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Summary 

Transcriptomic analysis of peripheral blood from COVID-19 patients identified differentially 

expressed genes distinguishing subjects with severe disease from those with non-severe 

disease. These markers correctly identified the hospitalization status of unrelated COVID-19 

subjects with a high level of accuracy. 
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Abstract 

Background: The correlates of COVID-19 illness severity following infection with SARS-

Coronavirus 2 (SARS-CoV-2) are incompletely understood. 

Methods: We assessed peripheral blood gene expression in 53 adults with confirmed 

SARS-CoV-2-infection clinically adjudicated as having mild, moderate or severe disease. 

Supervised principal components analysis was used to build a weighted gene expression 

risk score (WGERS) to discriminate between severe and non-severe COVID. 

Results: Gene expression patterns in participants with mild and moderate illness were 

similar, but significantly different from severe illness. When comparing severe versus non-

severe illness, we identified >4000 genes differentially expressed (FDR<0.05). Biological 

pathways increased in severe COVID-19 were associated with platelet activation and 

coagulation, and those significantly decreased with T cell signaling and differentiation. A 

WGERS based on 18 genes distinguished severe illness in our training cohort (cross-

validated ROC-AUC=0.98), and need for intensive care in an independent cohort (ROC-

AUC=0.85). Dichotomizing the WGERS yielded 100% sensitivity and 85% specificity for 

classifying severe illness in our training cohort, and 84% sensitivity and 74% specificity for 

defining the need for intensive care in the validation cohort. 

Conclusion:  These data suggest that gene expression classifiers may provide clinical utility 

as predictors of COVID-19 illness severity.  
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Introduction 

In December 2019 a novel coronavirus, SARS-CoV-2, was identified in China as a cause of 

severe pneumonia with explosive human-to human transmission [1]. Illness due to SARS-

CoV-2 has been designated COVID-19, and on March 11, 2020, the World Health 

Organization officially declared SARS-CoV-2 a pandemic. To date there have been over 240 

million infections and over 5 million deaths globally due to COVID-19. (Source: 

https://covid19.who.int/) Although most patients experience mild to moderate disease, 5-10% 

progress to severe or critical illness with severe pneumonia or respiratory failure [2, 3]. Early 

in the pandemic it became clear that certain underlying chronic medical conditions, and 

principally age, were key risk factors for severe disease [4, 5]. While severe disease can 

occur early in illness, a distinct progression to severe illness occurs in some individuals 7-12 

days after symptom onset suggesting transition from a viral phase to an inflammatory phase 

[6]. In addition, some young individuals without co-morbidities have also developed severe 

illness, highlighting the incomplete understanding of disease pathogenesis due to SARS-

CoV-2 infection [7]. 

 

Gene expression provides an unbiased measure of the host response to a pathogen on a 

cellular level. We and others have previously demonstrated the potential for peripheral blood 

gene expression patterns to classify the ontogeny and severity of viral respiratory illness [8, 

9]. We hypothesized that analysis of gene expression in the blood of patients with SARS-

CoV2-related COVID-19 might help identify those at greatest risk for severe symptoms and 

in need of intensive care. Gene expression analysis might also identify pathways underlying 

disease pathogenesis and suggest new targets amenable to potential therapeutic 

interventions.  
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Methods 

Acute Illness Evaluation: Adults ≥18 years of age, either hospitalized or community 

recruited, exhibiting COVID-19 symptoms and documented to have SAR-CoV-2 by PCR, 

were eligible for the study. Participants with immunosuppression or symptoms onset greater 

than 28 days prior to admission were excluded. Hospitalized participants were assessed 

within 24 hours of admission and outpatients were brought to the clinic within 1-2 days of 

being identified as SARS-CoV-2 positive. Demographic, clinical, radiographic and laboratory 

information, date of symptom onset and signs and symptoms of the illness were collected. 

Medication use was recorded with attention to drugs  that may affect transcriptional profiling.  

