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Abstract
The research about species richness pattern and elevational Rapoport's rule (ERR) 
have been carried out mostly in the temperate regions in the recent years and scarcely 
in the tropical mountains; meanwhile, it is unclear whether the ERR is consistent 
among different life‐forms and phytogeographic affinities. Here, we compiled a data‐
base of plant species of Mount Kenya, a tropical mountain of East Africa, and divided 
these species into twelve groups depending on the life‐form and phytogeographic 
affinity of each species. We inspected the species richness pattern of each group 
along the elevation gradient and also tested ERR of each group using Stevens’ method. 
Our results showed that species richness of the total species showed a positively 
skewed (hump‐shaped) pattern along the elevation gradient and different life‐forms 
and phytogeographic affinities showed similar hump‐shaped patterns as the total 
species. The average elevation range size of the total species and herbaceous species 
showed increasing patterns along the elevation gradient, while lycophytes and ferns, 
and woody species showed an obvious downward trend after peaking in the high el‐
evation regions. We concluded that the widely distributed herbaceous species which 
also have broad elevation range sizes are more applicable to ERR, while the narrowly 
distributed woody species with small elevation range sizes occurring in the higher 
elevations could reverse ERR. Therefore, we concluded that the ERR is not consistent 
among different organisms in the same region.
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1  | INTRODUC TION

Understanding biodiversity patterns along the elevational gradients 
have been a hot topic of debate for decades between biogeographers, 

ecologists and biodiversity conservationists (Lomolino, 2001). 
Mountains are the ideal natural experimental environments for the 
study of species richness variety along the elevation gradients, be‐
cause they not only harbor vast biodiversity and encompass several 

www.ecolevol.org
https://orcid.org/0000-0001-6886-0662
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:qfwang@wbgcas.cn


4496  |     ZHOU et al.

protected areas (Khan, Page, Ahmad, & Harper, 2014; Kluge et al., 
2017; Körner, 2000, 2007; Smith, Oca, Reeder, & Wiens, 2007), but 
also because they contain diverse elevation gradients along their 
slopes (McCain, 2009; Rahbek, 2005; Stevens, 1992) which di‐
rectly or indirectly impact the variations in availability of essential 
resources such as heat energy and moisture (Körner, 2000), affect‐
ing the physiological and ecological adaptation of plants thus influ‐
encing their species richness and patterns of distribution along the 
elevation gradients (Kessler, 2000; Kluge & Kessler, 2011; Lomolino, 
2001).

Biodiversity patterns along the elevation gradients have 
been documented for numerous taxa and topographical extents 
(Rahbek, 1997; Rahbek & Museum, 1995; Stevens, 1992; Vetaas 
& Grytnes, 2002; Wu et al., 2014). Generally, positively skewed 
(hump‐shaped) and monotonically decreasing are the two most 
common patterns of species richness along the elevation gradi‐
ents of mountains (Rahbek, 2005; Rahbek & Museum, 1995). The 
former pattern means species richness increases firstly, then 
decreases after the mid‐altitude peak, and the maximum diver‐
sity occurs below the middle of the elevation gradients (Kessler, 
2000; Shmida & Wilson, 1985; Trigas, Panitsa, & Tsiftsis, 2013; 
Vetaas & Grytnes, 2002). The latter pattern means species rich‐
ness decreases gradually along the elevation gradients (Kikkawa 
& Williams, 1971; Odland & Birks, 1999; Patterson, Pacheco, & 
Solari, 1996; Stevens, 1992; Tinner & Theurillat, 2003). Beyond 
that, few other patterns of species richness‐elevation gradients, 
such as increasing or horizontal, followed by a decreasing pattern 
were also reported (Brehm, Süssenbach, & Fiedler, 2003; Machac, 
Janda, Dunn, & Sanders, 2011; Rahbek, 2005; Rahbek & Museum, 
1995).

Rapoport's rule, being the second robust biodiversity rule, is 
the positive relationship of species range sizes with the increas‐
ing biogeographic gradients, such as latitude, elevation, or water 
depth (Stevens, 1989, 1992, 1996). The latitudinal and elevational 
Rapoport's rules are the most examined in the literature, and there 
is a high degree of variability in support from supportive (e.g., lati‐
tudinal: (Arita, Rodríguez, & Vázquez‐Domínguez, 2005; Blackburn 
& Gaston, 1996; Luo et al., 2011, and elevational: Feng, Hu, Wang, 
& Wang, 2016; Patterson et al., 1996; Ribas & Schoereder, 2006; 
Rohner et al., 2015; Sanders, 2002;) to little or no support (e.g., lat‐
itudinal: Reed, 2003; Ribas & Schoereder, 2006; Rohde, Heap, & 
Heap, 1993; Rohde, 1996, and elevational: Bhattarai & Vetaas, 2006; 
Fu, Wu, Wang, Lei, & Chen, 2004; McCain & Knight, 2013; Rahbek, 
1997).

