# <u>Creanic</u> LETTERS

# Efficient Synthesis of 3*H*-Indoles Enabled by the Lead-Mediated $\alpha$ -Arylation of $\beta$ -Ketoesters or $\gamma$ -Lactams Using Aryl Azides

Fei Zhou and Tom G. Driver\*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States

# **Supporting Information**

**ABSTRACT:** The development of a lead-mediated  $\alpha$ -arylation reaction between aryl azides and  $\beta$ -ketoesters or  $\gamma$ -lactams that facilitates the formation of 3*H*-indoles is disclosed. Twenty-five examples are included which demonstrate the generality of this reaction to access aryl azides bearing



tetrasubstituted *o*-alkyl substituents. When paired with a Staudinger reduction, this reaction streamlines the synthesis of functionalized 3*H*-indoles.

he development of new efficient processes to construct *N*heterocycles continues to motivate synthetic groups because of the ubiquitous nature of these structural motifs in bioactive and electronic molecules.<sup>1,2</sup> Our group believes that these important compounds could be efficiently synthesized through transition-metal-catalyzed C-H bond amination, which would create the ArN-C bond from aryl azides. While we have successfully developed a series of C-H bond amination processes,<sup>3-5</sup> the number of steps often required to access the aryl azide substrates diminished the overall efficiency of our N-heterocycle synthesis. In our intramolecular sp<sup>2</sup>-C-H bond amination studies,<sup>5b</sup> seven linear steps were required to introduce the fully substituted o-alkyl substituent present in the aryl azide (e.g., 1) (Scheme 1). This study underscored the need to streamline our substrate construction,<sup>6</sup> and we anticipated that a modular synthesis could be achieved if the aryl azide moiety was installed through an  $\alpha$ -arylation of a carbonyl compound.<sup>7-12</sup> We were surprised, however, to find that no examples of this reaction existed with aryl azides.<sup>13</sup> Herein, we report the first  $\alpha$ -arylation of  $\beta$ -ketoesters and  $\gamma$ lactams with aryl azides and leverage this reaction to efficiently synthesize 3H-indoles.

While there are many catalyzed and noncatalyzed  $\alpha$ -arylation reactions of carbonyl compounds,<sup>7–13</sup> our survey of popular methods and environmentally benign arylating reagents found

# Scheme 1. Current Challenges To Synthesizing 2-Substituted Aryl Azides



Table 1. Determination of the Optimal Conditions for  $\alpha$ -Arylation

| 8a    | Bpin (0.5 equiv)<br>N <sub>3</sub> (0.5 equiv)<br>Hg(OAc) <sub>2</sub><br>(5 mol %) 4a | EtO <sub>2</sub> C <sub>2</sub><br>(OAc) <sub>3</sub> 9a<br>CHCl <sub>3</sub> ,<br><i>condi</i> | $ \begin{array}{c} 0 \\ 1 \\ 25 \circ C \end{array} $ EtO <sub>2</sub> C tions |                 |
|-------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------|
| entry | base (equiv) 4a                                                                        | (equiv) 9a                                                                                      | a (equiv) yie                                                                  | $d^{a}(\%)$     |
| 1     | none                                                                                   | 1                                                                                               | 5                                                                              | 90              |
| 2     | none                                                                                   | 1                                                                                               | 3                                                                              | 89              |
| 3     | none                                                                                   | 1                                                                                               | 1.05                                                                           | 59              |
| 4     | dabco (3)                                                                              | 1                                                                                               | 1.05                                                                           | 44              |
| 5     | phenanthraline (3)                                                                     | 1                                                                                               | 1.05                                                                           | 62              |
| 6     | pyridine (3)                                                                           | 1                                                                                               | 1.05                                                                           | 78              |
| 7     | pyridine (3)                                                                           | 1                                                                                               | 1.05                                                                           | 87 <sup>b</sup> |
| 8     | pyridine (3)                                                                           | 1.05                                                                                            | 1                                                                              | 83 <sup>b</sup> |
| 9     | pyridine (3)                                                                           | 3                                                                                               | 1                                                                              | 88 <sup>b</sup> |
| 10    | pyridine (3)                                                                           | 1                                                                                               | 1.05                                                                           | 45 <sup>c</sup> |

<sup>*a*</sup>As determined using <sup>1</sup>H NMR spectroscopy using  $CH_2Br_2$  as an internal standard. <sup>*b*</sup>Reaction performed at 50 °C. <sup>*c*</sup>Two-step yield from **8a**.