 

Clinical severity assessment: Severity for COVID-19 participants at enrollment and 

throughout the illness was assessed using a combination of clinical variables  as well as the 

National Early Warning Score (NEWS) of 7 graded physiological measurements (respiratory 

rate; oxygen saturation; oxygen supplementation; temperature; blood pressure; heart rate; 

level of consciousness) [10]. Severe illness was defined as requiring any of the following: 

ICU care, high flow oxygen, ventilator support, presser support or evidence of new end 

organ failure. Non-severe illness was defined as illnesses not meeting severe criteria. In 

addition, a panel of 4 physicians (3 infectious disease and 1 pulmonary critical care) 

adjudicated all non-severe illnesses and categorized them as mild or moderate using the 

NEWS as well as symptoms and physiologic parameters in the context of underlying 

diseases and baseline oxygen requirements. Participants were followed for the duration of 

hospitalization and illness, and outcomes were recorded as the highest level of care required 

or death.  
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Sample Collection and Processing: Approximately 3 ml of whole blood was collected in a 

Tempus™ Blood RNA Tube at the time of enrollment and stored at -80C until the time of 

processing. The median time from symptom onset to blood collection ranged from 4-9 days, 

as shown in Table 1. Following centrifugation, RNA was isolated from the pellet using the 

Tempus Spin RNA Isolation Kit using the manufacturer recommended protocol. Total RNA 

was processed for globin reduction using GLOBINclear Human Kit as described previously 

[9]. 

 

RNA Sequencing: cDNA libraries were generated using 200 ng of globin-reduced total 

RNA. Library construction was performed using the TruSeq Stranded mRNA library kit 

(Illumina, San Diego, CA). cDNA quantity was determined with the Qubit Flourometer (Life 

Technologies, Grand Island, NY) and quality was assessed using the Agilent Bioanalyzer 

2100 (Agilent, Santa Clara, CA). Libraries were sequenced on the Illumina NovaSeq6000 at 

a target read depth of ~20 million 1 × 100-bp single end reads per sample. Sequences were 

aligned against the human genome version hg38 using the Splice Transcript Alignment to a 

Reference (STAR) algorithm [11], and counts were generated using HTSeq [12]. Raw counts 

were divided by participant-specific library size (in millions) to yield counts per million (CPM)-

normalized expression, borrowing no information across participants, and gene and sample 

level filtering was performed to remove outlier samples and low expressing genes. 

Normalized and filtered analytical data sets were log2-transformed (after adding a pseudo-

count of 1 CPM) prior to analysis. We excluded data from 19,861 genes with uniformly zero 

reads, leaving a data set comprised of 39,225 genes from 53 participants. Finally, we 

retained genes that had normalized counts exceeding 1 CPM in greater than 14 participants 

(the smallest class size). This resulted in an analytical dataset of 14,228 CPM-normalized 

genes. The raw sequence and normalized data are currently being deposited to dbGAP 

(https://www.ncbi.nlm.nih.gov/gap/). The accession number for this data series is will be 
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provided as soon as the submission is approved. In the meantime summary counts data will 

be available upon request to the corresponding author(s). 

 

Statistical Methods: Continuous clinical variables were compared by COVID severity levels 

using the nonparametric Kruskal-Wallis test, and binary variables by Fisher’s exact test. 

WDifferential expression by COVID-19 severity was assessed using the nonparametric 

Wilcoxon rank sum test. To allow adjustment for important clinical covariates, we fit semi-

parametric Cox proportional hazards models for normalized gene expression as a function of 

severe vs non-severe COVID-19, adjusted for race, sex, BMI, days since symptom onset, 

and library size. The Benjamini-Hochberg procedure was used to control the False 

Discovery Rate (FDR). Pathway analysis of significantly differentially expressed genes was 

performed using ENRICHR [13].While Negative binomial regression is a useful generalized 

linear model (GLM) for the log of the mean of raw count data, assuming the variance of the 

count is a quadratic function of its mean, we used a more flexible semiparametric Cox 

model, which can be viewed as a GLM with complementary log-log link. The Cox model 

makes no assumption about the shape of the distribution of (normalized) counts, and it is 

invariant to monotonic transformations of the response since it only depends on the ranks. 

