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ABSTRACT
Osteoporosis, as a common metabolic disorder characterized by the decrease of bone mass, can 
cause fractures, thereby threatening the life quality of females, especially postmenopausal 
women. Thus, it is necessary to reveal the genes involved in osteoporosis and explore biomarkers 
for osteoporosis. In this study, two groups, smokers and nonsmokers with different bone mineral 
density (BMD) levels, were collected from the Gene Expression Omnibus (GEO) database 
GSE13850. Consensus modules of the two groups were identified; the variety of gene modules 
between smokers and nonsmokers with different BMD levels was observed; and a consensus 
module, including 390 genes significantly correlated with different BMD levels, was identified. 
Function analysis revealed the significantly enriched osteoporosis-related pathways, such as the 
PI3K-Akt signaling pathway. Hub genes analysis revealed the critical role of CXCL12 and CHRM2 in 
modules related to BMD levels. Based on the support vector machine recursive feature elimination 
(SVM-RFE) analysis, the model containing 10 genes (TNS4, IRF2, BSG, GZMM, ARRB2, COX15, RALY, 
TP53, RPS6KA3, and SYNPO) with good performance in identifying people with different BMD 
levels was constructed. Among them, the roles of RALY and SYNPO in the osteogenic differentia-
tion of hBMSCs were verified experimentally. Overall, this study provides a strategy to explore the 
biomarkers for osteoporosis through analysis of consensus modules.
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1. Introduction

As people get older, the bone mass decreases, and the 
risk of fractures increases significantly, especially for 
women after menopause [1]. Osteoporosis is 
a common metabolic disorder often characterized by 
low bone mineral density (BMD). It places thousands 
of premenopausal and postmenopausal women as 
victims, causing fractures of their spine, hip, and 
wrist, with some even worse fractures directly leading 
to mortality, such as hip fractures [1,2]. The associa-
tion between smoking and the loss of bone mineral 
density has been reported. Insufficient bone mineral 
density, especially at the hip, is considered significantly 
positively associated with smoking [3,4]. Therefore, it 
is of great significance to reveal the pathophysiology of 
osteoporosis, explore its novel diagnostic features and 
analyze the relations between smoking and BMD 
related features.

Assessing the bone mineral density with dual- 
energy X-ray absorptiometry is the most widely used 

method for the diagnosis of osteoporosis [5]. 
Diagnostic features such as biomarkers involving the 
formation of bones in the aspects of serum procolla-
gen type I N-terminal propeptide (s-PINP), urinary 
N-telopeptide (NTX), and serum C-terminal telopep-
tide type I collagen (s-CTX), etc. were developed for 
predicting the risks of fractures and other skeletal 
pathologies [6]. Markers such as s-PINP and s-CTX 
still have limitations, for they lack specificity and fail to 
reflect the osteocyte activity or the bone tissue quality 
[6,7]. It is a widely acknowledged fact that the process 
of bone loss can’t be tracked by these molecular mar-
kers, especially at the early stage [6,7]. So, the explora-
tion of associated biomarkers is undoubtedly 
necessary. With the development of sequencing, mul-
tiple molecular biomarkers including the circulating 
miRNAs, have been explored [6,7].

Circulating monocytes, also known as peripheral 
blood monocytes, play important roles in the response 
to inflammation [8]. Researchers summarized the 
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benefits and reasons for using peripheral blood mono-
cytes (PBMs) containing precursors of osteoclasts, as 
study models for bone-related diseases [9–11]. For 
example, PBMs could be used as possible precursors 
of osteoclasts and affect the differentiation of osteo-
clast by producing potent cytokines [12–14]. The sig-
nificant role of peripheral blood monocyte-expressed 
genes in osteoporosis has already been reported by 
multiple publications. Deng’s team found that the 
expression of ANXA2 was significantly upregulated 
in patients with low BMD compared with those 
healthy people with high BMD [15]. The expression 
of long noncoding RNAs in PBMs was confirmed to 
be involved in the regulation of osteoporosis [16]. 
Zhou, et al. revealed five critical independent path-
ways related to BMD [17]. Recently, the weighted gene 
co-expression network analysis (WGCNA), as an effi-
cient tool for locating the highly correlated gene clus-
ters (modules), has been widely used to analyze the 
network of genes or hub genes in multiple diseases. 
Researchers has constructed a scoring system for the 
prediction of BMD and then found the significant role 
of ribonucleoprotein complex biogenesis in osteo-
porosis [18]. Smoking is reported as a common beha-
vior that can lead to impaired osteogenesis [19]. 
A recent study revealed six genes (HNRNPC, 
PFDN2, PSMC5, RPS16, TCEB2, and UBE2V2) asso-
ciated with smoking-related postmenopausal osteo-
porosis [20]. At present, studies on the comparative 
analysis of multiple groups with osteoporosis (such as 
smokers and nonsmokers) are limited. However, they 
are essential in exploring behavior-related osteoporo-
sis and revealing critical osteoporosis-related gene 
clusters (also called consensus modules in WGCNA).

