These results suggest that

after rapid molecular docking screening, accurate molecular

dynamics simulations are necessary for further drug screening.

From the energy decomposition results (Table 4), it can be

seen that the binding free energy can be divided into four

components: van der Waals interaction energy, electrostatic

energy, polar solvation energy, and non-polar solvation

energy. For all systems, the van der Waals interaction and the

electrostatic interaction are beneficial to the binding of the ligand

to the receptor, and the van der Waals interaction is stronger

than the electrostatic interaction (except for compound 6). Polar

solvation energies and non-polar solvation energies have

opposite contributions to the binding free energy. Although

non-polar solvation energies promote the binding of ligands

to protein receptors, they account for a small proportion, while

polar solvation energies are not conducive to the binding of

ligands to receptors, but play a much greater role than non-polar

solvation energies.

Drug-likeness analysis

Based on the results of the normalized assessment, the drug-

likeness of the top 20 compounds screened was analyzed

(Table 5). The Lipinski rule was adopted to evaluate the drug-

like properties of these ligands, and it is generally considered that

the chemical molecules with LogP≤5, HBD≤5, HBA≤10, MW ≤
500, and nRB≤10 passed the drug-like property evaluation.

(Gorla et al., 2021) These properties have a crucial impact on

the interaction between chemical molecules and their targets, as

well as the absorption, distribution, metabolism, excretion, and

toxicity of drugs. Therefore, compounds with the above

characteristics have the potential to become drug candidates.

Because the evaluation of drug-like properties of drugs is based

on the physicochemical properties of chemical molecules,

Lipinski’s five rules are the preliminary criteria for evaluating

the drug-like properties of ideal drug structures. Although the

molecular weight of all compounds except compounds 8 and 9

exceed 500, it does not mean that these compounds are not

possible to become drugs. It can be solved the problems such as

TABLE 3 Hydrogen bond occupancy of amino acid residues
participating in H-bonding with the top 20 compounds, during
entire MD simulation (only show more than 50% of results).

Compounds Donor-acceptor Occupancy (%)

2 2(H)-44CYS(O) 59.8

7 7(H46)-188ARG (O) 95.5

7(H44)-166GLU (O) 55.4

7(H42)-166GLU (O) 96.8

166GLU (H)-7(O9) 98.2

41HIS(HE2)-7(O2) 86.6

9 166GLU(H)-9(O) 52.4

10 10(H)-164HIS(O) 68.0

12 166GLU(H)-12(O) 61.6

13 13(H)-166GLU(OE2) 52.7

18 18(H34)-26THR(O) 58.8

18(H32)-26THR(O) 62.7

18(H16)-187ASP(O) 51.5

19 40ARG (HE)-19(O) 54.7

FIGURE 11
Binding free energy calculation between the COVID-19 Mpro

and the top 20 compounds screened by normalized assessment.
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permeability caused by large molecular weight compounds

through advanced preparation technology. Interestingly, it can

be seen from Table 5 that logp values of all compounds are less

than 5, indicating that all compounds have relatively ideal oil-

water distribution coefficients. The number of hydrogen bonds

formed between the compound and the target will affect their

interaction. Compounds 1~4, 8 and 9 conform to the rule that

the number of hydrogen bond acceptors is less than 10 and

compounds 10~13 are close to the rule, but other compounds do

not conform to this rule. Compounds 4, 8, 9, 11~13 fit the rule of

hydrogen bond donor number. In general, the number of

rotatable bonds indirectly affects other properties of

compounds. In all compounds, except compounds 6, 7, and

18, which seriously deviate from the rule of less than 10, the

number of rotatable bonds in other compounds is either less than

or close to 10. In this work, compounds 8 and 9 followed these

five rules, compounds 1~4, 10~13, 15~17, and 19 followed

2–4 of them, and the other compounds followed fewer rules.

However, a drug does not have to follow all the rules to become a

potential drug candidate, especially in recent years, with the

development of pharmaceutical technology, the use of new

technologies can make up for the lack of a certain property of

the chemical molecule. The study by Mudliar et al. found that the

highly active remdesivir only followed the two rules of the

DruLiTo study. (Murugesan et al., 2021) These results suggest

that the above-mentioned compounds following the rule of two

or more deserve further development.