The familiar nonparametric rank-based Wilcoxon and Kruskal-Wallis tests we used are 

closely related to the logrank test, a special case of the Cox model. 

Classifier Development and Testing: We used a version of supervised principal 

components analysis to build a weighted gene expression risk score (WGERS) to 

discriminate between severe and non-severe COVID-19. Genes were selected based on 

their univariate AUC and fold-change, as estimated by Hodges-Lehmann median of all 

pairwise shifts in log expression, with thresholds selected within the inner loop of nested 20-

fold cross-validation. The cross-validation sampling strategy was designed to efficiently 

approximate leaving out 1 subject from each of the 3 sub-levels of severity. The selected 
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genes were standardized to Z-scores with mean 0 and unit variance, and their first PC score 

was used as the sole predictor for logistic regression. The outer loop of nested cross-

validation was used to estimate the ROC and AUC of the adaptive procedure. The nested 

pooled AUC corresponds with the ROC curve, and compares samples across and within 

models. The nested stratified AUC only compares samples from the same model, and thus 

generally is preferable, but it does not correspond with any single ROC curve. A subsequent 

run of non-nested cross-validation produced the thresholds used to define the gene set for 

the final risk score. The WGERS is calculated as the linear combination of the standardized, 

log2-transformed genes that meet the chosen thresholds, with coefficients based on the first 

principal component loading of the genes, scaled by the coefficient from the univariate 

logistic regression model. The outer loop of nested cross-validation was used to estimate the 

ROC and area under the ROC curve (AUC) or the adaptive procedure. AUC represents the 

probability that a severe subject has a higher WGERS than a non-severe subject. The 

nested pooled AUC corresponds with the ROC curve, and compares samples across and 

within models. 

To perform an independent validation of our risk score, we use a dataset from Overmyer et 

al. [14], which had a different definition of severity in the outcome (ICU vs non-ICU), and 

used  a different normalization for the gene expression data (TPM). Of the 18 genes used in 

our risk score, 2 were missing in the validation data. We imputed data for these 2 genes via 

multiple linear regression with coefficients estimated by regressing each on the 16 non-

missing CPM-normalized log gene expression values in the training data. We standardized 

the TPM-normalized validation gene expression data using means and SDs estimated from 

the training data, and then applied the risk score coefficients from the training data to 

construct a risk score for each validation subject. Apparent miscalibration required choosing 

a different WGERS threshold for the validation data due to gene expression measures being 

generally lower in the validation data compared to the training data. An ROC curve with 

associated AUC was used to assess the performance of the risk score in the validation data. 
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Results 

Between April 30th and June 29th 2020, 58 participants with PCR documented COVID-19 

illnesses were enrolled from inpatient and outpatient settings. Of these, 3 participants did not 

have blood samples collected and 2 did not meet inclusion criteria, leaving 53 participants 

for RNA sequencing analysis. Illnesses were adjudicated as 20 severe and 33 non-severe 

(14 mild and 19 moderate). This categorization was consistent with the severity separation in 

the NEWS (Supplemental Figure S1). Two severely ill participants received one dose of 

Remdesivir prior to blood collection. No subject received steroids or any other experimental 