The core prediction of elevational Rapoport's rule (ERR) is a 
positive and linear relationship between average elevation range 
size of species within increasing bands of elevation, which has 
subsequently been named as Stevens’ method (Stevens, 1992); 
however, the range size‐elevation patterns of different taxonomic 
groups may be different (Feng et al., 2016; McCain & Knight, 
2013). The life‐forms of plants are the response of plants to adapt 
to the eco‐physiological traits to climatic or environmental fac‐
tors. Herbaceous and woody taxa are believed to be differentially 

influenced by environmental factors such as precipitation and 
temperature (Whittaker, 1965). The species richness of different 
life‐forms of plants always shows the similar hump‐shaped pattern 
along the elevation gradients with different peaks at intermediate 
elevations (Kluge et al., 2017). Nevertheless, that is not to imply 
that the range‐elevation relationships of different life‐forms will 
be consistent. In addition, phytogeographic affinities may be linked 
with elevational range sizes and their elevational trends (Feng et 
al., 2016; Wang, Tang, & Fang, 2007), that is, compared with nar‐
rowly distributed species, widely distributed ones always have 
broader tolerance ranges and stronger adaptability (Donohue, 
Rubio, Burghardt, Kovach, & Willis, 2010; Gaston & Spicer, 2001; 
Santamaría, 2002). However, in recent studies, little attention has 
been paid to compare the difference of ERR with regard to life‐
forms and the influence of phytogeographic affinities.

Compared to the tropics, numerous studies about ERR have 
been carried out in the temperate regions in the recent years 
(Acharya, Vetaas, & Birks, 2011; Bhattarai & Vetaas, 2003; 
Kessler, Herzog, Fjeldså, & Bach, 2001; Kluge et al., 2017); fur‐
thermore, the support of the rule is scarce in the tropics (Gaston, 
Blackburn, & Spicer, 1998; Rohde, 1996). Evaluating and deter‐
mining the patterns of species richness along the elevation gradi‐
ents in the tropics is crucial as threats to the tropical biodiversity, 
currently, at risk of extinction, are snowballing due to destructive 
anthropogenic activities and the ongoing global warming predic‐
ament. Mount Kenya is the second highest mountain in tropical 
East Africa which has huge biodiversity and possesses a wide 
range of elevation gradients with fluctuating climatic conditions. 
Its gradients imitate the arrangement of species from the tropics 
to the poles at the local scale as the species occupy their particu‐
lar elevational zones.

Our study is the first on Mount Kenya dealing with the statis‐
tical determination of plants elevation range sizes of different life‐
forms and different phytogeographic affinities along the elevation 
gradient. This study aims to respond to the ensuing queries: (a) does 
species richness decrease with increasing elevation or there is a 
peak at an intermediate elevation? and (b) do the different range‐el‐
evation relationships vary with the life‐forms and phytogeographic 
affinities?

2  | MATERIAL S AND METHODS

2.1 | Study area

Mount Kenya (0°10'S, 37°20'E) straddles the equator and is located 
in the central part of Kenya, about 193 km northeast of Nairobi and 
480 km from the Kenyan coast (Figure 1a). The Lower Imenti Forest 
Reserves, located in the northeast past of Mount Kenya (Gathaara, 
1999), are the lowest regions with an altitude of about 1,200 m a.s.l.; 
in addition, few plants can survive near the glacier above 5,000 m 
a. s. l. of this mountain (e.g., F.T.E.A. editors, 1952–2012; Agnew, 
2013). To examine the relationship between species richness and 
elevation range size of vascular plants along the elevation gradient 
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of Mount Kenya, the total elevation ranges from 1,200 to 5,000 m 
a. s. l. was divided into 38, 100‐m vertical elevation bands (Figure 1b).