Biological activity prediction analysis

In this work, the 20 genistein derivatives derived from the

molecular docking were utilized for a bioactivity score analysis of

different targets, including GPCR ligands, ion channel

modulators, nuclear receptor ligands and enzyme inhibitors

(protease, kinase, etc.). Generally, compounds with scores

greater than 0 are considered highly active compounds,

compounds with scores between −0.5 and 0 are moderately

active compounds, and compounds with scores below −0.5 are

inactive compounds. (Murugesan et al., 2021) It can be seen from

Table 6 that compounds 8 and 9, and compounds 11 and 12

acted on nuclear receptors and proteases, respectively, and the

corresponding scores were all higher than 0. In addition, the

aforementioned compounds 8, 9, 11, 12, and 10 were also found

to exhibit moderate activity against other targets (such as GPCR,

Kinase), with corresponding scores ranging from −0.5 to 0. The

other compounds showed little activity against all targets. From

the prediction results of biological activity score, it can be seen

that the key compounds 11 and 12 can be further developed as

COVID-19 Mpro inhibitors.

TABLE 4 Binding free energy calculation between the COVID-19 Mpro and the top 20 compounds screened by normalized assessment.

Compounds van der
Waal energy
(kJ/mol)

Electrostatic energy
(kJ/mol)

Polar solvation
energy (kJ/mol)

Non-polar solvation energy
(kJ/mol)

Binding energy
(kJ/mol)

1 −67.704±12.902 −6.877±1.369 40.206±7.732 −6.507±1.224 −41.296±8.719

2 −123.140±12.437 −29.106±2.895 78.140±9.413 −13.024±1.351 −87.003±8.990

3 −33.309±8.334 −5.747±1.543 33.890±6.490 −4.000±0.877 −9.176±7.658

4 −141.762±11.928 −12.761±1.243 94.609±8.510 −15.360±1.361 −74.980±7.229

5 −133.551±12.604 −35.267±3.612 102.329±10.639 −13.862±1.244 −80.485±8.387

6 −109.139±8.933 −122.599±10.076 216.335±16.066 −11.761±0.945 −26.968±6.645

7 −47.615±10.542 −21.740±4.887 72.780±12.454 −4.853±1.113 −1.506±7.276

8 −21.625±5.247 −2.904±0.821 16.000±5.472 −2.709±0.630 −11.051±5.494

9 −77.130±10.087 −11.079±1.578 56.507±6.669 −7.055±1.096 −38.945±9.180

10 −3.615±2.593 −0.783±0.449 18.501±6.511 −0.576±0.498 13.741±6.539

11 −163.660±11.679 −32.155±3.069 141.999±10.354 −17.381±1.213 −71.057±6.760

12 −37.051±8.789 −6.649±1.649 47.399±7.566 −3.758±0.912 0.842±7.932

13 −122.643±14.459 −20.831±2.517 72.814±7.018 −11.917±1.339 −83.000±11.921

14 −312.314±12.731 −30.476±1.697 163.468±5.872 −31.887±1.200 −211.032±10.007

15 −36.981±9.519 −10.191±2.611 46.881±8.765 −3.789±1.041 −4.175±6.517

16 −81.179±11.917 −17.549±2.743 66.346±7.666 −7.694±1.223 −40.077±10.147

17 −100.545±13.438 −29.458±4.038 84.772±10.756 −10.302±1.307 −56.059±10.199

18 −177.868±15.707 −46.486±4.288 133.605±11.676 −17.249±1.463 −107.000±10.752

19 −40.956±9.775 −11.759±2.872 51.755±9.104 −4.142±0.943 −5.805±9.348

20 −73.897±12.278 −11.723±2.039 57.970±8.549 −8.249±1.385 −35.925±8.681
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ADMET analysis

The pharmacokinetic properties of drug candidates include

absorption, distribution, metabolism, excretion and toxicity,

namely ADMET. (Han et al., 2019) ADMET analysis is very

helpful in the discovery phase of new drugs. Drug candidates that

have passed ADMET analysis are significantly less likely to fail in

subsequent clinical trials. ADMET analysis was performed on the

20 compounds screened by standardized assessment in this

research, as shown in Tables 7, 8. In the new drug discovery

process, absorption parameters mainly include water solubility,

GI (gastrointestinal) absorption, skin and Caco2 permeability,

etc. When the GI value is >30%, it means that the drug molecule

has good absorption and most of the compounds have good

absorption. The gastrointestinal absorption of compounds 8 and

9 could reach 100%, but the GI value of compounds 6, 7, 15, 16,

17, 18, and 19 were all less than 30%, especially the GI values of

compounds 15, 16, 17, and 18 were 0, indicating that these

compounds are barely absorbed. Skin penetration less

than −2.5 is considered low penetration, and all of these

20 genistein derivatives exerted acceptable skin penetration.