COVID-19 treatment prior to enrollment. Five hospitalized participants had rapidly 

progressive hypoxemia and hemodynamic instability after enrollment and required transfer to 

intensive care, and 3 subsequently were mechanically ventilated. No mildly ill outpatient 

illnesses progressed in severity to require medical attention. There was insufficient evidence 

of any difference in demographic characteristics or underlying conditions by disease 

severity, except for race and time from disease onset (Table 1): white non-Hispanic 

comprised 93% mild vs 50-58% moderate-severe (p=0.02), and median time from symptom 

onset to enrollment was 4 days among mild, 9 days among moderate, and 6.5 days among 

severe (p=0.047, due to heterogeneity among non-severe). The median age of participants 

was 62 years with 53% of them being male. As expected, dyspnea, hypoxemia, the 

presence of infiltrates, and use of supplemental oxygen were more common in moderate 

and severe, compared to mild illness. All severely ill patients required intensive care; 15 

were enrolled in the ICU and 5 were moved to ICU within 48 hours of blood sampling. All 

severely ill participants required supplemental oxygen; 12 (60%) were mechanically 

ventilated, one was supported with ECMO and survived, 13 (65%) required vasopressor 

support and one subject died. Median NEWS were different between the 3 groups (Figure 

S1). Inflammatory markers were not available for most outpatients but were notably elevated 

in those hospitalized with moderate to severe disease. (Table 1)   
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Blood gene expression profiling from SARS-CoV-2 positive cases (n=53) was completed by 

standard mRNA sequencing (RNAseq) of globin mRNA-reduced RNA isolated from whole 

blood at the time of recruitment. On average 58 ± 6 million reads were generated from each 

of the cDNA libraries, with a mapping rate of 94.2 ± 0.6% and transcriptome coverage of 

41.3 ± 1.3% (Supplemental Figure S2). Exploratory Principal Components Analysis 

suggested similar patterns of gene expression might be shared by participants with mild and 

moderate illness, but appeared distinct from those with severe illness (Figure 1A). Statistical 

analysis for differential gene expression confirmed significant differences when comparing 

mild vs severe, and moderate vs severe, but not mild vs moderate COVID (Figure 1B).  

 

We next tested for differences in gene expression when comparing participants with severe 

(n=20) vs non-severe illness (n=33), pooling the 14 mild and 19 moderate cases. We tested 

for differential gene expression without (univariate) and with adjustment for variables 

potentially associated with severe outcome (race, sex, BMI), the number of days since onset 

of symptoms, and library size (Figure 1C and Supplemental Table 1). These analyses 

identified 6483 (46% of tested) and 8435 (59% of tested) differentially expressed genes, with 

and without multivariate adjustment, respectively.   

 

We performed ontology analysis for the 6483 genes identified as differentially expressed in 

severe COVID illness, focusing on the fully adjusted analysis (Figure 2). This analysis 

identified 74 pathways over-represented by genes (n=936) significantly upregulated in 

severe COVID, and 25 pathways over-represented by genes (n=5547) significantly 

downregulated (Figure 2 and Supplemental Table S2). Activated pathways included a 

number associated with infectious diseases as well as TNFα and NFkB signaling. Notably, 
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there was also evidence for significant upregulation of genes associated with platelet 

activation and coagulation. Among pathways associated with downregulated genes in 

severe COVID were multiple pathways involved in general host RNA metabolism as well as 

multiple pathways specifically associated with T cell regulation, including Th2 and Th17 

differentiation. The most significantly downregulated pathway was associated with HSV1 

infection.  

 

Given the substantial number of differentially expressed genes when comparing severe vs 

non-severe COVID, we investigated the ability of gene expression patterns to discriminate 

severe illness. Gene-specific thresholds for univariate AUC and magnitude change were 

chosen via the cross-validation procedure and used to produce an 18 gene weighted gene 

expression risk score (WGERS) for severe illness. Nested cross-validation was used to 

estimate performance via the stratified AUC (CV-AUC=0.98). The pooled CV-AUC of 0.93 

corresponds with a cross-validated ROC curve to graphically summarize performance 

(Figure 3A). The pooled CV-ROC curve also was used to select a risk score threshold (-