In this study, the analysis of consensus modules 
was performed among smokers and nonsmokers 
with different BMD levels to reveal the association 
between smoking-related modules and osteoporo-
sis-related consensus modules. Two groups of sam-
ples (including 20 smokers and 20 nonsmokers) 
with low or high BMD, were collected for weighted 
gene co-expression network analysis to identify con-
sensus modules. The gene modules associated with 
smoking were constructed and then mapped to con-
sensus modules to analyze the smoking-specific 
modules. Consensus modules were related to clin-
ical conditions (different levels of BMD). Function 
analysis and protein–protein interactions (PPI) ana-
lysis were performed to explore the functional 

processes and interactions of genes involved in the 
smoking-specific modules and consensus modules 
significantly negatively correlated with BMD. Hub 
genes were revealed based on the interactions of 
genes. Support vector machine recursive feature 
elimination (SVM-RFE) was employed to construct 
the prediction model for people with low BMD and 
the constructed model was validated with indepen-
dent data, GSE56815.

2. Materials and methods

2.1. Data collection and preparation

To analyze osteoporosis-related gene modules, gene 
expression profiles associated with osteoporosis 
were collected and downloaded from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) by 
searching for the key words ‘osteoporosis’ and 
‘smoking’. To perform WGCNA analysis, experi-
ments with the sample size larger than 15 were 
collected. Finally, GSE13850, containing 20 postme-
nopausal female smokers and 20 nonsmoking sam-
ples with low or high BMD, was used for analysis 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE13850). GSE56815 was adopted as valida-
tion data, with 80 female samples – 40 with high 
BMD (20 premenopausal samples and 20 postme-
nopausal samples) and 40 with low BMD (20 pre-
menopausal samples and 20 postmenopausal 
samples) [17]. The expression profiles were anno-
tated with annotation files. The expression matrix 
in this analysis was performed from the same plat-
form, [HG-U133A] Affymetrix Human Genome 
U133A Array. The average expression level was 
calculated and considered as the gene expression 
for genes with multiple probes.

2.2. Network construction and consensus 
module detection

Before the network construction, genes and sam-
ples were examined with the WGCNA package, 
and those containing excessive numbers of missing 
values were removed [21]. Clustering analysis was 
performed with R software and the outliers were 
identified and removed based on the expression of 
genes. Then, clustering trees were depicted. The 
network topology was analyzed to choose a proper 

BIOENGINEERED 10135

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13850
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13850


soft-thresholding power used for the network con-
struction. To make the data sets comparable, the 
topological overlap matrices (TOM) of the two 
datasets (the expression set of smokers and non-
smokers) were scaled to mitigate the effect 
between different statistical properties of TOM 
and the results of scaling was depicted with the 
Q-Q plot function in the WGCNA package [21]. 
The consensus TOM was used as input to perform 
hierarchical clustering analysis to identify mod-
ules. To obtain larger modules, the 
‘minModuleSize’ of 30 was considered as cutoff 
and modules with higher similarity and correla-
tion, 0.75, were merged.

2.3. Identifying the smoking-related specific 
modules

To identify the gene modules specifically related to 
smoking, the modules were constructed based on 
the expression profiles of smokers with proper soft 
power value. The correlations between modules 
and BMD statuses were analyzed and the smoking- 
related modules were, then, mapped to consensus 
modules. The overlaps of smoking-consensus 
modules were calculated and the P-value of each 
pairwise overlap was analyzed with the Fisher’s 
exact test [21,22]. The overlapped counts and the 
significance of overlaps were depicted with the 
color-coded table.