them to be incompatible with the *o*-azide moiety.<sup>14</sup> The failure of these methods prompted us to examine the  $\alpha$ -arylation of  $\beta$ -ketoesters using an aryllead as the electrophilic reagent. Although the use of these complexes is well-established,<sup>11</sup> there are no examples of using an aryl azide substituent (much less an *o*-azide) in the  $\alpha$ - arylation processes. The requisite 2-azidoaryllead acetate was readily prepared from either the 2-azidoarylboronic acid pinacolate ester (8)<sup>15</sup> or analogous stannane using the conditions reported by Pinhey and co-workers without any decomposition of the azido group.<sup>11b,c</sup> With **4a** in hand, a variety of conditions were screened to find the optimal conditions for the  $\alpha$ -arylation of  $\beta$ -ketoester **9a** 

 Received:
 April 11, 2014

 Published:
 May 27, 2014

### Table 2. Effect of Changing the Identity of the $\beta$ -Ketoester

/ \n

|                    | ∠Pb(OA<br>N <sub>3</sub> | c) <sub>3</sub> + RO <sub>2</sub> C<br><b>9</b> (-) <sub>n</sub> | pyridine<br>(3 equiv)<br>CHCl <sub>3</sub> , 50 °C |                       |
|--------------------|--------------------------|------------------------------------------------------------------|----------------------------------------------------|-----------------------|
| entry <sup>a</sup> | #                        | β-ketoester <b>9</b>                                             | aryl azide <b>6</b>                                | %, yield <sup>b</sup> |
| 1                  | b                        | EtO <sub>2</sub> C                                               | EtO <sub>2</sub> C<br>N <sub>3</sub> O             | 89                    |
| 2                  | c                        | MeO <sub>2</sub> C                                               | MeO <sub>2</sub> C<br>N <sub>3</sub> O             | 97                    |
| 3                  | d                        | MeO <sub>2</sub> C                                               | MeO <sub>2</sub> C                                 | 97                    |
| 4                  | e                        | MeO <sub>2</sub> C<br>Me<br>Me                                   | EtO <sub>2</sub> C Me<br>N <sub>3</sub> O          | 79                    |
| 5                  | f                        | EtO <sub>2</sub> C                                               | EtO <sub>2</sub> C                                 | 75                    |
| 6                  | g                        | MeO <sub>2</sub> C                                               | MeO <sub>2</sub> C<br>N <sub>3</sub> O             | 53                    |
| 7                  | h                        | MeO <sub>2</sub> C                                               | MeO <sub>2</sub> C                                 | 86                    |
| 8                  | i                        | EtO <sub>2</sub> C                                               | EtO <sub>2</sub> C<br>NBoc                         | 79                    |
| 9                  | j                        | MeO <sub>2</sub> C <i>t</i> -Bu                                  | MeO <sub>2</sub> C<br>N <sub>3</sub> O<br>Ph       | 79<br>d.r. 91:9       |
| 10                 | k                        | MeO <sub>2</sub> C Ph                                            | MeO <sub>2</sub> C                                 | 63<br>d.r. 91:9       |
| 11                 | 1                        |                                                                  | allyIO <sub>2</sub> C<br>N <sub>3</sub> O          | 89                    |
| 12                 | m                        |                                                                  | N <sub>3</sub>                                     | 54<br>d.r. 50:50      |
| 13                 | n                        |                                                                  | R<br>O<br>N <sub>3</sub> O                         | n.r.                  |

<sup>*a*</sup>Reaction performed using 1 equiv of **4a**, 1.05 equiv of **9**, and 3 equiv of pyridine in  $CHCl_3$  at 50 °C. <sup>*b*</sup>Isolated yield of **6** after silica gel chromatography; only product obtained.