Caco2 permeability was low (<0.9) for all compounds except

compound 5 (0.934). Another important factor in absorption

analysis is the prediction of P-glycoprotein non-substrate drug

candidates. Except for compounds 4 and 9, all compounds were

substrates of P-glycoprotein. The distribution of drug molecules

was investigated using VDss (distribution volume), CNS (central

nervous system) and BBB (blood-brain barrier) permeability.

LogVDss greater than 0.45 is considered to have a higher volume

of distribution, and less than −0.15 is considered to have a small

volume of distribution. Among these 20 compounds, only

compounds 6, 7, 10~12, and 18~20 had a moderate volume

of distribution. For the permeability of the blood-brain barrier,

when the logBBB value is less than -1, it is considered difficult for

drug molecules to pass through the blood-brain barrier. All

compounds had poor blood-brain barrier permeability, and

most had poor CNS permeability (logCNS < −3).

Cytochrome p450 plays a fundamental role in the

metabolism of drugs in the liver system, and there are many

subtypes, such as CYP2D6, CYP3A4, CYP1A2, and CYP2C19.

The results of metabolic scoring shows that all the compounds

couldn’t act on CYP2D6, and compounds 1~3, 5, 10, 14~20 had

no inhibitory on CYP3A4. In addition, except for compounds 4,

8, and 9, other compounds had no effect on CYP1A2 and

CYP2C19. The total clearance of the drug is decided by a

combination of hepatic and renal clearance, which is defined

by the rate of elimination of the drug from the body per unit time.

The predicted results suggest that the excretion range of the

candidate drug was −1.469 to 0.863. Among them, compounds 4,

6, 7, 10, 12~14, 18, and 20 showed low drug clearance rate (<0.1),
while other compounds showed moderate drug clearance rate

(>0.1 to <1). In the process of drug development, toxicity is a

non-negligible criterion. The selected drug candidates not only

require high activity, but also have low toxicity. Therefore,

toxicity plays an important role in selecting the most suitable

drug candidates. All 20 compounds screened by molecular

docking had no effect on skin. Inhibition of potassium

channels encoded by human ether-a-go-go-related gene

(hERG) is one of the reasons for drug-induced cardiotoxicity.

Therefore, it is necessary to analyze the hERG-inhibiting ability

of newly discovered drug molecules. All compounds had no

inhibitory effect on hERG1. None of the drug candidates

exhibited AMES (assay of the ability of a chemical compound

to induce mutations in DNA) toxicity. The LD50 (median lethal

dose) and the LOAEL (lowest observed adverse reaction level) of

the candidate drugs were also predicted on the pkCSM online

server, and the predicted results were shown in Table 8. All

compounds showed low toxicity, especially compound 11, which

had higher LD50 value than other compounds and had the least

toxicity.

Discussion

Recently, the fatality rate of the COVID-19 has been

significantly reduced, but for patients with other chronic

diseases, the impact of the virus on life and health is still

huge. Therefore, the discovery of anti-SARS-CoV-2 drugs is

TABLE 5 Analysis of drug-like properties of the top 20 compounds
screened by normalized assessment.

Compounds MW logP HBA HBD nRB

1 672.2 4.759 10 6 5

2 674.22 4.932 10 6 7

3 674.22 4.932 10 6 7

4 672.2 4.39 10 5 5

5 672.17 1.356 16 6 11

6 786.32 0.609 17 8 22

7 786.32 0.609 17 8 22

8 467.1 0.779 8 3 2

9 481.12 1.171 8 3 2

10 594.14 1.016 13 7 8

11 613.21 1.239 12 3 11

12 613.21 1.239 12 3 11

13 681.19 3.46 11 3 8

14 888.25 1.721 19 7 11

15 740.22 −2.634 19 11 9

16 740.22 −2.634 19 11 9

17 740.22 −2.634 19 11 9

18 930.26 −3.425 25 11 15

19 740.22 −2.634 19 11 9

20 784.22 −0.847 18 9 12

MW, Molecular weight; logP, Partition coefficient in oil to water; HBA, Number of

