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A B S T R A C T   

Pancreatic ductal adenocarcinoma (PDAC) is a highly prevalent digestive system malignancy, with a significant 
impact on public health, especially in the elderly population. The advent of the Human Genome Project has 
opened new avenues for precision medicine, allowing researchers to explore genetic markers and molecular 
targets for cancer diagnosis and treatment. Despite significant advances in genomic research, early diagnosis of 
pancreatic cancer remains elusive due to the lack of highly sensitive and specific markers. Therefore, there is a 
need for in-depth research to identify more precise and reliable diagnostic markers for pancreatic cancer. In this 
study, we utilized a combination of public databases from different sources to meticulously screen genes asso-
ciated with prognosis in pancreatic cancer. We used gene differential analysis, univariate cox regression analysis, 
least absolute selection and shrinkage operator (LASSO) regression, and multivariate cox regression analysis to 
identify genes associated with prognosis. Subsequently, we constructed a scoring system, validated its validity 
using survival analysis and ROC analysis, and further confirmed its reliability by nomogram and decision curve 
analysis (DCA). We evaluated the diagnostic value of this scoring system for pancreatic cancer prognosis and 
validated the function of the genes using single cell data analysis. Our analysis identifies six genes, including 
GABRA3, IL20RB, CDK1, GPR87, TTYH3, and KCNA2, that were strongly associated with PDAC prognosis. 
Clinical prognostic models based on these genes showed strong predictive power not only in the training set but 
also in external datasets. Functional enrichment analysis revealed significant differences between high- and low- 
risk groups mainly in immune-related functions. Additionally, we explored the potential of the risk score as a 
marker for immunotherapy response and identified key factors within the tumor microenvironment. The single- 
cell RNA sequencing analysis further enriched our understanding of cell clusters and six hub genes expressions. 
This comprehensive investigation provides valuable insights into pancreatic PDAC and its intricate immune 
landscape. The identified genes and their functional significance underscore the importance of continued 
research into improving diagnosis and treatment strategies for PDAC.   

1. Introduction 

Pancreatic cancer ranks among the most prevalent digestive system 
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tumors, predominantly afflicting the elderly, typically manifesting after 
the age of 65 [1]. According to cancer statistics in 2022, pancreatic 

cancer ranks as the 10th most common cancer in males and the 8th most 
common cancer in females concerning malignancies within the United 
States, while simultaneously occupying the grim rank of the 4th leading 
cause of cancer-related fatalities [2]. Alarmingly, a study spanning 28 
European nations forecasts that pancreatic cancer may outpace breast 
cancer, emerging as the third most fatal cancer by 2025 [3]. However, 
this menacing disease is notorious for eluding early diagnosis, with over 
80 % of patients receiving the grim news of an unresectable tumor at a 
late stage. Moreover, even with surgical resection, the 5-year survival 
rate plummets to a disheartening 8.9 % in the United States [4]. 
Pancreatic ductal adenocarcinoma (PDAC) accounts for 90 % of all 
pancreatic cancer cases [5]. Therefore, it remains imperative to intensify 
research efforts geared towards the identification and development of 
biomarkers that can revolutionize early detection strategies for PDAC. 

The completion of the Human Genome Project (HGP) has ushered in 
a new era of medical technologies, including gene testing, and has paved 
the way for precision medicine driven by extensive data analysis. This 
progress has brought about innovative approaches to the diagnosis and 
treatment of tumors, such as gene diagnostics and gene therapy [6]. 
Through large-scale genomic data collection and analysis, researchers 
can identify specific genetic variants and molecular markers associated 
with PDAC, which enable more accurate diagnosis, even at an early 
stage [7]. Noteworthy genomic research has identified that common 
mutation sites in PDAC include KRAS, TP53, PALB2, and SMAD4 [8,9]. 
However, challenges persist in the realm of early PDAC diagnosis, pri-
marily due to the lack of highly sensitive and specific markers. This 
deficiency poses a significant hurdle to early detection, particularly 
since PDAC often progresses silently without overt symptoms. The pre-
dictive accuracy of existing markers falls short, leading to the potential 
for misdiagnosis or the failure to detect the disease in its initial phases 
[10]. Given these critical limitations, there is an urgent need to uncover 
more precise and reliable diagnostic markers for PDAC, which is 
essential to enhance the chances of timely intervention and improved 
outcomes for patients. 