(Table 1). For the initial screen, an excess of **9a** was used (entries 1-3). We found that the equivalents of **9a** could be reduced to three without attenuating the yield of **6a**. A significant reduction in conversion was observed, however, when a slight excess of the  $\beta$ -ketoester was used (entry 3). To improve the conversion, several amine bases were screened

Table 3. Determination of the Optimal Conditions for  $\alpha$ -Arylation

| R <sup>1</sup><br>R <sup>2</sup> | Pb(OAc) <sub>3</sub><br>N <sub>3</sub> | EtO <sub>2</sub> C | EtO <sub>2</sub> C     | O<br>↓<br>NBoc |   | EtO <sub>2</sub> C<br>N <sub>3</sub> |
|----------------------------------|----------------------------------------|--------------------|------------------------|----------------|---|--------------------------------------|
| 4                                | +                                      | 9a                 | or <b>9i</b>           |                |   | 6                                    |
| entry <sup>a</sup>               | 4                                      | $\mathbb{R}^1$     | R <sup>2</sup>         | 9              | 6 | %, yield $6^{b}$                     |
| 1                                | b                                      | F                  | Н                      | a              | 0 | 67                                   |
| 2                                | с                                      | Cl                 | Н                      | а              | р | 67                                   |
| 3                                | d                                      | Me                 | Н                      | а              | q | 77                                   |
| 4                                | e                                      | Н                  | OMe                    | а              | r | 94                                   |
| 5                                | f                                      | Н                  | Me                     | a              | s | 94                                   |
| 6                                | g                                      | Н                  | F                      | a              | t | 58°                                  |
| 7                                | h                                      | N <sub>3</sub> -   | ≻−Pb(OAc) <sub>3</sub> | a              | u | 67                                   |
| 8                                | b                                      | F                  | Н                      | i              | v | 75                                   |
| 9                                | с                                      | Cl                 | Н                      | i              | w | 56                                   |
| 10                               | d                                      | Me                 | Н                      | i              | x | 52°                                  |
| 11                               | f                                      | Н                  | Me                     | i              | у | 89 <sup>c</sup>                      |
| 12                               | g                                      | Н                  | F                      | i              | z | 42 <sup>c</sup>                      |

<sup>*a*</sup>Reaction performed using 1 equiv of 4, 1.05 equiv of 9, 3 equiv of pyridine in  $CHCl_3$  at 50 °C. <sup>*b*</sup>Isolated yield of 6 after silica gel chromatography; only product obtained. <sup>*c*</sup>3 equiv of 4 used.

(entries 4–6).<sup>11d</sup> While the addition of dabco, phenanthroline, or pyridine did improve the yield, it plateaued at 78%. Using pyridine, a further improvement was realized by increasing the temperature of the reaction to 50 °C (entry 7). Next, we examined if the stoichiometry of our  $\alpha$ -arylation could be reversed in order to enable the use of the 2-azidoaryllead acetate as a reagent for the  $\alpha$ -arylation of more valuable  $\beta$ -ketoesters (entries 8 and 9). To our delight, we found that yield diminished only slightly, and if 3 equiv of **4a** was used, the yield recovered to 88%. Finally, we attempted the  $\alpha$ -arylation in one-flask directly from 2-azidoaryllead acetate to afford **6a** in 45% (entry 10).

Using these optimal conditions, a series of  $\beta$ -ketoesters were examined to determine the scope and limitations of our  $\alpha$ -arylation reaction (Table 2). We found that the ring size of the  $\beta$ -ketoester could be modified without affecting the yield of our  $\alpha$ -arylation reaction to provide functionalized aryl azides **6b**-**d** (entries 1–3). Acyclic  $\beta$ -ketoesters, such as **4e**, could even be smoothly converted to product without much attenuation of the yield (entry 4). Next, the effect of the composition of the  $\beta$ -ketoester on the yield of the arylation was examined (entries 5–7): indanone **9f**, 4-tetrahydropyranone **9g**, and 4-aminocyclohexanone **9h** produced aryl azides **6f**-**h** in good yields. To our surprise, while the  $\alpha$ -arylation of amides has generated considerable excitement,<sup>16,17</sup>  $\gamma$ -lactams have never been used in these processes despite the synthetic utility of these molecules. We found that they could be efficiently arylated to produce **6i** 







in good yield (entry 8). Next, the stereoselectivity of our  $\alpha$ -arylation reaction was investigated. Exposure of 4-*tert*-butylsubstituted  $\beta$ -ketoester 9j to our reaction conditions furnished 6j with 10:1 diastereoselectivity (entry 9). To our delight, the selectivity was not affected by the size of the 4-substituent: the diastereoselectivity remained 10:1 when the 4-*tert*-butyl group was replaced with a smaller 4-phenyl group (entry 10). Finally, we examined the effect of changing the nature of the carboxylate group (entries 11–13). We found that an ester was necessary for the  $\alpha$ -arylation reaction. While the methyl ester could replaced with either an allyl or menthol (albeit with no diastereoselectivity observed),  $\beta$ -ketoamides proved to be unreactive in our process.

