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Abstract

The role of macrophage migration inhibitory factor (MIF) and autophagy in gastric cancer is

not clear. We determined H. pylori infection status of the subjects and investigated the

expression of MIF and autophagy markers (Atg5, LC3A and LC3B) in human gastric tissue

at baseline. Then H. pylori eradication was done for H. pylori positive patients and MIF and

Atg5 levels were investigated on each follow-up for both H. pylori-eradicated and H. pylori

negative patients. Baseline tissue mRNA expression of MIF, Atg5, LC3A and LC3B was

measured by real-time PCR in 453 patients (control 165, gastric dysplasia 82, and gastric

cancer 206). Three hundred three patients (66.9%) had H. pylori infection at the time of

enrollment. Only within H. pylori-positive group, MIF level was significantly elevated in

patients with cancer than in control or dysplasia groups (P<0.05). LC3A and LC3B levels

also showed significant differences within H. pylori-positive subgroups. H. pylori-positive

dysplasia subgroup showed significantly lower (LC3A) (P<0.05) and higher (LC3B) mRNA

levels (P<0.05) than in other subgroups. On follow-up, within H. pylori-eradicated group,

Atg5 expression increased sequentially from control to dysplasia and cancer subgroups.

Multiple linear regression showed autophagy markers (LC3A, LC3B, and Atg5) directly pre-

dicted MIF level (adjusted R2 = 0.492, P<0.001). Serial follow-up showed longitudinal

increase in Atg5 level in general, with constantly higher levels in H. pylori-eradicated group

than in -negative group. Intestinal metaplasia (IM) group initially showed higher Atg5 expres-

sion than the IM-negative group. However, it was reversed between the groups eventually

because of the lower rate of increase in IM group. These results suggest a role of MIF and

autophagy markers and their interaction in H. pylori-associated gastric carcinogenesis.
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Introduction

Gastric cancer is one of the most prevalent cancer types worldwide, particularly in East Asian

populations [1]. Gastric dysplasia is a direct precancerous lesion representing the penultimate

stage in gastric carcinogenesis [2]. The role of Helicobacter pylori (H. pylori) in the develop-

ment of gastric dysplasia and cancer has been extensively studied. However, the underlying

mechanism in human tissue still remains elusive [3].

Macrophage migration inhibitory factor (MIF) is one of the first cytokines discovered [4].

Evidence supports the role of MIF in tumorigenesis and tumor progression, especially in the

background of tumor microenvironment [5, 6]. The relationship between MIF and cancers

such as non-small cell lung cancer, breast cancer, colorectal cancer, prostate cancer, esophageal

cancer, hepatocellular carcinoma, and ovarian cancer has been investigated [7]. Increased epi-

thelial and serum expression of MIF in gastric cancer suggest its diagnostic and prognostic

role in gastric cancer [8, 9]. However, the role of MIF in the context of H. pylori infection,

which is one of the most important causes of gastric cancer, has yet to be investigated [10].

Meta-analysis of epidemiological studies and animal models have shown that both intestinal

and diffuse types of gastric cancer are equally associated with H. pylori infection [11].

Autophagy is an evolutionarily conserved catabolic process. It is morphologically character-

ized by the formation of double membrane autophagosomes, which control the fate of

impaired organelles or unwanted cellular components for delivery to lysosomes for degrada-

tion and recycling. [12]. In gastric cancer, its role remains elusive with seemingly contradictory

reports. An autophagosome marker LC3 was highly expressed in gastrointestinal cancers [13].

However, the high expression of another autophagy marker Beclin-1 was associated with

favorable prognosis [14]. As autophagy plays a role in H. pylori-associated gastritis [15] it

might be valuable to evaluate its role in gastric carcinogenesis. In addition, the relationship

between MIF and autophagy is largely unknown except a report suggesting that cellular autop-

hagy was induced by MIF via reactive oxygen species generation under stress [16].

We hypothesized that MIF and autophagy markers play a role in H. pylori-associated gastric

carcinogenesis and probably interact with each other. The aim of this prospective study is to

investigate the correlation between molecular markers and histopathology according to H.

pylori status. In addition, we serially followed MIF and Atg5 levels to determine any longitudi-

nal variation in the cytokine levels after H. pylori eradication.