In this study, we systematically utilized a variety of public databases 
from diverse sources to meticulously screen for genes associated with 
prognosis of PDAC by using gene differential analysis, univariate cox 
regression analysis, least absolute selection and shrinkage operator 
(LASSO) regression, and multivariate cox regression analysis. Subse-
quently, we constructed a scoring system, rigorously validated it using 

survival analysis, and further substantiated its reliability through 
nomogram and decision curve analysis (DCA). We then proceeded to 

evaluate the diagnostic value of our scoring system in predicting the 
prognosis of PDAC and substantiated its functionality through single-cell 
RNA sequencing (scRNA-seq) analysis. We firmly believe that our 
research will make a significant contribution to the robust analysis of 
prognostic indicators at the genetic level in PDAC and provide effective 
biomarkers for its diagnosis and prognosis. 

2. Method 

2.1. Data collection and analysis 

TCGA-GETx PDAC transcriptome, genome, and clinical information 
were downloaded from the UCSC Xena platform (https://xena.ucsc. 
edu/) [11], while pancreatic cancer Australia cohere (PACA-AU) and 
Canada cohere (PACA-CA) transcriptome and clinical information were 
obtained from the International Cancer Genome Consortium (ICGC) 
website (https://dcc.icgc.org/) [12]. Pancreatic cancer microarray data 
(GSE57495, GSE85916) were downloaded from the GEO database (http 
s://www.ncbi.nlm.nih.gov/geo/) [13]. The sample selection criteria 
were as follows: (1) exclusion of patients with non-pancreatic ductal 
adenocarcinoma; (2) exclusion of patients with incomplete prognostic 
information and a survival time of less than 30 days; (3) exclusion of 
patients with concomitant malignant tumors in other sites or those who 
received chemotherapy and radiotherapy. Detailed clinical information 
is presented in Table 1. The analytical workflow is illustrated in Fig. 1. 

2.2. Screening of prognostic-related differentially expressed genes and 
construction of risk score 

The tumor and normal tissues of TCGA and GETx datasets were 
grouped, and differentially expressed coding genes were extracted using 
the DESeq2 package [14] with a threshold of |logFC|>1 & adjust p value 
< 0.05. Prognostic-related differentially expressed genes were screened 
using survival analysis with a threshold of p < 0.05. The TCGA dataset 
was divided into a training set and a testing set in a 1:1 ratio. Univariate 
cox regression analysis, LASSO regression, and multivariate cox 
regression analysis were conducted based on the clinical information 
and expression profile information to identify the prognostic-related 
differentially expressed coding genes. Then, the risk score was calcu-
lated based on gene expression values and HR values using the formula: 

Abbreviation 

AUC area under the ROC 
BF biological processes 
CC cellular components 
CDKs cyclin-dependent kinases 
DCA decision curve analysis 
GABA γ-aminobutyric acid 
GEO gene expression omnibus 
GO gene ontology 
GSEA gene set enrichment analysis 
GSVA gene set variation analysis 
HGP Human Genome Project 
HR hazard ratios 
ICGC International Cancer Genome Consortium 
IQR interquartile range 
KNN K-nearest neighbor 
LASSO least absolute selection and shrinkage operator 

logFC log (fold change) 
LUAD lung adenocarcinoma 
LUSC lung squamous cell carcinoma 
MF and molecular functions 
OS overall survival 
PACA-AU pancreatic cancer Australia cohere 
PACA-CA pancreatic cancer Canada cohere 
PCA principal component analysis 
PDAC pancreatic ductal adenocarcinoma 
ROC receiver operating characteristic 
scRNA-seq single-cell RNA sequencing 
SKCM skin cutaneous melanoma 
STAD stomach adenocarcinoma 
TIDE Tumor Immune Dysfunction and Exclusion 
tSNE t-distributed stochastic neighbor embedding 
UCEC uterine corpus endometrial carcinoma 
UMAP uniform manifold approximation and projection  
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Risk score = =
∑N

i=1HRfi ∗ geneGi. 

2.3. Prognostic model performance validation 

The prognostic risk scores calculated were used to divide the datasets 
(TCGA training set, testing set, ICGC and GEO datasets) into high-risk 
and low-risk groups based on the median risk score. Survival analysis 
was used to predict the overall survival (OS) between the two groups. 
The area under the time-dependent ROC curve (AUC) was used to 
quantify risk score model to predict the OS at 1-, 2-, and 3-year time 
point. Principal component analysis (PCA) was conducted on the sam-
ples to visualize the distribution of individual samples within these high 
and low-risk groups. 