hydrogen bond acceptors; HBD, Number of hydrogen bond donors; nRB, Number of

rotatable bonds.
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still important. As a natural product in soybean, isoflavones have

a wide range of biological activities, especially genistein, an

important component of isoflavones, has received extensive

attention. Therefore, in this work, a series of computer-aided

drug virtual screening studies were carried out with genistein, as

the lead compound and the main protease of the SARS-CoV-2 as

the target.

Considering that a single molecular docking method is prone

to false positives, we used different methods to conduct molecular

docking studies on ligands and receptors, and normalized the

docking results. It was found that the molecules with the highest

scores in either LeDock or AutoDock Vina still ranked high in the

normalized results. The screened 20 compounds with high

normalized binding energy contained a large number of

heteroatoms in their structures, such as hydroxyl and amino

groups. More importantly, the chirality of the molecule also has

a significant impact on the strength of the binding force. For

example, compounds 2 and 3 had very different normalized

affinities to target protein due to the difference in the cis-trans

isomer structure of the vinyl group. Furthermore, molecules

containing more sugars such as compounds 15, 16, and 17 did

not have the highest normalized affinity. These results indicate that

heteroatoms should be considered in the design of non-covalent

inhibitor drugs. However, due to the high polarity and strong

hydrophilicity of heteroatoms, too many heteroatom-containing

groups may sometimes hinder the compounds from acting on

drug targets. Therefore, when designing new drugs, it is very

necessary to reasonably increase or decrease the polar groups of

heteroatoms on the basis of a certain configuration (cis or trans, R

or S configuration). Most of the compounds, likeN3, could fit well

with the active pocket of the main protease after molecular

docking. In terms of the mechanism of action, it was found

that these compounds could interact with the main protease by

forming hydrogen bonds, van der Waals forces, π-π stacking, etc.,

but compared with N3, the interacting groups were different. For

example, the carbonyl, hydroxyl and amide bonds of the flavonoid

fragment in preferred compound 11 could form multiple

hydrogen bonds with HIS41, SER144, CYS145, and GLN192,

respectively, but N3 mainly formed hydrogen bonds with

residues such as PHE140, HIS164, GLU166, GLN189, and

THR190 of the main protease. However, residues such as

HIS164, GLU166, GLN189, and THR190 could interact with

compound 11 in van der Waals. Similarly, residues such as

HIS41, SER144, and CYS145 could also interact with N3 in

other non-bonding ways. These results suggest that these

compounds share the active pocket with N3, the mode of

action and the group of action are different.

To further investigate the interaction stability of the

20 compounds screened by molecular docking with SARS-

CoV-2 main protease, we used MD simulations to study the

interaction of the top 20 compounds screened with protein

receptors. The results showed that compounds 2, 4, 5, 11, 13,

TABLE 6 Biological activity prediction of the top 20 compounds screened by normalized assessment.

Compounds GPCR ligand Ion channel
modulator

Kinase inhibitor Nuclear receptor
ligand

Protease inhibitor Enzyme inhibitor

1 −0.666, −1.701 −1.136 −0.803 -0.657 -0.802

2 −0.667 −1.724 −1.084 −0.818 -0.641 -0.841

3 −0.667 −1.724 −1.084 −0.818 -0.641 -0.841

4 −0.642 −1.704 −1.135 −0.787 -0.576 -0.772

5 −0.556 −1.397 −0.865 −0.774 -0.539 -0.58

6 −1.523 −2.923 −2.532 −2.611 -0.936 -2.036

7 −1.659 −3.028 −2.567 −2.556 -1.094 -2.102

8 −0.095 −0.444 −0.128 0.084 -0.455 0.082

9 −0.128 −0.495 −0.151 0.068 -0.477 0.043

10 −0.138 −0.782 −0.329 −0.033 -0.254 -0.009

11 −0.046 −0.922 −0.395 −0.311 0.049 -0.308

12 −0.046 −0.922 −0.395 −0.311 0.049 -0.308

13 −0.707 −1.639 −0.963 −0.914 -0.592 -0.896

14 −3.166 −3.653 −3.532 −3.536 -2.722 -3.244

15 −0.896 −2.012 −1.378 −1.431 -0.734 -1.009

16 −0.896 −2.012 −1.378 −1.431 -0.734 -1.009

17 −0.896 −2.012 −1.378 −1.431 -0.734 -1.009

18 −3.221 −3.661 −3.568 −3.619 -2.874 -3.25

19 −0.908 −2.044 −1.42 −1.401 -0.718 -1.026

20 −1.541 −2.972 −2.242 −2.26 -1.29 -1.74
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14, 17, and 18 had good binding effect on the target, and the