Methods

Study population

Four hundred and fifty-three patients who underwent upper endoscopy at Seoul National Uni-

versity Bundang Hospital from February 2006 to February 2014 were enrolled. Biopsy and H.

pylori tests were performed at baseline and also at each follow-up. Exclusion criteria were: con-

comitant renal or chronic hepatic disease, previous gastric surgery, current pregnancy or lacta-

tion, and treatment with steroids or nonsteroidal anti-inflammatory drugs. This study was

approved by the Institutional Review Board of the Seoul National University Bundang Hospi-

tal, Korea (IRB Number: B-1409/266-302).

H. pylori tests and histology

At each endoscopic examination, five biopsy specimens were obtained from the antrum and

the mid-body of the stomach, respectively [17], performed solely by Nayoung Kim. Tissue sec-

tions were stained with hematoxylin and eosin (H&E) stain for histological examination of

atrophic gastritis and intestinal metaplasia (IM) according to Updated Sydney Classification
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System and modified Giemsa for confirmation of the presence of H. pylori. H. pylori status was

additionally assessed by rapid urease test [Campylobacter like organism (CLO) test, Delta

West, Bentley, Australia] and culture studies. Protocols for the biopsy-based tests were

described previously [18]. Specific IgG for H. pylori was screened using an enzyme-linked

immunosorbent assay (ELISA) of each subject’s serum (Genedia H. pylori ELISA; Green Cross

Medical Science Corp, Eumsung, South Korea). The Korean strain was used as antigen for the

H. pylori antibody test. Each patient was asked about their history of H. pylori eradication and

if all of these four tests and history of H. pylori eradication were negative, the subject was

deemed H. pylori-negative, as described in detail previously elsewhere.[19].

Quantitative real-time polymerase chain reaction

The PCR cycling procedure was performed as described in detail elsewhere previously.[20]

The primer sequences are shown on the S4 Table (see online). Briefly, total RNA was extracted

directly from non-cancerous corporal biopsy specimens with TRIzol reagent (Invitrogen,

Carlsbad, CA, USA), and 1000 ng of RNA was reverse transcribed to complementary DNA

with oligo (dT) and M-MLV reverse transcriptase (Invitrogen), according to the manufactur-

ers’ instructions. Quantitative PCR was performed in 96-well reaction plates using 2 μl of com-

plementary DNA in a 20 μl reaction mixture containing 2× SYBR Premix Ex Taq (Takara Bio,

Otsu, Japan). Samples were run on a StepOne Plus real-time PCR instrument (Applied Biosys-

tems, Foster City, CA Baseline expression levels of mRNA of the target gene were compared

with the endogenous control β-actin using the 2-ΔΔCT method [21]. For longitudinal analysis,

mRNA expression levels were log-transformed via a log(1+2-ΔCT) [22].

Follow-up measurements

The enrolled patients had undergone endoscopy every 18 months with H. pylori tests and his-

topathological examinations. Every patient with H. pylori-positive status underwent eradica-

tion therapy right after the enrollment. When the first eradication therapy failed, the 2nd and

3rd interventions were performed until the pathogen was eradicated [23]. Tissue samples were

obtained from corpus to measure the expression of MIF and autophagy markers.

Statistical analysis

The χ2 test and Fisher’s exact test were used for the analysis of categorical variables. To com-

pare continuous variables, one-way ANOVA (analysis of variance) was performed followed by

Games-Howell post-hoc test, based on the result of test for equality of variances. Longitudinal

data were analyzed with linear mixed model using random intercept model. All analyses were

performed using either SPSS (version 21.0, IBM, NY) or Stata 14/SE (Timberlake Consultants,

UK)

Results

Subject characteristics

A total of 453 patients were enrolled (mean age 58.4 ± 13.2). The study population consisted of

273 males (60.3%) and 180 females (39.7%). Among them, 206 were diagnosed with cancer, 82

with dysplasia, and 165 control patients were included. Three hundred and three patients

(66.9% of total) had current H. pylori infection at the time of enrollment: control (84 patients),

gastric dysplasia (49 patients) or cancer (170 patients) (Table 1). One hundred and fifty

patients (33.1%) were found H. pylori-negative according to aforementioned criteria. Most of

the patients in the dysplasia group had low-grade dysplasia. (45 patients, 91.8%). Among H.