2.4. Relating consensus modules to the clinical 
traits

The correlation analysis between consensus modules 
and the BMD statuses (low or high BMD) in smo-
kers and nonsmokers was conducted, individually. 
The correlations and the corresponding significance 
values (P-value) were displayed with a color-coded 
table [21]. To explore the similarities and differences 
of the module-trait relationships between different 
groups (smokers and nonsmokers), the relationships 
in these two sets were integrated and depicted within 
one color-code table: taking the lower absolute value 
as correlation values with similar signs and signing 
zero relationships as correlation values with opposite 
signs [21,22].

2.5. GO and KEGG analysis

Two gene sets were collected for downstream analy-
sis (one with genes involved in the smoking-related 
specific modules and the other with genes in con-
sensus modules negatively correlated with BMD 
levels in smokers and nonsmokers). Function analy-
sis was performed with clusterProfiler software to 
explore the KEGG pathways and function processes 
involved, respectively. The P-value cutoff and 
q-value cutoff were set to 0.05 and ‘BH’ method 
was used to adjust the P-value. The minimal number 
of genes annotated by Ontology term was set to 
10 [23].

2.6. Protein–protein interactions analysis

To analyze the interactions of genes in modules, the 
genes were collected and predicted with STRING 
database (https://string-db.org/). ‘Cytohubba’ (https:// 
apps.cytoscape.org/apps/cytohubba), a plugin of Cyt- 
oscape software, was employed to analyze the critical 
genes with default parameters. The top 10 hub genes 
were precited and depicted with Cytoscape (https:// 
apps.cytoscape.org/).

2.7. Osteoporosis-related signatures analysis

To explore osteoporosis-associated genes, the sam-
ples of smokers were randomly and averagely divided 
into two groups: the train group and the test group. 
The SVM-RFE method was applied with the ‘e1071ʹ 
package (https://cran.r-project.org/web/packages/ 
e1071/index.html) to construct a model based on 
the train group. The model was depicted based on 
the test group to analyze the potential in separating 
samples with different BMD levels [24]. The non-
smokers in GSE13850 and the premenopausal and 
postmenopausal samples in another independent 
experiment, GSE56815, were used for validation.

2.8. Cell culture

Primary hBMSCs (Cyagen Biosciences Inc., US) 
were cultured in an incubator with 5% CO2 at 
37°C, and DMEM medium (Gibco, US) with 10% 
fetal bovine serum (Gibco, US) was used. When 
the cell density reached 70%–80%, the cells were 
subcultured. hBMSCs were transfected with 
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siRALY or siSYNPO to downregulate the gene 
expression, and were then divided into four 
groups: hBMSCs, siRALY, siSYNPO, siRALY + 
siSYNPO. The cells in hBMSCs group were not 
treated; the cells in siRALY group were transfected 
with siRALY; the cells in siSYNPO group were 
transfected with siSYNPO; and the cells in 
siRALY + siSYNPO group were transfected with 
siRALY and siSYNPO.

2.9. Alizarin red S (ARS) staining assay and the 
osteogenic marker gene expression detected by 
qRT-PCR

Osteogenic induction fluid (10 mM β- 
glycerophosphate, 200 μM ascorbic acid and 
100 nM dexamethasone) was prepared to treat 
hBMSCs. ARS staining assay was performed on 
the 21st day after osteogenesis induction, and 
Nikon microscope was used to take photos. 
Meanwhile, the relative expression of osteogenic 
marker genes OPN, RUNX2 and ALP mRNA was 
detected by qRT-PCR. OPN, forward 5ʹ-GAAGT 
TTCGCAGACCTGACAT-3ʹ and reverse 5ʹ – GT 
ATGCACCATTCAACTCCTCG-3ʹ; RUNX2, for-
ward 5ʹ-TGTCATGGCGGGTAACGAT-3ʹ and 
reverse 5ʹ-AAGACGGTTATGGTCAAGGTGAA- 
3ʹ; ALP, forward 5ʹ-AGAATCTGGTGCAGGAAT 
GG-3ʹ and reverse 5ʹ-TCGTATTTCATGTCT 
CCAGGC −3ʹ. GAPDH was an internal reference 
gene.