1.04) with 95% sensitivity and 88% specificity, which corresponded with apparent (non-

cross-validated) sensitivity of 100%, specificity of 85%, and error rate of 9% (5/53), 

represented via the WGERS distributions for the training data (Figure 4A). All 5 misclassified 

participants had moderate illness (Figure 4B).  
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We next identified an independent validation data set describing peripheral blood-based 

gene expression profiling of COVID subjects who were either admitted (n=50) or not 

admitted (n=50) to the ICU due to the severity of their acute illness [14]. Our 18 gene 

WGERS discriminated between ICU and non-ICU patients with an AUC of 0.85, and 

thresholding at 1.77 yielded 84% sensitivity and 74% specificity (Figures 3B and 4C). 

Furthermore, all 18 genes selected in the training data were differentially expressed (FDR < 

0.01) in the validation data (Supplemental Table S3).  

 

Discussion 

SARS-CoV-2 infection causes a wide spectrum of disease ranging from minimal, often 

asymptomatic, respiratory illness to severe pneumonia with multisystem failure and death. 

Although measurements of inflammatory markers such as C-reactive protein and serum IL-6 

levels are often associated with worse disease, their use to predict poor outcomes is 

imperfect [15-17]. Viral characteristics, such as shedding kinetics or gene sequence 

variation, are not reliable predictors of clinical outcome [18, 19]. Genome-wide expression 

profiling, a powerful and unbiased tool, can be used for multiple purposes such as relating 

activation or suppression of molecular pathways to clinical manifestations of disease, 

identification of biomarkers that may allow individual prediction of disease severity, and 

identification of novel gene targets for therapeutic intervention. Early predictors to identify 

patients that will decompensate following SARS-CoV-2 infection would be highly impactful.  

 

The goal of our study is to use gene expression analysis to identify peripheral markers 

pathways associated with COVID-19 severity, which may serve as predictors of disease 

severity potential therapeutic targets. In this study of 53 SARS-CoV-2 infected adults with 

illness ranging from very mild upper respiratory infection to acute respiratory failure, we 
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identified >6,000 differentially expressed genes (DEGs) (FDR < 0.05) between severe and 

non-severe illness. The vast majority (85%) of DEGs were under-expressed, most notably 

with a marked effect on lymphocytes and altered function [20, 21]. Pathway analysis 

revealed inhibition of Th1, Th2 and Th17 cell differentiation, as well as inhibition of the T cell 

receptor signaling pathway. These effects are likely related to the marked lymphopenia and 

poor adaptive immune response in persons with severe SARS-CoV-2 infection [22]. Also 

notable in severe illness is the inhibition of the mRNA surveillance pathways that include the 

nonsense-mediated mRNA decay pathway which can degrade viral mRNA. Using a model 

coronavirus, murine hepatitis virus, Wada and colleagues showed viral transcription is 

enhanced by blocking this host cell pathway, demonstrated to be mediated by the viral 

nucleocapsid protein [23].  

 

Several activated pathways we identified in our studies are worth comment, given what is 

already known about SARS-CoV-2 and COVID-19. Activation of the NF-kappa B and TNF 

signaling pathways in a setting of heightened inflammatory process is not surprising. 

Activation of the platelet, complement, and coagulation cascade pathways are also 

expected, given the characteristic hypercoagulable state that has been observed in severe 

illness [24]. Thrombocytopenia and activated platelets are associated with the high incidence 

of venous and arterial clotting, while elevated levels of serum D-dimer, a fibrinogen 

degradation product, and increased INR are all features of severe COVID-19 [25]. It is 

interesting that the infection-related pathways most significantly activated include those 

principally associated with intracellular bacterial (legionella, mycobacterial) and parasitic 

(toxoplasma, leishmania and trypanosome [Chagas]) infections. These infections are 

associated with marked activation of macrophages, and thus may be consistent with 

activation of the osteoclast differentiation pathway, as osteoclasts and macrophages have 

many similarities [26, 27].  
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Our findings are generally consistent with the limited data currently available in the literature 

on COVID-19 and gene expression [14, 28-31].  Specifically, Overmyer et al reported gene 

expression and metabolomic data from 128 COVID infected and non COVID infected 

persons, where 219 molecular features with high significance to COVID-19 status and 

severity were discovered. [14] A number of these involved complement activation, 

dysregulated lipid transport, and neutrophil activation. Additionally, our data is supported by 

the findings noted by Ouyang et al in which Th17 and T cell activation and differentiation 

were markedly downregulated in severe disease [32].  