A multivariate cox regression model, including both risk scores and 
risk groups, was constructed and visualized using a nomogram. The 
model’s performance was validated through calibration curves, and 
clinical benefits were evaluated using decision curve analysis (DCA). 

2.4. Functional enrichment analysis 

To clarify the potential biological functions of the high-risk and low- 
risk groups, we performed gene ontology (GO) enrichment analysis, 
including biological processes (BF), cellular components (CC), and mo-
lecular functions (MF), as well as gene set enrichment analysis (GSEA). 
An adjusted p value < 0.05 was set as the threshold for significance. 

Table 1 
The clinical characteristics of the patients used in the paper.   

TCGA ICGC GEO 

All Test set Train set p PACA-AU PACA-CA GSE57495 GSE85916 

n 129 64 65  55 105 63 79 
Gender female (%) 60(46.5) 27(42.2) 33(50.8) 0.423 26(47.3) 49(47.1) – – 
age (Median [IQR]) 65.82 [56.82, 

73.35] 
64.81 [55.53, 
72.35] 

67.33 [57.49, 
73.35] 

0.214 68.50 [57.25, 
75.75] 

64.00 [57.00, 
73.00] 

– – 

T_stage (%)    0.032     
T1 4 (3.1) 4 (6.2) 0 (0.0) – 4 (7.4) – – – 
T2 13 (10.1) 8 (12.5) 5 (7.7) – 48 (88.9) – – – 
T3 109 (84.5) 49 (76.6) 60 (92.3) – 1 (1.9) – – – 
T4 3 (2.3) 3 (4.7) 0 (0.0) – 1 (1.9) – – – 
M_stage (%)    0.604     
M0 62 (48.1) 31 (48.4) 31 (47.7) – 1 (1.9) – – – 
M1 4 (3.1) 1 (1.6) 3 (4.6) – 3 (5.6) – – – 
MX 63 (48.8) 32 (50.0) 31 (47.7) – 50 (92.6) – – – 
N_stage (%)    0.365     
N0 33 (25.6) 19 (29.7) 14 (21.5) – 15 (27.8) – – – 
N1 95 (73.6) 45 (70.3) 50 (76.9) – 38 (70.4) – – – 
NX 1 (0.8) 0 (0.0) 1 (1.5) – 1 (1.9) – – – 
Stage (%)    0.146     
1 10 (7.8) 7 (10.9) 3 (4.6) – – 8(7.7) 13(20.6) – 
2 111 (86.0) 53 (82.8) 58 (89.2) – – 92(88.5) 50(79.4) – 
3 3 (2.3) 3 (4.7) 0 (0.0) – – 3(2.9) – – 
4 4 (3.1) 1 (1.6) 3 (4.6) – – 1(1.0) – – 
x 1 (0.8) 0 (0.0) 1 (1.5) – – – – – 
Survival time (Median 

[IQR]) 
1.28 [0.78, 1.82] 1.32 [0.78, 1.94] 1.28 [0.80, 1.68] 0.36 1.16 [0.71, 2.07] 1.67 [0.81, 3.46] 1.76 [1.13, 

2.53] 
1.50 [0.91, 
2.63]  

Fig. 1. Flow chart of the paper.  
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2.5. Analysis of immune cell infiltration 

To evaluate the predictive capacity of the scoring system concerning 
the tumor immune microenvironment, we utilized ESTIMATE algo-
rithms [15] to calculate the ratio of immune cells to stromal cells in each 
sample. We also assessed the proportion of tumor-infiltrating immune 
cells using algorithms including ssGSEA [16], and xCELL [17]. 

Furthermore, in order to assess the immune therapy response in 
different risk groups, we employed the algorithms from the TIDE web-
site (http://tide.dfci.harvard.edu) [18]. TIDE stands for Tumor Immune 
Dysfunction and Exclusion. The TIDE score for each tumor samples can 
serve as a surrogate biomarker to predict response to immune check-
point blockade, including anti-PD1 and anti-CTLA4. Additionally, we 
also estimated the activity of 13 immune mediated functions [19] using 
GSVA, the reference file sees Table S1. 