2.10. Western blot

After siRALY or siSYNPO was transfected into 
hBMSCs, hBMSCs were collected and proteins 
were extracted. The expression of RALY and 
SYNPO was detected by Western blotting analysis 
according to the conventional method [25].

3. Results

3.1. Construction of consensus modules

Revealing consensus modules or gene clusters related 
to BMD provides basis for exploring critical BMD- 
related genes. Based on clustering analysis, 3 samples 
of nonsmokers in GSE13850, and 1 sample of smokers 

in GSE13850 were identified as outliers and were then 
removed. 36 samples (including 17 nonsmokers and 
19 smokers) and 12,402 genes were used for this study 
(Figure 1a). Topology analysis results were depicted 
and shown in Figure 1b, indicating that the soft power 
of 9 attaining the minimal approximate scale-free 
topology of 0.8 was suitable for network construction 
because the summary connectivity measures declined 
significantly around the soft power of 9. Compared 
with the raw TOM of the two sets, the scaling process 
made the TOM of the two groups more uniform 
(Figure 1c). A total of 9 consensus modules were 
identified (module ‘greenyellow’ with 106 genes, mod-
ule ‘blue’ with 469 genes, module ‘purple’ with 721 
genes, module ‘red’ with 425 genes, module ‘pink’ with 
237 genes, module ‘turquoise’ with 484 genes, module 
‘brown’ with 917 genes, module ‘black’ with 390 genes 
and module ‘grey’ with 8653 genes) (Figure 1d).

3.2. Smoking-related specific modules

To explore smoking-related specific modules, mod-
ules constructed with smokers were mapped to con-
sensus modules. Based on the correlation analysis of 
the modules of the smoking samples and consensus 
modules, relations of modules among the smoking 
samples and nonsmokers were observed. Few mod-
ules in the smoking samples were significantly over-
lapped by consensus modules (Figure 2a). Multiple 
modules in the smoking samples showed specificity, 
including module ‘brown’, module ‘magenta’, module 
‘yellow’, and module ‘greenyellow’ (Figure 2a). 
Functional analysis of genes was performed using the 
smoking-related specific module ‘brown’ with the lar-
gest specific genes (671 genes significantly overlapped 
with genes in the consensus module gray). No signifi-
cant enriched pathways and GO terms was observed. 
PPI analysis indicated significant interactions among 
genes in the module ‘brown’. Hub gene analysis 
revealed 10 critical genes, CCR7, FPR2, CXCR5, 
GPR183, CXCL10, OPRL1, GPR37L1, ACKR3, 
P2RY14, and TAS2R14 (Figure 2b, c). Through relat-
ing modules to the clinical traits of the smoking sam-
ples, a significant correlation was shown between the 
four modules (module ‘green’, module ‘tan’, module 
‘pink’, and module ‘turquoise’) and the levels of BMD 
(Figure 2d).
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3.3. Relationships between consensus modules 
and the clinical traits

Correlation analysis was performed to analyze the 
relationships between consensus modules and 
BMD statuses in smokers and nonsmokers. Based 
on the correlation analysis, multiple consensus 
modules, including module ‘blue’, module ‘purple’, 
module ‘red’, module ‘pink’, module ‘turquoise’, 
module ‘brown’, and module ‘black’, were signifi-
cantly correlated with different BMD statuses 
(Figure 3a). On the contrast, only one consensus 
module, the module ‘black’, indicated considerable 
correlation with BMD with a correlation score of 
0.53 and a P-value of 0.03 (Figure 3b). Six of nine 
consensus modules showed opposite correlation 
with BMD in the two groups of smokers and 
nonsmokers (Figure 3c).