 

There were some novel pathways that demonstrated upregulation in our studies. A number 

of malignancy related pathways were upregulated (acute myelogenous leukemia (AML), 

colorectal, pancreatic and Non-small cell cancer) in the severe COVID patients. Similarly, in 

a study by Kwan et al comparing gene expression in 45 COVID-19 cases to healthy controls, 

135 genes were found to be differentially expressed, with enrichment for several cancer 

pathways including viral carcinogenesis and AML [29]. Identification of mutations in cell 

signaling, proliferation genes, and kinases such as AP2-associated protein kinase 1 (AAK1) 

have led to targeted treatment options for cancer patients. Baricitinib, a repurposed 

rheumatoid arthritis drug that interferes with the Janus Kinase (JAK) pathway, was 

demonstrated to have efficacy when combined with Remdesivir in the treatment of severe 

COVID  [33]. Baricitinib shows high affinity for AP2 associated protein kinase 1 binding, 

potentially demonstrating some overlap in perturbations of cell signaling pathways in 

malignancy and COVID-19.  Further investigation of gene expression pathways differentially 

expressed in severely ill patients may provide clues to new therapeutic targets. 
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Although our study was not designed to identify and validate early predictors of severe 

disease, the data do offer a first step. Using gene expression data we were able develop and 

validate an 18 gene signature for severe disease –fully concordant with requiring ICU– with 

85% AUC, 84% sensitivity, and 74% specificity in an independent validation data set. In a 

recent paper Guardela et al assessed the utility of blood transcript levels of 50 genes known 

to predict mortality in Idiopathic Pulmonary Fibrosis patients to classify illness severity in 

COVID-19 [31]. A discovery cohort of eight subjects was used, and then validated using a 

publicly available data set of 128 subjects [14]. The gene expression risk profile 

discriminated ICU admission, need for mechanical ventilation, and in-hospital mortality with 

an AUC of 77%, 75%, and 74%, respectively (p < 0.001) in a COVID-19 validation cohort.  

 

Our current study has several limitations which are worth noting, including its relatively small 

sample size, the non-standardized interval between symptom onset and sample collection, 

and blood collection at one time point. The complexity of the clinical data among hospitalized 

participants (i.e. admissions only for isolation, persons with chronic oxygen requirements, 

COVID testing for procedures) made objective criteria to distinguish mild from moderate 

disease difficult, necessitating the need for clinical adjudication. Lastly, certain laboratory 

studies were not available for all subjects. 
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Conclusions 

In summary, we found a large number of differentially expressed genes in the peripheral 

blood that distinguished those with severe COVID-19 illness from those with mild or 

moderate disease. These data could be used to identify potential targets for interventions, as 

well as to develop predictors of disease severity. Future prospective studies are needed to 

follow mild to moderately ill patients over time and evaluate whether any of the 

discriminatory genes identified are affected at early stages and can serve as predicators of 

severity. If so, individuals with high risk gene profiles might be hospitalized for observation, 

moved to a more closely monitored setting while hospitalized, or targeted for early 

interventions such as monoclonal antibody treatments.  
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Table 1 Clinical Variables  

 Mild 

(N=14) 

Moderate  

(N=19) 

Severe 

(N=20) 

p-value 

Demographics     

   Age, median (IQR) 63.0 (41.0) 59.0 (29.0) 63.5 (19.5) 0.71 

   Male Sex, No. (%) 5 (35.7) 11 (57.9) 12 (60.0) 0.37 

   White Non-Hispanic 

Race, No. (%) 