The effect of adding substituents to the 2-azidoaryllead acetate on the  $\alpha$ -arylation of  $\beta$ -ketoester **9a** or  $\gamma$ -lactam **9i** was examined next (Table 3). For  $\beta$ -ketoester **9a**, we found that the arylation reaction tolerated halide, alkyl, or ether substituents (entries 1–6). The yield, however, did depend on the electronic nature of 4 with the highest yields observed for the electron-rich or electron-neutral arylleads bearing methoxy- or methyl groups (entries 4 and 5). Further, the azide group could be placed at the 4-position without much diminishment of the yield of the arylation reaction (entry 7). To determine the generality of our reaction, we next examined the  $\alpha$ -arylation of  $\gamma$ -lactam **9i**, a substrate never reported as nucleophile in this process (entries 8–12).<sup>17</sup> To our delight, we found that a range of different 2-azidoaryllead acetates reacted with  $\gamma$ -lactam **9i**. Its

reactivity, however, was diminished in comparison to  $\beta$ ketoester 9a. To obtain comparable yields, it was often necessary to increase the amount of the 2-azidoaryllead to 3 equiv (entries 10–12).

The synthetic utility of our  $\alpha$ -arylation reaction was demonstrated next by exposing aryl azides 6 to a Staudinger reduction (Table 4).<sup>18</sup> We found that exposure of aryl azides 6to triphenylphospine produced 3H-indoles 7 in nearly quantitative yield. Although the ring size of the  $\beta$ -ketoester could be modified in between the 5- and 7-carbons without affecting the Staudinger reaction, 3H-indole 7b readily decomposed when exposed to air (entries 1-3). The reduction tolerated heteroatoms in the  $\beta$ -ketoester to enable access to important N-heterocyclic structural motifs,<sup>19</sup> such as  $\gamma$ -carboline 7h (entries 4 and 5). The Staudinger reaction could even be extended to  $\gamma$ -lactams to efficiently access 3H-pyrroloindole 7i in nearly quantitative yield (entry 6), whose structure is ubiquitous in bioactive alkaloids.<sup>20</sup> Finally, submission of aryl azide 6k to the reduction conditions furnished 3H-indole 7k in good yield without loss of any diastereoselectivity (entry 7). Together these results illustrate that when paired with a Staudinger reduction our  $\alpha$ -arylation reaction to diastereoselectively access a range of 3H-indoles.

In conclusion, we developed an  $\alpha$ -arylation reaction of  $\beta$ ketoesters using 2-azidoaryllead acetates to afford a range complex, functionalized aryl azides with fully substituted *o*-alkyl substituents. The synthetic utility of our process was showcased using  $\gamma$ -lactam substrates to enable efficient construction of functionalized 3*H*-indoles after Staudinger reduction.

#### ASSOCIATED CONTENT

# Supporting Information

Complete experimental procedures and spectroscopic and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: tgd@uic.edu.

# Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

We are grateful to the National Science Foundation (CHE-126563), National Institutes of Health NIGMS (R01GM084945), and the University of Illinois at Chicago for their generous support. We also thank Mr. Furong Sun for mass spectrometry data.

#### REFERENCES

(1) For recent leading reviews, see: (a) Gribble, G. W. J. Chem. Soc., Perkin Trans. 1 2000, 1045. (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. (c) Knölker, H.-J.; Reddy, K. R. The Alkaloids: Chemistry and Biology; Cordell, G. A., Ed.; Academic Press: New York, 2008; Vol. 65, pp 1–430. (d) Edwankar, C. R.; Edwankar, R. V.; Namjoshi, O. A.; Rallapappi, S. K.; Yang, S. J.; Cook, J. M. Curr. Opin. Drug Discovery Dev. 2009, 12, 752. (e) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (f) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.

(2) For recent, leading papers on their applications in electronic materials, see: (a) van Addy, D.; Bastiaansen, J. J. A. M.; Kiggen, N. M. M.; Langeveld, B. M. W.; Rothe, C.; Monkman, A.; Bach, I.; Stössel, P.; Brunner, K. J. Am. Chem. Soc. **2004**, *126*, 7718. (b) Wu, Y.; Li, Y.;

Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2005, 127, 614. (c) Boudreault, P.-L. T.; Wakim, S.; Blouin, N.; Simard, M.; Tessier, C.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2007, 129, 9125. (d) Wang,

C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. 2011, 112, 2208.
(3) For reviews, see: (a) Driver, T. G. Org. Biomol. Chem. 2010, 8, 3831. (b) Stokes, B. J.; Driver, T. G. Eur. J. Org. Chem. 2011, 2011, 4071.