3.4. Function analysis of genes in module ‘black’ 
with opposite relationship

Analyzing the consensus relationships between 
modules and the BMD of both smokers and non-
smokers indicated that though the module ‘black’ 
showed a significant correlation with the BMD, 
they represented opposite relationships in smokers 
and nonsmokers (Figure 3). To explore the critical 
genes involved in the opposite module, protein– 
protein interactions analysis was performed with 
genes in module ‘black’, and the top 10 hub genes 
were revealed, including CXCL12, APP, CHRM2, 
CCR5, LPAR1, APLNR, CXCL9, GRM7, CXCR6, 
and SSTR2 (Figure 4a, b). Genes involved in the 
module ‘black’ were collected and used for func-
tion analysis. Enriched GO terms were not 
observed significantly. KEGG pathways, such as 

Figure 1. Data process and consensus modules detection. (a) the clustering trees of the samples of nonsmokers (upside) and 
smokers (downside) in GSE13850; (b) network topology analysis: network indices (y-axes) and their corresponding soft 
thresholding power (x-axes); (c) the Q-Q plot of TOM before (black) and after scaling (red); (d) the consensus modules before 
and after merging.

10138 B. LIN AND Z. PAN



PI3K-Akt signaling pathway, Neuroactive ligand– 
receptor interaction, and Human papillomavirus 

infection pathway were significantly enriched 
(Figure 4c).

Figure 2. Smoking-related modules. (a) the correlation between modules detected in the samples of smokers in GSE13850 and 
consensus modules among the samples of both smokers and nonsmokers; (b) protein-protein interactions of the smoking-related 
specific genes in module ‘brown’; (c) the top 10 critical genes revealed by hub genes analysis; (d) relationships of modules detected 
in the smoking samples and the level of bone mineral density.

BIOENGINEERED 10139



3.5. Critical features associated with 
osteoporosis

To explore biomarkers associated with osteoporosis, 
SVM-RFE analysis was performed based on the con-
sensus module ‘black’, which showed a significant 
correlation between BMD statuses in smokers and 
nonsmokers (Figure 3). Based on the SVM-RFE ana-
lysis of genes in consensus module ‘black’, including 
390 genes, a model of the features related to BMD 
levels was constructed and the top 50 features were 
displayed. The SVM-RFE model performed well in 
distinguishing smokers with low BMD from those 
with high BMD, both in the train set and the test set 
(Figures 2a, 5a). Moreover, the property of the model 
was tested with nonsmokers in GSE13850 as well as an 
independent experiment of osteoporosis, GSE56815, 
including 40 premenopausal samples and 40 postme-
nopausal samples (4 samples, 2 samples in each group, 
were identified as outliers and removed through clus-
tering analysis). Considering the variety of genes 
between premenopausal and postmenopausal females, 
the samples were divided into two groups according to 

the menopausal status, and a test analysis was per-
formed for each group, respectively. The testing ana-
lysis presented that the features showed pretty stable 
and great performance in identifying the females with 
both low and high BMD. The AUC of the model 
containing 10 genes (TNS4, IRF2, BSG, GZMM, 
ARRB2, COX15, RALY, TP53, RPS6KA3, and 
SYNPO) exceeded 0.9 and the AUC of the model 
with 25 genes (TNS4, IRF2, BSG, GZMM, ARRB2, 
COX15, RALY, TP53, RPS6KA3, SYNPO, TRPV2, 
WNT10B, NUBPL, CHRM5, PPP1R7, SH3TC1, 
PCOLCE, HCFC1R1, RPL14, MEN1, TAF10, MTA2, 
SULT1B1, ADAM11, and ZNF185) even reached 1.0 
(Figure 5b).

3.6. Validation of osteoporosis-related genes

Osteoporosis is mainly caused by the disorder of bone 
homeostasis, that is, the balance between osteogenesis 
and bone resorption is broken. Osteogenesis is mainly 
regulated by osteoblasts, which are generally differen-
tiated from bone-derived mesenchymal stem cells 

Figure 3. Correlations between consensus modules and the clinical traits. The relationship between consensus modules and BMD 
levels in the two groups were analyzed. The correlations between consensus modules and the BMD in smokers (a) and nonsmokers 
(b) and the consensus relationship between consensus modules and the clinical traits of smokers and nonsmokers (c) were depicted. 
The correlation scores were depicted with colors (blue for negative correlation, red for positive correlation); the lower absolute scores 
were used to denote the relationships with similar signs between the two groups, while ‘NA’ refers to those with opposite scores.
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(BMSCs). Considering the limitations of experiments 
(lacking critical clinical BMD-related features, such as 
the loss of body weight, physical inactivity, alcohol, 
etc.) used for bioinformatic analysis, the role of RALY 
and SYNPO in the osteogenic differentiation of 
hBMSCs was verified with cell experimental method. 
Western blot results showed that after transfection 
with siRALY or siSYNPO, the expression of RALY 