13 (92.9) 11 (57.9) 10 (50.0) 0.02 

   BMI, median (IQR) 28.7 (9.2) 30.4 (11.7) 26.4 (9.5) 0.29 

   Days from Symptom  

      Onset, median (IQR) 

4.0 (5.0) 9.0 (6.0) 6.5 (4.5) 0.05 

Underlying Conditions     

   COPD, No. (%) 3 (21.4) 6 (31.6) 2 (10.0) 0.25 

   CHF, No. (%) 4 (28.6) 1 (5.3) 2 (10.0) 0.17 
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   Diabetes, No. (%) 2 (14.3) 8 (42.1) 5 (25.0) 0.20 

   Hypertension, No. (%) 7 (50.0) 11 (57.9) 12 (60.0) 0.88 

   Asthma, No. (%) 0 (0.0) 1 (5.3) 2 (10.0) 0.77 

Symptoms     

   Cough, No. (%) 6 (42.9) 15 (78.9) 11 (55.0) 0.10 

   Fever, No. (%) 6 (42.9) 15 (78.9) 15 (75.0) 0.08 

   Dyspnea, No. (%) 4 (28.6) 12 (63.2) 13 (65.0) 0.08 

   Rigors, No. (%) 0 (0.0) 3 (15.8) 0 (0.0) 0.06 

Physical Findings     

   Systolic Blood Pressure, 

median (IQR) 

127 (27) (N=13) 119 (34) 105 (33) 0.07 

   Oxygen Saturation, 

median (IQR) 

96.5 (4.5) (N=12) 90.0 (5.0) 85.5 (11.5) 0.0005 

Laboratory Data     

   Infiltrate on Chest 

Radiograph, %, (N) 

 (42.8) (N=7)  (88.8) (N=18) 100 (N=20) 0.0008 

  C-reactive Protein 

(mg/L), median (IQR) 

29.6 (45.5) (N=7) 107.0 (126.9) 

(N=18) 

155.4 (43.7)  0.0004 

   D-Dimer (ng/mL), 

median (IQR) 

2551 (2891) 

(N=6) 

724 (420) (N=18) 1209 (1023)  0.002 

  Absolute Lymphocyte 0.9 (0.8) (N=7) 1.2 (0.7) (N=18) 0.5 (0.5)  0.002 
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count (u/L x1000), median 

(IQR) 

Level of Care     

   Intensive Care, No. (%) 0 (0) 0 (0) 20 (100.0) <0.0001 

   Pressors, No. (%) 0 (0) 0(0) 13 (65.0) <0.0001 

Worst Outcome, No. (%)    <0.0001 

   Low Flow Oxygen  

   Supplementation (~0-10 

L) 

4 (28.6) 12 (63.2) 0 (0)  

  Intermediate Flow 

Oxygen 

  Supplementation (~10-

20L) 

0 (0) 2 (10.5) 1 (5.0)  

   High Flow Oxygen 

   Supplementation (~20-

60L) 

0 (0) 0 (0) 5 (25.0)  

   Non invasive positive 

pressure ventilation 

(NIPPV) 

0 (0) 0 (0) 0 (0)  

   Mechanical Ventilation 0 (0) 0 (0) 12 (60.0)  

  Extracorporeal 

membrane oxygenation 

0 (0) 0 (0) 1 (5)  
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(ECMO) 

   Death 0 (0) 0 (0) 1 (5)  

   None of the above 10 (71.4) 5 (26.3) 0 (0)  

*data presented for laboratory variables include data from less than the entire cohort. 

Continuous variables were compared using the nonparametric Kruskal-Wallis test, while 

categorical variables were compared using Fisher’s exact test 

IQR = Inter-Quartile Range 
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Figure 1. Analyses of signal levels in our dataset which was used as the training data. 