2.6. ScRNA-seq data analysis 

To further implore the role of six genes in PDAC, the scRNA-seq data 
obtained from National Genomics Data Center (https://ngdc.cncb.ac.cn 
/, NO: CRA001160) [20]. The "Seurat" package [21,22] was used for 
scRNA-seq analysis. The standard Seurat pipeline, including normali-
zation, feature selection, and dimensional reduction with principal 
component analysis (PCA), t-distributed stochastic neighbor embedding 
(tSNE), and uniform manifold approximation and projection (UMAP), 
was used to construct a K-nearest neighbor (KNN) graph after dimen-
sional reduction. We filtered out low-quality cells based on two criteria: 
(1) genes expressed less than 200 or greater than 2500; (2) 
mitochondrial-associated genes expressed more than 10 %. The top 
3000 variable genes were detected using the "vst" selection method. PCA 
was then performed, and the top 20 principal components were used for 
dimensional reduction using Seurat’s built-in PCA, tSNE, or UMAP. 

Cell types were annotated based on expression of known markers: 
EPCAM, KRT8, CFTR, MMP7, CDH5, PLVAP, VWF, CLDN5 (endocrine 
cell), LUM, DCN, COL1A1, SPARC, ACTA2, TAGLN (fibroblast), AIF1, 
CD68, HLA-DRA (macrophage), CD3D, CD3E, CD3G (T cell), MS4A1, 
CD79A, CD79B (B cell). 

2.7. Statistical analysis 

All statistical tests were considered significant if the p value was less 
than 0.05. R version 4.1.2 (R Foundation for Statistical Computing, 
Vienna, Austria) and RStudio were used to perform all statistical ana-
lyses [23,24]. Package used in software included: caret [25], survival 
[26], glmet [27], survminer [28], forestplot [29], rms [30], cowplot 
[31], ggrisk [32], ggsci [33], scatterplot3d [34], survivalROC [35], 
enrichplot [36], clusterProfiler [37], regplot [38], ggDCA [39], ggplot2 
[40], org.Hs.eg.db [41], IOBR [42], GSVA [43]. 

3. Results 

3.1. Clinical feature used in the study 

After sample filtration, a total of 129 PDAC patients from TCGA, 55 
from PACA-AU, 105 from PACA-CA, 63 from GSE57495, and 79 from 
GSE85916 were included for subsequent analysis. Among the 129 pa-
tients from TCGA, 65 were randomly assigned to the training set, while 
64 were designated for the testing set, and no statistically significant 
differences were observed in the grouping analysis. The results indicated 
that the distribution of gender in PDAC patients ranged from 46.5 % to 
47.3 % (female), the mean age varied from 64y to 68.5y, and the average 
survival time spanned from 1.16 to 1.76 years, and most patients (79.4 
%–89.2 %) were in stage 2, with minimal variation among data from 
different sources (Table 1). 

3.2. Prognosis-related genes and the construction of models 

Firstly, a total of 7212 differentially expressed genes were identified 
between the tumor group and the normal group. Among them, 743 
mRNA showed a significant correlation with patient clinical prognosis 
and were further screened through univariate cox regression analysis, 
LASSO regression, and multivariate cox regression analysis using the 
training set. Ultimately, 6 mRNA including GABRA3, IL20RB, CDK1, 
GPR87, TTYH3, and KCNA2, were selected for constructing the tumor 
prognosis model (Table S2). Notably, the expression levels of 6 genes 
exhibited a significant correlation with PDAC survival prognosis (Fig. 2). 
Among them, high expression of GABRA3, TTYH3, and KCNA2was 
associated with a favorable prognosis in PDAC, indicating a protective 
role. Conversely, high expression of IL20RB, CDK1, and GPR87sug-
gested a higher likelihood of these genes acting as oncogenes, and their 
increased expression was correlated with an adverse prognosis. 