(4) cf. (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500. (b) Shen, M.; Leslie, B. E.; Driver, T. G. Angew. Chem., Int. Ed. 2008, 47, 5056. (c) Stokes, B. J.; Richert, K. J.; Driver, T. G. J. Org. Chem. 2009, 74, 6442.
(d) Pumphrey, A. L.; Dong, H.; Driver, T. G. Angew. Chem., Int. Ed. 2012, 51, 5920.

(5) (a) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett. 2009, 11, 3598. (b) Nguyen, Q.; Sun, K.; Driver, T. G. J. Am. Chem. Soc. 2012, 134, 7262. (c) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620.

(6) For a discussion on the importance of step-economy in organic synthesis, see: (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40. (b) Newhouse, T.; Baran, P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010.

(7) For reviews, see: (a) Hartwig, J. F. Synlett 2006, 1283.
(b) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676. (c) Mazet, C. Synlett 2012, 23, 1999.

(8) For recent transition-metal-catalyzed examples, see: (a) Bigot, A.;
Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc. 2011, 133, 13778.
(b) Chernyak, N.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12466.
(c) Donohoe, T. J.; Pilgrim, B. S.; Jones, G. R.; Bassuto, J. A. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11605. (d) Huang, Z.; Chen, Z.; Lim, L. H.; Quang, G. C. P.; Hirao, H.; Zhou, J. S. Angew. Chem., Int. Ed. 2013, 52, 5807. (e) Alsabeh, P. G.; Stradiotto, M. Angew. Chem., Int. Ed. 2013, 52, 7242.

(9) For  $\alpha$ -arylation using anilide derivatives, see: (a) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. **2006**, 128, 16050. (b) Chen, Y.; Xie, X.; Ma, D. J. Org. Chem. **2007**, 72, 9329. (c) Chen, Y.; Wang, Y.; Sun, Z.; Ma, D. Org. Lett. **2008**, 10, 625. (d) Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. **2012**, 14, 1420. (e) Wang, H.-Y.; Anderson, L. L. Org. Lett. **2013**, 15, 3362. (f) Chan, W.-W.; Zhou, Z.; Yu, W.-Y. Chem. Commun. **2013**, 49, 8214.

(10) For leading reports on the  $\alpha$ -arylation using I(III) reagents, see: (a) Iwama, T.; Birman, V. B.; Kozmin, S. A.; Rawal, V. H. Org. Lett. **1999**, 1, 673. (b) Aggarwal, V. K.; Olofsson, B. Angew. Chem., Int. Ed. **2005**, 44, 5516. (c) Eastman, K.; Baran, P. S. Tetrahedron **2009**, 65, 3149. (d) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. **2011**, 133, 4260. (e) Review: Merritt, E. A.; Olofsson, B. Synthesis **2011**, 2011, 517.

(11) For leading examples of  $\alpha$ -arylation using aryllead derivatives, see: (a) Review: Elliott, G. I.; Konopelski, J. P. *Tetrahedron* **2001**, *57*, 5683. (b) Kozyrod, R. P.; Morgan, J.; Pinhey, J. T. *Aust. J. Chem.* **1985**, 38, 1147. (c) Morgan, J.; Pinhey, J. T. *J. Chem. Soc., Perkin Trans.* **1 1990**, 715. (d) Dyer, J.; King, A.; Keeling, S.; Moloney, M. G. *J. Chem. Soc., Perkin Trans.* **1 2000**, 2793. (e) Konopelski, J. P.; Lin, J.; Wenzel, P. J.; Deng, H.; Elliott, G. I.; Gerstenberger, B. S. *Org. Lett.* **2002**, *4*, 4121. (f) Buston, J. E. H.; Moloney, M. G.; Parry, A. V. L; Wood, P. *Tetrahedron Lett.* **2002**, *43*, 3407. (g) Xia, J.; Brown, L. E.; Konopelski, J. P. J. *Org. Chem.* **2007**, *72*, 6885.