2.2 | Plant data sources

A checklist of Mount Kenya containing 1,477 indigenous vascular 
plants including subspecies and varieties (belonging to 157 families 
and 686 genera) were compiled, based on the data collected dur‐
ing numerous scientific expeditions in this region since the 1900s: 
data from published monographs and field guides including Flora of 
Tropical East Africa, Upland Kenya Wild Flowers and Ferns, Wild Flowers 
of East Africa and Kenya Trees Shrubs and Lianas (Agnew, 2013; 
Beentje, 1994; Blundell, 1987; F.T.E.A. editors, 1952–2012), data 
of specimens from the East African Herbarium, Nairobi, Kenya (EA) 
and Global Biodiversity Information Facility (GBIF, https://www.gbif.
org/), and data from our own collections from 2009 to 2016 with 
specimens stored at the Herbarium of Wuhan Botanical Garden, 
Wuhan, China (HIB).

2.3 | Life‐forms

Following Zhou et al. (2018), life‐form of each species was classi‐
fied as woody plants (trees, shrubs, lianas) and herbaceous plants 
(climbers and herbs) and lycophytes and ferns based on the species 
description on monographs and field guides (Agnew, 2013; Beentje, 
1994; Blundell, 1987; F.T.E.A. editors, 1952–2012).

2.4 | Phytogeographic affinities

According to the distribution range of each species, we set up three 
groups of phytogeographic affinities: worldwide species which are 
distributed not just in Africa, African species which are endemic in 
Africa, and tropical East African species which are endemic in Kenya, 

Uganda, Tanzania, and their vicinities. We also recorded the endemic 
species of Mount Kenya.

2.5 | Species richness

The number of species present in each band was estimated by the in‐
terpolation method, that is, a species was defined as being present in 
every 100‐m elevation band between its upper and lower elevation 
limits (Bhattarai & Vetaas, 2006; Rahbek, 1997; Vetaas & Grytnes, 
2002). The species richness was defined as the total number of spe‐
cies found in each 100‐m elevation band, referred to as γ‐diversity 
(Bhattarai & Vetaas, 2006; Lomolino, 2001). We calculated the spe‐
cies richness‐elevation patterns of the total plants, each life‐form 
and each group of phytogeographic affinities.

2.6 | Elevation range size

The elevation range of each species was estimated as the differ‐
ence between the maximum and minimum elevations, whose data 
were from literatures, specimens, and our own field observations. 
Actually, several methods have been frequently used in the recent 
decades to evaluate ERR, such as Stevens’ method (Stevens, 1989), 
the midpoint method (Rohde, 1992), Pagel's method (Pagel, May, 
& Collie, 1991), and the cross‐species method (Letcher & Harvey, 
1994), and often provide information that complements differ‐
ent perceptions of the patterns. In order to compare the results 
of different components under the same standard, we exclusively 
used Stevens’ method to investigate the average range size‐eleva‐
tion patterns of each group (including total, lycophytes and ferns, 
woody, herbaceous, trees, shrubs, lianas, climbers, herbs, world‐
wide, African and Tropical East African species) along the elevation 
gradient of Mount Kenya. We used generalized additive models 
(GAM) with a Gaussian function of variance to determine the trends 

F I G U R E  1  The map of Mount Kenya. 
(a) the location of Mount Kenya in Kenya; 
(b) the elevation map of Mount Kenya, 
showing 100‐m vertical elevation bands

(a)

(b)

https://www.gbif.org/
https://www.gbif.org/
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of the response curve of species richness and range size along 
the elevation gradient, instead of using linear correlation analysis 
(Bhattarai & Vetaas, 2006; Feng et al., 2016). In this method, a cubic 
smooth spline was used to evaluate the significance of a specific 
trend for species richness‐elevation and range size‐elevation rela‐
tionships (Hastie & Tibshirani, 1990). These analyses were carried 
out using R 3.3.3 software (R Core Team, 2017).

3  | RESULTS

3.1 | Species richness along the elevation gradient

Species richness of the total species showed a positively skewed 
(hump‐shaped) pattern along the elevation gradient, with a pro‐
nounced mid‐elevational peak at 2027 m a.s.l. containing over 
1,000 taxa in each band of this range; meanwhile, there were 
species in less than 100 taxa above 4,300 m a.s.l. in each band, 
and only 11 species were found around 5,000 m a.s.l (Figure 2a). 
Different life‐forms showed similar hump‐shaped patterns as the 
total species (Figure 2b), with the proportion of woody species 
decreasing while the proportion of herbaceous species increased 
along the elevation gradient (Figure 2d). Meanwhile, different 
groups of phytogeographic affinities also showed similar hump‐
shaped patterns as other groups (Figure 2c), with the proportion 
of worldwide species decreasing while the proportion of tropi‐
cal East African species increased along the elevation gradient 
(Figure 2e).