3.3. Clinical prognostic model evaluation and validation 

A risk score model was constructed based on the expression values of 
six genes and hazard ratios (HR) obtained from multivariate cox 
regression, and its clinical utility was assessed through survival analysis 
and ROC analysis. This model exhibited robust predictive capabilities, 
performing well not only in the training set but also in the test set of the 
same cohort. Furthermore, its predictive performance extended to 
external cohorts, including the ICGC datasets (PACA-AU, PACA-CA) and 
the GEO datasets (GSE85916, GSE57495), where high-risk score groups 
showed poorer clinical outcomes, with p-values all less than 0.05 
(Fig. 3). Additionally, based on ROC analysis, in the validation set, the 
risk score demonstrated good prognostic value for 1-year OS in 
pancreatic cancer, with AUC values ranging from 0.6 to 0.748 (Fig. 4). 
Moreover, the risk score plot constructed from multivariate cox regres-
sion indicated that most patients with a clinical outcome of death were 
predominantly in the high-risk score group. And the heatmap showed 
differential expression of the six hub genes among different risk score 
groups (Fig. 5). Among these genes, patients with high expression of 
KCNA, TTYH3, and low expression of GPR87, CDK1, IL20RB, GABAR3 
consistently exhibited a better prognosis in the majority of the datasets. 
This aligns with the survival analysis findings presented in Fig. 2. 

As evident from the three-dimensional PCA plots (Fig. 6A), the risk 
group effectively differentiate between various samples and likely ac-
count for approximately 65 % of the variability. Furthermore, a multi-
variate cox regression model that included age, gender, stage, risk score, 
and risk group was developed and visualized using a nomogram 
(Fig. 6B). Within this model, high-risk group, higher risk scores, and 
advanced N stage were identified as independent prognostic factors for 
1-, 2-, 3-years OS in pancreatic cancer. The model’s performance was 
assessed through calibration curve analysis, yielding a C-index of 0.751 
(Fig. 6C). The prognostic benefit of the model was confirmed through 
diagnostic decision curve analysis (DCA), demonstrating that both 
model 1, which included risk score, and model 2, which included both 
risk group and risk score, provided greater utility than the baseline 
model (Fig. 6D). 

3.4. Functional enrichment analysis 

To comprehensively assess the effectiveness of the risk score system 
in pancreatic cancer, we conducted differential analysis and functional 
enrichment by stratifying the PAAD cohort into high-risk and low-risk 
groups based on the median scores of each sample. Our observations 
from both GO analysis and GSEA analysis revealed significant distinc-
tions between these two groups, mainly in immune cell functions, 
including antigen binding, B-cell receptor signaling pathway, immune 
globulin complex pathway, etc. These findings indicated that the novel 
scoring system could serve as an effective tool for assessing immune- 
related functions in pancreatic cancer (Fig. 7). 

Y. Chen et al.                                                                                                                                                                                                                                    

http://tide.dfci.harvard.edu
https://ngdc.cncb.ac.cn/
https://ngdc.cncb.ac.cn/


Biochemistry and Biophysics Reports 37 (2024) 101580

5

3.5. Immune cell infiltration 

By applying algorithmic analysis of the tumor immune microenvi-
ronment, we expanded our study to examine the variations in immune 
cell infiltration between the high-risk and low-risk groups. We observed 
notable distinctions in central memory CD4 T cells, effector memory 
CD4/CD8 T cells, immature B cells, and natural killer cells (Fig. 8A), as 
well as variations in immune scores and stroma scores (Fig. 8B and C). 

Regarding the response to immunotherapy, a noteworthy distinction 
in TIDE scores emerges between the high-risk and low-risk groups. This 
suggests that the risk score could potentially serve as one of the markers 
for identifying immunotherapy, as well as for uncovering immune 
dysfunction. Additionally, it might provide insights into the presence of 

Merk18, MDSC, and CD8 cells within the tumor microenvironment. 
Moreover, it signified a positive response to T cell co-inhibition, T cell 
co-stimulation and IFNG treatment (Fig. 8D and E). 

3.6. ScRNA-seq profiling, clustering, and gene expression 

After preprocessing the scRNA-seq data according to the stringent 
quality control criteria mentioned earlier, we included a total of 41,986 
cancer cells in the analysis (Fig. S1). Employing PCA, tSNE, and UMAP 
classification methods, we categorized all cells into nine clusters, 
including ductal cells, fibroblasts, macrophages, endothelial cells, T 
cells, B cells, and other cell types (Fig. S2, Fig. 9A). The distribution of 
the six hub genes across these nine cell clusters reveals that CDK1 was 

Fig. 2. Survival analysis of six hub gene in TCGA. Survival analysis of (A) GABRA3, (B) IL20RB, (C) CDK1, (D) GPR87, (E) TTYH3, and (F) KCNA2 in TCGA database. 
The red line represents samples with low gene expression, while the cyan line represents samples with high gene expression. 