binding free energy was less than −50 kJ/mol, which was worth

further study. However, different interactions and different

amino acid residues contribute differently to the total binding

free energy. Especially for the preferred compound 11, the van

der Waals interaction and the electrostatic interaction are

beneficial to the binding of the ligand to the receptor, and the

van der Waals interaction is stronger than the electrostatic

interaction. Polar solvation energies and non-polar solvation

energies have opposite contributions to the binding free

energy. Although non-polar solvation energies promote the

binding of ligands to protein receptors, they account for a

small proportion, while polar solvation energies are not

conducive to the binding of ligands to receptors, but play a

much greater role than non-polar solvation energies.

In addition, we also evaluated the drug-like properties of the

20 compounds obtained from the molecular docking screening

according to the Lipinski rule. It was found that only compounds

8 and 9 followed these five rules, compounds 1~4, 10~13, 15~17,

and 19 only followed 2˜3 of these rules, while the others followed

fewer rules. But that doesn’t mean that compounds that follow

fewer rules can’t be drug candidates. For example, the anti-

coronavirus drug Remdesivir only follows the two rules of the

DruLiTo study, but plays an important role in fighting the virus.

With the development of pharmaceutical technology, the use of

new technologies can partially make up for the lack of certain

properties of chemical molecules. Further, we also scored these

20 genistein derivatives for their biological activity against

different targets. Among them, compounds 8, 9 and

compounds 11, 12 could act on nuclear receptors and

proteases, respectively, and the corresponding scores were all

higher than 0 (meaning high activity), which indicates that key

compounds 11 and 12 can be further developed as COVID-19

Mpro inhibitor. In addition to the activity analysis, we also

analyzed ADMET for these 20 compounds, some of which

also performed well. For example, in terms of gastrointestinal

absorption, compounds 8 and 9 could achieve 100%

gastrointestinal absorption. Metabolically, all compounds were

incapable of acting on CYP2D6. Furthermore, except for

compounds 4, 8, and 9, the other compounds had no effect

on CYP1A2 and CYP2C19. In terms of toxicity, none of the

20 compounds screened by molecular docking showed no

effect on the skin. All compounds had no inhibitory effect

on hERG1. None of the drug candidates exhibited AMES (a

measure of a compound’s ability to induce DNA mutations)

toxicity.

TABLE 7 Absorption and distribution prediction of the top 20 compounds screened by normalized assessment.