Macrophage migration inhibitory factor and autophagy markers
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pylori-positive patients, 137 patients (80.6% among cancer) with early gastric cancer (EGC),

and 119 patients (70%) with intestinal type cancer were included. (Table 1). A higher ratio of

male population was detected in the H. pylori-positive group than in H. pylori-negative group

(P< 0.05) (Table 1).

Tissue MIF level

There was no significant difference in tissue MIF level according to age (Adjusted R2 = 0.003,

P> 0.05) or sex (P> 0.05, S3 Table). When study population was divided into cancer and

non-cancer groups regardless of H. pylori status, the cancer group showed significantly higher

MIF level than the non-cancer counterpart (9.37±1.57 vs. 3.66±0.49, mean ± standard error,

P = 0.001). Tissue MIF level varied remarkably between H. pylori-positive and -negative

groups: the MIF level in the H. pylori-positive group was significantly elevated in the cancer

subgroup than in control (P = 0.012) or dysplasia (P< 0.01) subgroups. (Fig 1A, S1 Table see

online). H. pylori-positive cancer subgroup also showed significantly higher MIF level than H.

pylori-negative control (P< 0.01) (Fig 1A, S1 Table). In contrast, in H. pylori-negative group,

there was no significant difference in MIF level between control, dysplasia and cancer sub-

groups (P> 0.05). (Fig 1A, S1 Table)

Tissue LC3A and LC3B levels

Similar to MIF, LC3A level also showed no significant difference between H. pylori-negative

subgroups of control, dysplasia and cancer (P> 0.05) (Fig 2A, S1 Table see online). However,

H. pylori-positive dysplasia subgroup showed significantly lower levels of LC3A level than H.

pylori-positive control (P = 0.025), cancer (P< 0.01) and H. pylori-negative control (P< 0.01)

subgroups (Fig 2A, S1 Table). H. pylori-positive dysplasia subgroup showed significantly

higher levels of LC3B than other subgroups including H. pylori-negative ones. (P< 0.05) (Fig

2B, S1 Table see online).

Table 1. Baseline characteristics.

N Sex (male, %) AGE LGD (%) EGC (%) Intestinal type (%)

�P = 0.004 #P< 0.05

control 84 43 (51.2%) 53.8 ± 11.7

HP positive dysplasia 49 36 (73.5%) 62.5 ± 7.5 45(91.8%)

cancer 170 118 (69.4%) 62.0 ± 10.9 137(80.6%) 119(70%)

HP positive total 303 (66.9%) 197 (65.0%) 59.3 ± 11.3
control 81 32 (39.5%) 54.6 ± 17.1

HP negative dysplasia 33 22 (66.7%) 61.9 ± 12.6 31(93.9%)

cancer 36 22 (61.1%) 57.5 ± 14.0 18(50%) 17(47.2%)

HP negative total 150 (33.1%) 76 (50.7) 56.9± 15.7

control 165 75(45.5%) 54.2±14.5

Total dysplasia 82 58(70.7%) 62.27±9.8 76(92.7%)

Cancer 206 140(68.0%) 60.9±11.8 155(75.2%) 136(66.0%)

Total 453 (100%) 273 (60.3%) 58.4 ± 13.2

Data shown in Mean ± Standard Deviation; HP, Helicobacter pylori. LGD, Low-grade dysplasia; The remainder of the dysplasia group had high-grade dysplasia; EGC:

Early Gastric Cancer. The remainder of the cancer group had Advanced Gastric Cancer; Intestinal type: The remainder of the cancer group had diffuse type pathology

� P-value for chi-squared test for six groups

# P-value for equality of all means of six groups

https://doi.org/10.1371/journal.pone.0211736.t001
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Tissue Atg5 level