A. Principal Components Analysis (PCA) plot for Z-score standardized CPM-normalized 

gene expression, indexed by COVID severity. 

B. Estimated densities of False Discovery Rates (FDR) for comparisons of COVID 

severity levels based on nonparametric Wilcoxon tests of CPM-normalized gene 

expression levels. 

C. Numbers of differentially expressed genes, by FDR level, based on semiparametric 

Cox proportional hazards models for gene expression as a function of severe vs non-

severe COVID, with and without adjustmentfor pre-specified covariates: race, sex, 

BMI, days since symptom onset, and library size. 
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Figure 2. Biological interpretation of gene expression patterns in severe versus non-severe 

COVID. 

(A, B) Pathway analysis of genes differentially expressed between severe and non-severe 

COVID-19 participants. Genes identified as overexpressed (n=936), and underexpressed 

(n=5547) in severe cases of COVID-19, when compared to non-severe cases, were used for 

pathway analysis using ENRICHR. With 936 genes overexpressed in severe COVID-19 

cases, ENRICHR (through KEGG Pathways database) identified 74 pathways associated 

with COVID-19 severity, while with 5547 genes underexpressed in severe COVID-19, it 

identified 25 pathways. Shown here are the top 25 significant pathways (p<0.05) associated 

with upregulated (A) and downregulated genes (B). The bar size represents the frequency of 

the pathway genes differentially expressed in severe COVID-19; red indicates upregulation, 

and green indicates downregulation. The size of the dots are proportional to -log(p-value). 

Larger dots represent lower p-values. (C) Differential expression analysis of severe and non-

severe COVID-19 participants identified 6483 genes as significantly different. Shown here is 

a heatmap of the top 425 differentially expressed genes, where the rows indicate genes and 

columns indicate participants. High expression is shown in red, and low expression in green. 
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Figure 3. Internally cross-validated and externally validated Receiver Operating 

Characteristic (ROC) curves for the Weighted Gene Expression Risk Score (WGERS).  

A. Cross-Validated (CV) ROC for severe vs non-severe COVID in the Training Data.  

Area under the ROC curve (AUC) is an overall measure of discrimination. A risk score 

with no discriminatory power would produce an AUC of 0.5 (dashed line). A classifier 

with excellent discriminatory power would simultaneously maximize sensitivity and 

specificity, leading to the curve reaching the top left corner of the plot and an AUC of 1. 

Pooled AUC corresponds with the plot (including the point with 95% sensitivity and 88% 

specificity at a risk score threshold of -1.04), which necessarily compares risk scores 

both within and across CV folds (each with a unique fitted model). Stratified AUC 

corresponds with only comparing risk scores within each fold of 20-fold CV (where each 

model is fixed), but there exists no single corresponding ROC curve for this more 

commonly reported and preferable metric. 

B. ROC curve for ICU vs non-ICU in the Validation Data. A WGERS threshold of 1.77 

yielded 84% sensitivity and 74% specificity. 

 

 

  



Acc
ep

ted
 M

an
us

cri
pt

30 
 

 

Figure 4. Risk score distributions in the Training and Validation Data. 

 

A. Density of risk scores by non-severe (mild or moderate) vs severe COVID in the 

Training Data. Apparent (non-cross-validated) sensitivity = 100% (20/20 severe) and 

specificity = 85% (28/33 non-severe) at the CV-optimal risk score threshold of -1.04.  

B. Density of risk scores by COVID severity (mild, moderate, or severe) in the Training 

Data. Although the statistical learner was blinded to any distinction between mild and 

moderate COVID severity, risk scores for moderate COVID participants fell between 

those of mild and severe COVID participants, and all 5 misclassified participants had 

moderate COVID. 

C. Density of risk scores by ICU vs non-ICU in the Validation Data. Sensitivity = 84% 

(42/50 ICU) and specificity = 74% (37/50 non-ICU) at a risk score threshold of 1.77.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 