Fig. 3. Testing and validating the OS predictive performance of the risk score. The performance of the risk score in six independent datasets, including A: TCGA- 
Training set, B: TCGA-Testing set, C: PACA-CA, D: PACA-AU, E: GSE85916; and F: GSE57495. The red line represents samples with high-risk score, while the 
cyan line represents samples with low-risk score. 
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predominantly expressed in tumor cells, TTYH3 was mainly expressed in 
macrophages and tumor cells, while the remaining genes exhibited 
lower expression levels across other cell types (Fig. 9B and C). 

4. Discussion 

Currently, numerous studies have focused on the identification of 
prognostic genes and predictive models for pancreatic cancer [44–47]. 
Our research results contribute significantly to enhancing our under-
standing of PDAC diagnosis and prognosis. The cohorts from various 
database sources show similar clinical characteristics, with pancreatic 
cancer being more prevalent in men and tending to affect older in-
dividuals. It’s worth noting that there were more patients in stage 2, 
which could be attributed to the fact that the samples were primarily 
derived from surgical patients, that might influence our results. The 
identification of six prognostic genes and the development of a risk score 
model represent substantial contributions to this field. The model 
demonstrates robust predictive capabilities and has been validated 
across multiple external datasets, highlighting its potential clinical 
utility. 

The six genes identified in our study, including GABRA3, IL20RB, 
CDK1, GPR87, TTYH3, and KCNA2. GABRA3, typically expressed in 
neuronal tissues, is a subunit of the cell surface receptor known as the 
γ-aminobutyric acid (GABA) type A receptor, which functions as a 
chloride channel. The expression of GABRA3 can influence the prolif-
eration, migration, and invasion of pancreatic cancer cells [48] and 
breast cancer cells [49], designating it as one of the prognosis-related 
genes. However, it’s worth noting that, at the single-cell level, we did 
not observe significant variations in the expression of this gene among 
different type of cells. 

IL20RB, encoding the β subunit of the interleukin-20 receptor and 
forming a heterodimeric cytokine receptor with IL20RA or IL22RA1, has 
been associated with various human malignancies, including clear cell 
renal cell carcinoma, colorectal adenocarcinoma, and breast cancer 
[50–52]. Meanwhile, IL20RB has been associated with the prognosis of 

PDAC [53], and the study have reported a negative correlation between 
its expression and that of PDL1, which could be used as an immuno-
therapeutic target [54]. In our study, we observed expression of this 
gene at the single-cell level and appeared to be higher in tumor cells. 
However, further in-depth research is required to fully understand its 
functionality. 

CDK1, one of the cyclin-dependent kinases (CDKs) and the only 
essential CDK to drive the mammalian cell cycle [55], plays a role in 
both promoting and inhibiting tumor processes through substrate 
phosphorylation [56]. High expression of CDK1 in PDAC was associated 
with short survival [57]. Our study also confirmed that CDK1 is highly 
expressed in a small proportion of pancreatic ductal cells. 

GPR87, known as G protein-coupled receptor 87, is newly 
deorphanized lysophosphatidic acid receptor G protein-coupled re-
ceptors [58]. It is upregulated in various malignancies and is vital to the 
proliferation and survival of tumor cells [59]. The expression of GPR87 
is increased in pancreatic cancer contributing proliferation, angiogen-
esis, and increased resistance to gemcitabine-induced apoptosis and 
tumorigenicity [60]. 

TTYH3 belongs to tweety family of genes family encoding large 
conductance chloride (maxi-Cl-) channels [61,62]. TTYH3 was overex-
pressed and was correlation with the infiltration of TAMs, Treg infil-
tration T cell exhaustion and worse immunotherapy response in lung 
cancer tissues [63]. TTYH3 facilitated cellular migration and regulated 
expression of epithelial-mesenchymal transition-related protein by 
increasing calcium influx and intracellular chloride concentration in 
hepatocellular carcinoma [64]. 