3.2 | Endemism along the elevation gradient

There were no endemic species of Mount Kenya below 1800 m; in 
contrast to the species richness‐elevation patterns of total species, 
endemic species were concentrated at the upper end of the eleva‐
tional gradient with the highest values at about 3,900 m (Figure 3).

3.3 | Elevation range size

Regardless of the elevation gradient, we first compared the elevation 
range of life‐forms (including lycophytes and ferns, woody, and her‐
baceous species) and phytogeographic affinities (worldwide, African, 
and tropical East African species) (Figure 4). The elevation range of 
herbaceous species was significantly higher than that of lycophytes 
and ferns and woody species, while there was no significant differ‐
ence between the latter two groups (Figure 4a). Meanwhile, the el‐
evation range of the tropical East African species was significantly 
lower than the worldwide and African species, while there was no 
significant difference between the latter two groups (Figure 4b).

3.4 | Mean elevation range size along the 
elevation gradient

Calculated herein are the mean elevation range size of 12 groups of 
species including total species, lycophytes and ferns, woody species, 
herbaceous species, trees, shrubs, lianas, climbers, herbs, world‐
wide species, African species, and tropical East African species. In 

F I G U R E  2  Elevational trends of species richness of vascular plants of Mount Kenya. (a) total species; (b) different life‐forms (lycophytes 
and ferns, woody, herbaceous, trees, shrubs, lianas, climbers, and herbs); (c) different phytogeographic affinities (worldwide, African, and 
tropic East African species); (d) the proportion of different life‐forms; and (e) the proportion of different phytogeographic affinities
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general, the average elevation range size of all these 12 groups of 
species showed increasing patterns along the elevation gradient, 
while lycophytes and ferns, woody species, trees, shrubs, and lianas 
showed an obvious downward trend after peaking in the high eleva‐
tion regions (Figure 5).

4  | DISCUSSION

Mountains are usually more likely to display unimodal patterns for 
they invariably exhibit greater elevational extent and longer climatic 
gradients. In fact, most of the unimodal gradients were positively 
skewed (hump‐shaped), that is, peak diversity below the elevational 
midpoint, and this pattern is a well‐known finding for many tropical 
and subtropical mountains (Guo et al., 2013; Rahbek, 2005; Rahbek 
& Museum, 1995). Global data research showed that over 80% of 
species richness‐elevation patterns occurring in the tropical moun‐
tains are unimodal (Guo et al., 2013). The species richness of vas‐
cular plants of Mount Kenya also showed a strong support for the 
positively skewed pattern along the elevation gradients, with the 
maximum diversity at about 2000 m a.s.l., below the middle of the 
elevation gradients. These results emanate from the empirical data, 
which have been compiled by us based on collections from numer‐
ous scientific expeditions since the 1900s, and also from the revi‐
sion of previous results where land‐snail faunas were observed to be 
decreasing in diversity along the elevation gradient of this mountain 
(Tattersfield, Warui, Seddon, & Kiringe, 2001).

Even if different groups of life‐forms and phytogeographic affin‐
ities have similar but slightly modified richness‐elevation patterns 
with total species, the proportion of each component varies very 
much along the elevation gradient (Figure 2). Taller life‐forms like 
trees and shrubs are confined to the lower elevations, and similar 
patterns of lianas and ferns are coupled to that of trees (Carpenter, 
2005; Kluge et al., 2017), leading to a significant decrease in the 
proportion of woody plants along the elevation gradient, and this 
reflects physiological adaptations to high elevation and alpine en‐
vironments (Kluge et al., 2017; Körner, 2003). Analogous to most 
mountains of the world (Steinbauer et al., 2016), such as Andes 
(Kessler, 2000), Himalayas (Kluge et al., 2017; Vetaas & Grytnes, 
2002), and Hengduan Mountains (Zhang, Zhang, Boufford, & Sun, 
2009), endemic species are confined to high elevations in the tropi‐
cal African mountains (Hedberg, 1969; Morton, 1972). The endemic 
species of Mount Kenya appear above 1,800 m, increase along the 
elevation gradient, and decrease in the high elevations with the 
highest richness at ca. 3,900 m a.s.l. (Figure 3). Above heath zone 
of Mount Kenya, the vegetation becomes dominated by giant ro‐
sette plants Dendrosenecio spp. and Lobelia spp., named Afro‐alpine 
vegetation with the elevation from ca. 3,500 to 4,800 m a.s.l., with 
numerous endemic species, such as Carduus schimperi subsp. platy‐
phyllus, Dendrosenecio keniensis, and Lobelia gregoriana (Coe, 1967; 
Niemelä & Pellikka, 2004; Zhou et al., 2018).