Within the H. pylori-positive group, a statistically significant trend was observed in the levels

of Atg5 increasing sequentially from control to dysplasia, and to cancer subgroups (each

Fig 1. Tissue MIF and Atg5 levels. (A) In H. pylori-positive group, MIF level was significantly elevated in cancer subgroup than in control or dysplasia

subgroups. (B) Within H. pylori-positive group, the Atg5 expression increased sequentially from control to dysplasia, and to cancer subgroups. All data were

expressed as mean ± S.E; �P = 0.012;��,#P< 0.01, ¶, ¶¶, ##, †, ††, o P< 0.05. The same symbols above the graph indicates the significant difference between the

designated subgroups based on Games-Howell post-hoc test.

https://doi.org/10.1371/journal.pone.0211736.g001
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P< 0.05) (Fig 1B, S1 Table). In contrast, no significant difference in Atg5 level was seen within

H. pylori-negative group (P> 0.05) (Fig 1B, S1 Table see online).

H. pylori-negative control subgroup showed significantly higher Atg5 level than H-pylori-
positive control subgroup. (P< 0.05) (Fig 1B, S1 Table). H. pylori-negative dysplasia subgroup

also showed significantly higher expression compared with H-pylori-positive dysplasia sub-

group. (P< 0.05) (Fig 1B, S1 Table see online)

MIF and autophagy markers

Multiple linear regression showed that the autophagy markers (LC3A, LC3B, and Atg5) pre-

dicted MIF level with adjusted R2 = 0.492 (P< 0.001) (Table 2). No multi-collinearity between

the variables was seen (VIF < 10, VIF: variance inflation factor).

Fig 2. Tissue LC3A and LC3B levels. (A) H. pylori-positive dysplasia subgroup showed significantly lower level of

LC3A level than that of H. pylori-positive control, cancer, and H. pylori-negative control subgroups. (B) H. pylori-
positive dysplasia subgroup showed significantly higher level of LC3B than every other subgroup. �P< 0.05,
��,#P< 0.01, †P< 0.001, except to H. pylori-positive cancer group, P = 0.01.

https://doi.org/10.1371/journal.pone.0211736.g002

Table 2. Multiple linear regression.

B ß t P VIF

MIF LC3A 0.227 0.469 12.105 < 0.01 1.335

LC3B 0.725 0.346 10.292 < 0.01 1.007

Atg5 0.264 0.224 5.786 < 0.01 1.339

LC3A, LC3B, and Atg5 predicted MIF level with adjusted R2 = 0.492, P < 0.001; B: unstandardized coefficients; ß: standardized coefficients; VIF: variance inflation

factor

https://doi.org/10.1371/journal.pone.0211736.t002
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Longitudinal changes in tissue MIF expression

Among the enrolled patients, 386 patients were followed-up at least once with MIF PCR of gas-

tric tissue. The mean follow-up period was 45.52 months, and the mean interval between

endoscopic biopsies was 15.88 months. For statistical analysis, 38 patients who tested H.

pylori-positive and failed to eradicate the pathogen were excluded. (S2 Table see on line)

Among 280 H. pylori-positive patients and successfully eradicated, 198 (56.9% of total) had

IM. In both H. pylori-positive and -negative groups, there was no significant temporal change

in tissue MIF level (P> 0.05) (Fig 3, S1 Fig see online). H. pylori-positive cancer group showed

significantly higher MIF levels than H. pylori-positive control group, which remained constant

throughout the follow-up period (P< 0.05) (Fig 3).

No statistically significant longitudinal difference in MIF levels was seen between control,

dysplasia and cancer subgroups within both H. pylori -positive and -negative groups

(P> 0.05) (S1 Fig see online). According to IM status, there was no significant longitudinal

change in MIF expression (P> 0.05)

Longitudinal changes in Atg5 expression

Among the enrolled patients, we serially obtained gastric tissue for Atg5 PCR from 319

patients. The mean follow-up period was 38.24 months and the mean interval between endo-

scopic biopsies was 18.39 months. For statistical analysis, 17 patients who were H. pylori-posi-

tive and failed to eradicate it were excluded. One hundred and twenty-one (40.1% of total) out

of 262 H. pylori-positive patients showed intestinal metaplasia (IM) histologically (S2 Table).