Ligands Absorption Distribution

Water
solubility

Caco2 permeability Intestinal
absorption

Skin
permeability

P-glycoprotein
substrate

VDss BBB
permeability

CNS
permeability

1 −2.896 −0.042 92.328 −2.735 Yes −1.436 −1.925 −2.932

2 −2.892 −0.535 91.568 −2.735 Yes −0.85 −2.009 −2.892

3 −2.892 −0.535 91.568 −2.735 Yes −0.85 −2.009 −2.892

4 −3.001 0.14 92.606 −2.735 No −1.496 −1.89 −2.793

5 −2.909 0.934 46.051 −2.735 Yes −0.227 −2.224 −5.092

6 −2.892 −0.177 18.379 −2.735 Yes 0.01 −2.188 −4.738

7 −2.892 −0.177 18.379 −2.735 Yes 0.01 −2.188 −4.738

8 −3.416 0.064 100 −2.735 Yes −1.517 −1.189 −3.153

9 −3.416 0.708 100 −2.735 No −1.273 −1.241 −3.253

10 −3.271 0.567 57.312 −2.735 Yes −0.015 −1.882 −4.391

11 −3.307 0.328 78.473 −2.735 Yes 0.048 −1.732 −3.882

12 −3.771 0.413 95.896 −2.735 Yes 0.307 −1.327 −3.985

13 −2.958 0.359 77.864 −2.735 Yes −0.946 −1.866 −3.514

14 −2.893 0.773 49.936 −2.735 Yes −0.525 −2.578 −4.962

15 −2.883 −0.345 0 −2.735 Yes −0.292 −2.011 −6.203

16 −2.883 −0.345 0 −2.735 Yes −0.292 −2.011 −6.203

17 −2.883 −0.345 0 −2.735 Yes −0.292 −2.011 −6.203

18 −2.89 −0.504 0 −2.735 Yes −0.13 −2.554 −7.055

19 −2.884 −0.396 6.15 −2.735 Yes −0.136 −2.305 −6.289

20 −2.904 −0.072 48.815 −2.735 Yes −0.03 −2.259 −5.606

Unit (log mol/L) (log Papp in 10–6 cm/s) (% Absorbed) (log Kp) (Yes/No) (log
L/kg)

(log BBB) (log CNS)
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TABLE 8 Metabolism, excretion and toxicity prediction of the top 20 compounds screened by normalized assessment.

Ligands Metabolism Excretion Toxicity

CYP2D6 substrate CYP3A4 substrate CYP1A2 inhibitior CYP2C19 inhibitior Total
clearance

AMES
toxicity

hERG1 inhibitor LD50 LOAEL Skin
sensitization

1 No No No No 0.388 No No 2.479 2.343 No

2 No No No No 0.405 No No 2.474 3.331 No

3 No No No No 0.405 No No 2.474 3.331 No

4 No Yes No Yes −1.469 No No 2.432 1.713 No

5 No No No No 0.863 No No 2.638 5.321 No

6 No Yes No No −0.39 No No 2.482 6.246 No

7 No Yes No No −0.39 No No 2.482 6.246 No

8 No Yes No Yes 0.382 No No 2.881 1.498 No

9 No Yes Yes No 0.458 No No 2.859 1.505 No

10 No No No No −0.068 No No 2.767 4.378 No

11 No Yes No No 0.568 No No 3.292 3.46 No

12 No Yes No No −0.093 No No 2.608 3.027 No

13 No Yes No No −0.313 No No 2.601 1.443 No

14 No No No No −1.278 No No 2.502 5.828 No

15 No No No No 0.396 No No 2.371 7.265 No

16 No No No No 0.396 No No 2.371 7.265 No

17 No No No No 0.396 No No 2.371 7.265 No

18 No No No No −0.081 No No 2.478 9.114 No

19 No No No No 0.377 No No 2.413 7.99 No

20 No No No No −0.025 No No 2.536 5.885 No

Unit (Yes/No) (Yes/No) (Yes/No) (Yes/No) (log ml/
min/kg)

(Yes/No) (Yes/No) (mol/kg) (log
mg/kg_bw/day)

(Yes/No)
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Conclusion

In recent years, the COVID-19 has caused serious negative

impact on life, health and economy around the world. At

present, although the fatality rate of the SARS-CoV-2 has

been significantly reduced, the persistent mutation of the

virus has made it more infectious, which has adversely

affected the effectiveness of vaccines (the main measures to

deal with the epidemic at present) and poses a serious threat to

the lives of elderly people with other chronic diseases.

Therefore, the discovery of novel anti-COVID-19 drugs

remains crucial. Soybeans are rich in biologically active

substances, especially genistein compounds, which have

therapeutic effects on many diseases. In this work, with

COVID-19 Mpro as the target, two molecular docking

software were applied to virtual screening of 9,614 small

molecules, and the results were normalized to obtain

20 potential drug candidate molecules. Molecular dynamics

simulation results showed that compounds 2, 4, 5, 11, 13, 14,

17, and 18 had better binding free energy with the target.

Further, the drug-likeness properties of the top 20 compounds

were also analyzed, and found that plenty of compounds

including 11 showed interesting drug-likeness properties. In

addition, the inhibitory activity of these compounds was also

studied using the Molinspiration Cheminformatics online

server, and the results showed that compounds 11 and 12

had better protease inhibitory activity. Finally, the ADMET

characteristics of the top 20 compounds were also predicted. All

of the results show that compound 11 has the highest

comprehensive advantage, which is very worthy of further

research, and has high value for the future discovery and

development of novel COVID-19 therapeutic drugs.
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