or SYNPO was significantly down-regulated 
(Figure 6a). Then osteogenic induction was performed 
on hBMSCs, and the osteogenic differentiation ability 
of hBMSCs was detected by ARS staining assay. The 
results showed that there was no significant change in 
the osteogenic differentiation ability of siRALY, the 
osteogenic differentiation ability of siSYNPO was sig-
nificantly weakened, and the osteogenic differe- 

Figure 4. Function analysis and PPI analysis of the module ‘black’. The PPI and function analyses of consensus module ‘black’ were 
analyzed. (a) the predicted protein-protein interactions of genes in consensus module ‘black’ with STRING database; (b) critical genes 
revealed with the Cytoscape software; (c) KEGG pathways of genes in consensus module ‘black’.
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ntiation ability of siRALY + siSYNPO was further 
weakened (Figure 6b). qRT-PCR was used to detect 
the relative expression level of osteogenic marker gene 
(OPN, RUNX2 and ALP) mRNA. The relative expres-
sion level of osteogenic marker genes in siRALY did 
not change significantly, the relative expression level 
in siSYNPO decreased significantly, and the relative 
expression level in siRALY + siSYNPO further 
decreased (Figure 6c).

4. Discussion

Before scaling analysis, a great difference was shown in 
the topological overlap matrices (TOM) of the two 

groups, indicating the significance of the scaling pro-
cess before analysis (Figure 1c). Various gene patterns 
of both smokers and nonsmokers were revealed by 
means of relating the constructed modules with the 
gene expression of 19 smokers to consensus modules 
(Figure 2a). Few modules of the smokers were signifi-
cantly overlapped with consensus modules, except 
consensus module ‘grey’ (Figure 2a). No significantly 
enriched pathways were observed with genes in smok-
ing-specific modules (module ‘greenyellow’, ‘yellow’, 
‘magenta’, and ‘brown’) (Figure 2d). Smoking-related 
genes such as CCR7 were revealed through hub genes 
analysis [26]. Cigarette smoking has been considered 
as one of the negative factors influencing osteoporosis, 

Figure 5. SVM-RFE analysis of genes in consensus module ‘black’. (a) the SVM-RFE model was constructed with smokers in GSE13850 
and tested in the train set (blue) and the test set (red). (b) Testing analysis of the constructed SVM-RFE model with female 
nonsmokers in GSE13850 (blue), premenopausal female (yellow), and postmenopausal female (red) in GSE56815. The y-axis indicates 
the number of genes, while the x-axis shows the corresponding accuracy.
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though its role was still unclear [19,27]. In our study, 
there was no significant correlation between smoking- 
related specific modules and different BMD levels. 
Considering the limitations in our study, such as the 
variety of sequencing between the two groups, more 
works are need to be done to further explore the 
smoking-specific modules associated with osteoporo-
sis. Nevertheless, our study provides a strategy for 
exploring behavior-related gene clusters associated 
with osteoporosis.

Relating consensus modules to the levels of 
BMD revealed that most consensus modules 
showed significant correlation with the BMD 
levels in smokers (Figure 3a). This is not unex-
pected because most consensus modules, including 
module ‘blue’, ‘purple’, ‘red’, ‘pink’, ‘turquoise’, 
and ‘black’, were significantly overlapped by the 
largest smoking-related module ‘turquoise’ con-
taining 4563 genes with significant association 
with the BMD levels of smokers (Figures 2a, d, 
3a). Most consensus modules showed no signifi-
cant correlation with different levels of BMD in 
nonsmokers (Figure 3b) Interestingly, consensus 
module ‘black’, with 390 genes, indicated 
a statistically significant correlation with different 
BMD levels (Figure 3a, b, c), reflecting its critical 
role in the regulation of osteoporosis. Function 