The expression of Atg5 gradually increased in both H. pylori-eradicated and -negative groups

(P< 0.05) (Fig 4A). Atg5 expression remained constantly higher with time in H. pylori-eradi-

cated group than in H. pylori-negative group (P = 0.017) (Fig 4A). IM-positive group showed

initially higher expression of Atg5 than IM-negative group. Atg5 expression increased gradu-

ally in both groups. However, as the rate of increase was significantly lower in the IM-positive

group, the expression levels were reversed eventually (Fig 4B). The differential rate of increase

was statistically significant (P< 0.05) (Fig 4B). No statistically significant longitudinal differ-

ence was seen in Atg5 levels between control, dysplasia and cancer subgroups within the H.

pylori-positive and -negative groups (P> 0.05) (S5 Table see online)

Discussion

MIF level was significantly elevated in cancer subgroup than in control or dysplasia subgroups

of patients, only within H. pylori-positive group. Within the H. pylori-positive group, the

LC3A and LC3B levels showed significant differences within H. pylori-positive subgroups.

Similarly, Atg5 expression increased sequentially from control to dysplasia, and to cancer sub-

groups within the H. pylori-positive group. Multiple linear regression analysis showed autop-

hagy markers (LC3A, LC3B, and Atg5) directly predicted MIF level (adjusted R2 = 0.492,

P< 0.001). Serial follow-up showed longitudinal increase in Atg5 level in general, with con-

stantly higher levels in H. pylori-eradicated group than in -negative group. Taken together, our

results suggest the role of MIF and autophagy markers and their interaction in H. pylori-asso-

ciated gastric carcinogenesis. Indeed, this is the first report suggesting an important distinction

between H. pylori-positive and -negative gastric tumorigenesis in terms of MIF and

autophagy.

As described in detail previously with regard to H. pylori and MIF [6], tumor microenviron-

ment is an important concept in tumorigenesis. Among the factors known to be involved, MIF

is related to various types of malignancy [7, 24]. MIF plays a role in angiogenesis, lymph node

metastasis and distant metastasis [4, 25]. In addition, MIF is involved in signal transduction

Macrophage migration inhibitory factor and autophagy markers
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Fig 3. Longitudinal changes in MIF level. H. pylori-eradicated cancer group showed significantly higher MIF level

than H. pylori-eradicated control group (P< 0.05), which remained constant throughout the follow-up period.

No significant change in the MIF level over time was seen. (P>0.05).

https://doi.org/10.1371/journal.pone.0211736.g003

Fig 4. Longitudinal changes in Atg5 level according to H. pylori status and intestinal metaplasia (IM) status. (A)

The expression of Atg5 longitudinally increased in both H. pylori-eradicated and -negative groups (P< 0.05). Atg5

expression remained constantly higher over time in H. pylori-eradicated group than in H. pylori-negative group

(P = 0.017). (B) IM-positive group showed initially higher expression of Atg5 than IM-negative group (P< 0.05).

However, the rate of increase was significantly lower than in IM-negative group, and the reversal of the expression

level was noted eventually (P< 0.05).

https://doi.org/10.1371/journal.pone.0211736.g004
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and stimulates ERK1, and ERK2 MAP kinase, which are related to carcinogenesis [26]. Fur-

thermore, MIF mediates cell proliferation, especially through Ras-related signaling pathway.

Meanwhile, MIF negatively affects tumor suppressor p53 by inhibiting its anti-proliferative

property. High concentrations of MIF expressed by dysplastic or inflammatory cells bypass the

p53 pathway, accumulate mutations via cellular proliferation, prolong cellular life span, and

inhibit cell death [4, 27–30]. MIF also inhibits the activity of p21, cyclin G1, and Mdm2 [26].