An increase in the elevation range of occurrence of species in 
an assemblage with increasing elevation is explainable as a con‐
sequence of individuals having to be able to withstand a broader 
range of climatic conditions at higher elevations (Fernández & 
Vrba, 2005; Gaston & Chown, 1999; Morin & Lechowicz, 2011). 
Herbaceous species can always adapt to new climatic conditions 
2 to 10 times faster than woody species for the latter have lon‐
ger reproductive cycles and tend to accumulate genetic changes 
at slower rates (Smith & Beaulieu, 2009). Therefore, compared 
with woody species, herbaceous species have significantly higher 
elevation ranges (Figure 3a), which can be reflected in some ex‐
otic herbs with strong invasiveness (Giorgis et al., 2016; Molina‐
Montenegro & Naya, 2012; Yang et al., 2018). Some studies have 
tried to divide species in an assemblage into different components, 
such as tropical and temperate species to investigate their differ‐
ences in elevation range (Feng et al., 2016), while, few studies have 
divided species into different groups depending on their dispersal 
regions. Janzen (1967) proposed the influential hypothesis, stating 

F I G U R E  3  The species richness‐elevation pattern of endemic 
species of Mount Kenya

F I G U R E  4  Comparison of elevation 
range between different groups 
regardless of the elevation gradient. (a) 
elevation range of lycophytes and ferns, 
woody, and herbaceous species; (b) 
elevation range of worldwide, African, and 
tropic East African species. The letters 
indicate significant differences (α = 0.05) 
between different groups
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that tropical mountains are physiologically higher than temper‐
ate mountains, namely, that elevational range sizes of organisms 
get smaller on mountains at decreasing latitudes (McCain, 2009). 
That is to say, the plant species restricted to the tropical regions 
(such as tropical East African species or endemic species in Mount 
Kenya) have smaller elevation ranges than the widely distributed 
species in the world (Figure 3b).

A strong support for the range‐elevation relationships pre‐
dicted by elevation Rapoport's rules (ERR) was observed in total 
and herbaceous species (including climbers and herbs), as well as 
in different phytogeographic affinities (Figure 5a,d,h–l). However, 
the decreasing trend of the mean elevation ranges in high eleva‐
tions has been detected in lycophytes and ferns and woody spe‐
cies (including trees, shrubs, and lianas) (Figure 5b,c,e–g). Bhattarai 

F I G U R E  5  The mean elevation range of different group of species along the elevation gradient of Mount Kenya. (a) total; (b) lycophytes 
and ferns; (c) woody species; (d) herbaceous species; (e) trees; (f) shrubs; (g) lianas; (h) climbers; (i) herbs; (j) worldwide species; (k) African 
species; (l) tropical East African species. The effective degrees of freedom (edf), R2‐adjusted and p‐values of each group showed in Table 1
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and Vetaas (2006) observed the similar decreasing trend of trees 
above 1,500 m a.s.l., with narrow elevational ranges at both ends 
of the gradient and a wider elevation range in the middle, and the 
explanation for this shift was boundary effects. Feng et al. (2016) 
came to a similar conclusion that boundary effects such as envi‐
ronmental or climatic conditions could cause a trend of decreasing 
of average range size at high elevation regions. Considering that 
total and herbaceous species showed support for the ERR with in‐
creasing trend of the range size‐elevation relationship, we specu‐
late that the boundary effect did not notably impact the patterns of 
lycophytes and ferns and woody species. Actually, the proportion 
of narrowly distributed and endemic species increasing along the 
elevation gradient might impact the average elevation range size‐
elevation relationship of species assemblages (Vetaas & Grytnes, 
2002). In Mount Kenya, a high proportion of narrowly distributed 
species emerged in the high elevation gradient successively, such 
as Phlegmariurus saururus of lycophytes, Dendrosenecio kenioden‐
dron, Erica trimera subsp. kenensis, and Helichrysum citrispinum of 
woody species.

5  | CONCLUSIONS

This study firstly tested the elevational Rapoport's rule by dividing 
all plants into different components, after comprehensively master‐
ing the plant diversity of a tropical African mountain. The elevation 
range of the herbaceous species was significantly higher than the 
woody species, and the elevation range of the narrowly distributed 
species was significantly lower than the widely distributed species. 
These indicate that the widely distributed herbaceous species have 
broad elevation range size because they can probably withstand 
a broader range of climatic conditions, thus can possibly be more 

applicable to elevational Rapoport's rule. Therefore, we concluded 
that this rule is not consistent among different organisms (such as 
different life‐forms) in the same region.
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