(12) For related noncatalyzed nucleophilic addition of enolates to other aromatic derivatives, see: (a) Ooi, T.; Goto, R.; Maruoka, K. J. Am. Chem. Soc. 2003, 125, 10494. (b) Koech, P. K.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 5350. (c) Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc. 2005, 127, 5340. (d) Molinaro, C.; Mowat, J.; Gosselin, F.; O'Shea, P. D.; Marcoux, J.-F.; Angelaud, R.; Davies, I. W. J. Org. Chem. 2007, 72, 1856. (e) Huang, X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510. (f) Mohanan, K.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2012, 14, 4686. (g) Xu, Q.-L.; Gao, H.; Yousufuddin, M.; Ess, D. H.; Kürti, L. J. Am. Chem. Soc. 2013, 135, 14048.

(13) For examples with more robust alkyl azides, see: (a) Ganina, O. G.; Zamotaeva, S. G.; Nosarev, M. A.; Kosenkova, O. V.; Naumov, M. I.; Shavyrin, A. S.; Finet, J.-P.; Fedorov, A. Y. *Russ. Chem. Bull.* **2005**,

54, 1606. (b) Naumov, M. I.; Nuchev, A. V.; Sitnikov, N. S.; Malysheva, Y. B.; Shavyrin, A. S.; Beletskaya, I. P.; Gavryushin, A. E.; Combes, S.; Fedorov, A. Y. *Synthesis* **2009**, 2009, 1673.

(14) For the use of mercury or lead salts in the synthesis of biologically active small molecules for pharmaceutical applications, see: (a) Badham, N. F.; Chen, J.-H.; Cummings, P. G.; Dell'Orco, P. C.; Diederich, A. M.; Eldridge, A. M.; Mendelson, W. L.; Mills, R. J.; Novack, V. J.; Olsen, M. A.; Rustum, A. M.; Webb, K. S.; Yang, S. Org. *Process Res. Dev.* **2002**, *7*, 101. (b) Kuethe, J. T.; Childers, K. G.; Humphrey, G. R.; Journet, M.; Peng, Z. Org. Process Res. Dev. **2008**, *12*, 1201. (c) Wuts, P. G. M.; Ashford, S. W.; Conway, B.; Havens, J. L.; Taylor, B.; Hritzko, B.; Xiang, Y.; Zakarias, P. S. Org. Process Res. Dev. **2009**, *13*, 331.

(15) The synthesis of 2-azidoarylboronic acid pinacolate esters 8 was not optimized. Although the 2-aminoarylboronic acid pinacolate esters precursors were synthesized for this study, all are commercially available. See the Supporting Information for more details.

(16) Cf. (a) Hama, T.; Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 4976. (b) Ackermann, L.; Vicente, R.; Hofmann, N. Org.
Lett. 2009, 11, 4274. (c) Würtz, S.; Lohre, C.; Fröhlich, R.; Bergander,
K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344. (d) Taylor, A. M.;
Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 9900.
(e) Zheng, B.; Jia, T.; Walsh, P. J. Org. Lett. 2013, 15, 4190.

(17) For leading reports of the use of the related oxindoles in  $\alpha$ -arylation processes, see: (a) Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. **2008**, 130, 9613. (b) Mai, C.-K.; Sammons, M. F.; Sammakia, T. Org. Lett. **2010**, 12, 2306. (c) Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed. **2012**, 51, 2870.

(18) (a) Staudinger, H.; Meyer, J. Helv. Chim. Acta 1919, 2, 635.
(b) Leffler, J. E.; Temple, R. D. J. Am. Chem. Soc. 1967, 89, 5235.
(c) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437. (d) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.

(19) Cf. (a) Nguyen, C. H.; Lavelle, F.; Riou, J.-F.; Bissery, M.-C.; Huel, C.; Bisagni, E. Anti-Cancer Drug Des. 1992, 7, 235.
(b) Gillonneau, L.; Pierré, A.; Charton, Y.; Guilbaud, N.; Kraus-Berthier, L.; Léonce, S.; Michel, A.; Bisagni, E.; Atassi, G. J. Med. Chem. 1999, 42, 2191. (c) Hopkins, C. R. ACS Chem. Neurosci. 2010, 1, 587.

(20) cf. (a) Kobayashi, J.; Ishibashi, M. In *The Alkaloids: Chemistry* and Pharmacology; Brossi, A., Cordell, G. A., Eds.; Academic Press: San Diego, 1992; Vol. 41, pp 41–124. (b) Anthoni, U.; Christophersen, C.; Nielson, P. H. In Alkaloids: Chemical & Biological Perspectives; Pelletier, S. W., Ed.; Pergamon: Oxford, 1999; Vol. 13, pp 163–236.