Furthermore, the angiogenic activity of MIF is established from the interaction between MIF

and CXC chemokines, Interleukin (IL)-8 or VEGF [29, 31]. The relationship between H. pylori
and MIF has been investigated in vitro, and clinically with human tissue samples. In gastric

mucosa, the increased expression of MIF by epithelial cells, T cells, and macrophages was

reported to be associated with H. pylori infection. The difference in distribution of MIF-posi-

tive cells between antrum and corpus was also reported [32, 33]. In vitro cell culture studies

showed that H. pylori directly stimulated MIF secretion from monocytes via cag PAI expres-

sion, resulting in gastric cell proliferation [33]. The effect was blocked with anti-MIF antibody,

suggesting the role of MIF as a mediator of H. pylori-induced tumorigenesis [34–37]. The pro-

gressive increase of epithelial and serum MIF levels in H. pylori, was associated with gastritis,

intestinal metaplasia, and gastric cancer, respectively. It suggested the potential role of MIF as

a biomarker of gastric cancer [38]. Significant relationship between H. pylori and MIF is fur-

ther supported by the reduced levels of MIF following eradication of H. pylori [35]. Another

clinical study showed that serum MIF levels in patients had better diagnostic value than carci-

noembryonic antigen (CEA) and even correlated with the 5-year survival when combined

with CEA [39]. MIF was also up-regulated in a rat model of acute gastric ulcer [40]. H. pylori
infection releases MIF-induced phosphorylation of epidermal growth factor receptor (EGFR)

[32]. However, another report suggested that MIF expression and secretion did not directly

increase after H. pylori infection, although IL-8 expression and secretion were upregulated

[37].

In the current study, no significant difference in the tissue MIF level was found based on H.

pylori status alone. However, significant differences were found considering both pathology

and infection status. In H. pylori-positive group, the MIF level was significantly elevated in

cancer subgroup than in control or dysplasia subgroups. In contrast, in H. pylori-negative

group, there was no significant difference in MIF level between control, dysplasia and cancer

subgroups. These findings imply that MIF regulated the critical transformation from dysplasia

to cancer only in H. pylori-positive gastric tissue. Based on in vitro studies reported previously

[33], H. pylori stimulated MIF secretion through its cag PAI, especially in the tumor microen-

vironment from dysplasia to cancer. Lack of variation in MIF levels in H. pylori-negative

group according to its pathological transformation suggested that MIF partly explains the dis-

tinct pathogenesis of H. pylori-positive cancer compared with -negative neoplasm. We also

investigated longitudinal changes in tissue MIF level upon follow-up considering H. pylori sta-

tus and pathology. Few clinical studies monitored tissue MIF levels over a period of time. In

both H. pylori-positive and -negative groups, there was no significant temporal variation in the

MIF level. The H. pylori-positive cancer group showed significantly higher levels of MIF than

control and dysplasia subgroups of patients, throughout the follow-up period. Changes in IM

status were also analyzed. However, we found no significant longitudinal differences between

the groups. All the patients with H. pylori infection underwent eradication therapy, and there-

fore, these findings imply that the baseline MIF level was stable once established.

Autophagy is a cellular degradation process that maintains intracellular homeostasis via

lysosomal degradation of cytoplasmic constituents and recycling of amino acids and energy

[41]. Autophagy plays a dual role as a tumor suppressor and a protector of cancer cell survival

[41]. MIF and autophagy have been linked by several studies. MIF was shown to play a

Macrophage migration inhibitory factor and autophagy markers
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permissive role in the maintenance of cardiac contractile function under starvation by regula-

tion of autophagy [42]. In breast cancer research, regulation of MIF expression and suppres-

sion of autophagic cell death is a potent mechanism contributing to chemoresistance and

tumorigenicity [43]. Low expression of Beclin-1, a well-known marker of autophagy, associ-

ated with high Bcl-xL was shown to predict a malignant phenotype and poor prognosis of

stomach cancer [14]. In contrast, high expression of another autophagy marker LC3 was

observed in gastrointestinal cancers including gastric cancer. Interestingly, LC3 immunoreac-

tive score gradually increased during early carcinogenesis, while it remained constant in later

progression [13]. Isoforms of LC3 (LC3A, B and C) are structural proteins of autophagosomal

membranes. Whether each LC3 protein has a similar biological role in autophagy remains

obscure. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distrib-

uted throughout the cytoplasm and localized in the nucleolar regions [44]. In oral squamous

cell carcinoma, increased LC3B expression was associated with aggressive clinicopathological

features and unfavorable prognosis [45]. In our study, LC3A and LC3B levels varied signifi-

cantly in subgroups according to H. pylori status. In H. pylori-positive group, the LC3A level

was significantly lower in the dysplasia subgroup than in control or cancer subgroup. In con-

trast, the LC3B level showed higher levels in the dysplasia subgroup than in control or cancer.