analysis showed a statistically significantly 
enriched PI3K-Akt signaling pathway (Figure 4c). 
The PI3K/Akt signaling pathways were widely 
reported in regulating the process of osteoporosis 
[28–30]. It was reported by previous publications 
that the differential gene expressions of circulating 
monocytes were involved in neuroactive ligand- 
receptor interaction pathways [31]. According to 
our analysis, the significantly enriched neuroactive 
ligand-receptor interaction was observed, showing 
its potential role in response to the osteoporosis. 
The top 10 critical genes based on interactions of 
genes were revealed by hub gene analysis, includ-
ing CXCL12, APP, CHRM2, CCR5, LPAR1, 
APLNR, CXCL9, GRM7, CXCR6, and SSTR2 
(Figure 4a, b). CXCL12 signaling was considered 
as an important component in regulating the 
development and activity of osteoblasts [32]. The 
increase of the level of plasma CXCL12 was report-
edly associated with the severity of postmenopau-
sal osteoporosis patients [33]. CHRM2 was 
a critical gene regulating the osteogenic differen-
tiation of adipose stem cells [34]. And, based on 
our analysis, the critical roles of CXCL12 and 
CHRM2 were shown in the interaction with 
genes of the BMD-related module in smokers 
and nonsmokers.

Figure 6. RALY and SYNPO regulate the osteogenic differentiation of hBMSCs. (a) The expression of RALY and SYNPO was detected 
by Western blot. (b) The osteogenic differentiation ability was detected by ARS staining assay. (c) The relative expression of 
osteogenic marker genes (OPN, RUNX2, and ALP) mRNA was detected by qRT-PCR. Compared with the control group, **P < 0.01, 
***P < 0.001; Compared with the siSYNPO group, ##P < 0.01, ###P < 0.001.
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The SVM-RFE model with 10 genes (TNS4, 
IRF2, BSG, GZMM, ARRB2, COX15, RALY, 
TP53, RPS6KA3, and SYNPO) presented good per-
formance in predicting the BMD levels of people, 
especially for those without smoking behavior and 
with AUC > 0.9 (Figure 5a, b). The correlation 
between seven genes (IRF2, BSG (CD147), GZMM, 
ARRB2, COX15, TP53, and RPS6KA3) and the 
process of osteoporosis has already been reported 
[35–38]. The expression of TNS4 was widely ana-
lyzed in cancers. The risky SNPs of RALY and 
SYNPO associated with osteoporosis were reported 
as well [39]. The RALY expression was signifi-
cantly downregulated in non-small cell lung can-
cer patients with bone metastasis [40]. 
Considering the limitation of experiments (lacking 
critical clinical BMD-related features, such as the 
loss of body weight, physical inactivity, alcohol, 
etc.) used for bioinformatic analysis, the role of 
RALY and SYNPO in the osteogenic differentiation 
of hBMSCs was verified. It was found that the 
osteogenic differentiation ability did not change 
significantly when down-regulating RALY expres-
sion, the osteogenic differentiation ability was sig-
nificantly weakened when down-regulating 
SYNPO expression, and the osteogenic differentia-
tion ability was further weakened when down- 
regulating RALY and SYNPO expression 
(Figure 6). The relative expression level of osteo-
genic marker genes (OPN, RUNX2, and ALP) 
mRNA also changed accordingly. These results 
indicated the potential role of SYNPO in regulat-
ing osteoporosis. Additionally, a model containing 
25 genes (TNS4, IRF2, BSG (CD147), GZMM, 
ARRB2, COX15, RALY, TP53, RPS6KA3, SYNPO, 
TRPV2, WNT10B, NUBPL, CHRM5, PPP1R7, 
SH3TC1, PCOLCE, HCFC1R1, RPL14, MEN1, 
TAF10, MTA2, SULT1B1, ADAM11, and 
ZNF185) showed great performance for predicting 
BMD levels, which were both validated by non-
smokers of GSE13850 and premenopausal and 
postmenopausal females. More experiments and 
sequencing dates are needed to validate the poten-
tial of the model in the prediction of BMD levels.

5. Conclusion

One module containing 10 genes (TNS4, IRF2, 
BSG, GZMM, ARRB2, COX15, RALY, TP53, 

RPS6KA3, and SYNPO) with good performance 
in identifying different BMD levels was con-
structed based on consensus module analysis. 
Expression of two genes, RALY and SYNPO, in 
osteogenic differentiation of hBMSCs was 
validated.
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