No significant difference in either LC3A or LC3B was observed within the H. pylori-negative

group. This result is interesting because only H. pylori-positive dysplasia group showed signifi-

cant difference in LC3A and LC3B levels. H. pylori infection might play a role in the progres-

sion from control to dysplasia and/or dysplasia to cancer via autophagy, with subtle difference

in the location of effect within the cell structure represented by the markers LC3A and LC3B.

Our novel finding regarding the isoforms of LC3 may elucidate the complex relationship

between autophagy and cancer, with a possible role in dysplasia.

Atg5 is another autophagy marker involved in the early stages of autophagosome [46]. In

studies with melanoma and non-small cell lung cancer, Atg5 was shown to play an antitumor

role especially in early carcinogenesis [47, 48] In contrast, in pancreatic cancer, autophagy is

actually required for tumorigenesis de novo. Genetic inactivation of Atg5 was used to demon-

strate their theory [49]. We observed that the tissue levels of Atg5 increased gradually from

control, dysplasia and cancer in H. pylori-positive group. Within the H. pylori-negative group,

no significant difference in the level was seen. Our result suggests that increased Atg5 activity

may play a role in gastric carcinogenesis, in H. pylori-infected patients. Mutational or expres-

sional alteration of Atg5 gene in gastrointestinal cancers was reported previously [50], suggest-

ing that Atg5 expression in our study resulted in similar outcomes. This finding further

implies that the distinct features of H. pylori-positive dysplasia and cancer could be attributed

partly to MIF and autophagy.

In the longitudinal analysis of Atg5, we found a gradual increase in Atg5 expression in both

H. pylori-positive and -negative groups. The level of Atg5 expression remained constantly

higher in H. pylori-positive group than in H. pylori-negative group. The role of autophagy in

aging was reported previously [51]. Modulation of key autophagic components such as Ulk3,

Atg5, or Atg7 has been shown to control senescence, possibly through Pi3K-Akt-mTOR path-

way, limiting oncogene signaling and enabling cell cycle exit [52]. However, studies with a

serial follow-up of the markers in human gastric tissue are scarce. The current result directly

showing the increased expression of Atg5 over time explains the role of autophagy in human

aging.

In terms of IM, the IM-positive group showed initially higher Atg5 level than the IM-nega-

tive group. Atg5 level increased over time in both groups. However, the rate of increase was

lower in the IM-positive group than in IM-negative group. Interestingly, it resulted in the

cross of the line of expression eventually. The long-term effect of H. pylori eradication on
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autophagy regarding IM may be inferred from our findings, which is a unique implication of

our study.

Based on similarity in distribution of tissue levels of MIF and autophagy markers within the

H. pylori-positive group, we directly correlated MIF and autophagy markers. Multiple linear

regression analysis showed that the autophagy markers (LC3A, LC3B, and Atg5) predicted

MIF level with relatively high adjusted R-square value providing indirect evidence for the rela-

tionship between MIF and autophagy in human gastric pathology.

In conclusion, we found that the tissue expression of MIF and autophagy markers LC3A,

LC3B and Atg5 showed significant differences within H. pylori-positive subgroups, but not

within the H. pylori-negative counterpart. The H. pylori-positive dysplasia subgroup showed a

distinct pattern of tissue levels compared with other subgroups regarding LC3A and LC3B.

Atg5 expression gradually increased over time. After H. pylori eradication, the Atg5 levels in

the IM group were lower than in IM-negative counterpart. A direct baseline correlation

between MIF and the autophagy markers was observed in human gastric tissue, suggesting a

role in gastric carcinogenesis in H. pylori-infected gastric tissue.
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