KCNA2 is Potassium Voltage-Gated Channel Subfamily A Member 2, 
mainly expressed in the brain and the central nervous system [65,66]. A 
meta-analysis study showed that KCNA2, KCNA3, and KCNA5 as the 
predominant expressed KCNA family genes in skin cutaneous melanoma 
(SKCM), uterine corpus endometrial carcinoma (UCEC), stomach 
adenocarcinoma (STAD), lung adenocarcinoma (LUAD), and lung 
squamous cell carcinoma (LUSC); KCNA3 expression was related to 
prognosis in SKCM, LUAD, and LUSC and KCNA5 expression was related 

Fig. 4. Performing time-dependent ROC curve analysis for 1-year, 2-year, and 3-year OS. The risk score model for OS at 1-year, 2-year, and 3-year in datasets A: 
TCGA-Training set, B: TCGA-Testing set, C: PACA-CA, D: PACA-AU, E: GSE85916; F: GSE57495. AUC: area under the curve, ROC: receiver operating characteristic 
curve, OS: overall survival. 
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to prognosis in STAD, while KCNA2 expression was notedly correlated 
with patients’ survival in cancers [67]. However, the survival analyses 
and the gene expression heat map in our study suggestted that high 
expression of KCNA2 in pancreatic cancer patients was linked to a better 
prognosis. This intriguing observation warrants further investigation 
and experimental confirmation in the future. 

The use of a single gene to predict the prognosis of PDAC is indeed 
limited, which is why current studies often opt for multi-gene con-
structed models to predict tumor prognosis. Given that most pancreatic 
cancer patients have a survival period of only 1–2 years, early identifi-
cation of patients with poor prognosis is of paramount importance. As 
illustrated in Fig. 3 (Survival Analysis) and Fig. 4 (Time-dependent 
ROC), our developed model showed a substantial difference in survival 
prediction, particularly within the 1 to 2-year range, across various 
external datasets. These findings underscore the diagnostic and prog-
nostic potential of our model for early identification and risk assessment 
in PDAC patients. 

Our study constructed a scoring system that observed differences in 
immune cell function between risk groups. There is an intricate rela-
tionship between immune cell function and PDAC, which often creates 
an immunosuppressive microenvironment that hinders immune cell 

activity. Immune cells such as T cells and natural killer cells play a 
crucial role in tumor surveillance and eradication. It is critical to un-
derstand the functional dynamics of these cells in the context of PDAC 
[68,69]. Immunotherapy stands as a beacon of hope in the quest to treat 
PDAC. Emerging strategies, including checkpoint inhibitors, hold sub-
stantial promise in ongoing clinical trials. Nevertheless, formidable 
therapeutic challenges persist, primarily rooted in PDAC’s immuno-
suppressive microenvironment [70–72]. Accurately predicting and 
evaluating immunotherapy responses is paramount. Our scoring system 
plays a pivotal role in forecasting the efficacy of tumor immunotherapy, 
particularly with regards to T cell and IFN treatment. This progress 
marks a significant stride toward more effective PDAC therapies, offer-
ing renewed optimism for patients and clinicians. 

In summary, our study provides a comprehensive exploration of 
prognostic-related genes and risk score models in PDAC. We identified 
six key genes-GABRA3, IL20RB, CDK1, GPR87, TTYH3, and KCNA2-that 
are important for PDAC prognosis. The strong predictive power of our 
risk score model was validated in different datasets, demonstrating its 
clinical potential to stratify patients and inform treatment decisions. 
Furthermore, our findings reveal the critical role of these genes in im-
mune cell function and their relevance to PDAC immunotherapy. This 

Fig. 5. Risk score plot based on multivariate cox regression. Risk curves and scatter plots display the risk score and outcome status of each sample in each database, 
including A: TCGA-Training set, B: TCGA-Testing set, C: PACA-CA, D: PACA-AU, E: GSE85916; F: GSE57495. The heatmap illustrates the expression levels of 6 genes 
in the high-risk and low-risk groups. 
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Fig. 6. Clinical prognostic model evaluation and validation. A.3D-PCA was conducted to visualize the distribution of individual samples within these high and low- 
risk groups. B. The nomogram showed the multivariate cox regression model constructed, including both risk scores and risk groups. C. Calibration curves confirm 
the predictive performance of the model for 1-, 2-, and 3-year OS. D. Decision curve analysis (DCA) was used to evaluate the clinical advantages of different models at 
1-year, 2-year, and 3-year, including model1 with risk score and model2 with both risk score and risk group. 

Fig. 7. Function enrichment analysis of risk score model. The top 10 terms in Biological Process (BP) (A), Cellular Component (CC) (B), and Molecular Function (MF) 
(C) categories from GO enrichment analysis. The top 15 terms in pathways from KEGG enrichment analysis (D). A multi-GSEA plot displaying the principal 
enrichment pathways in GO (E) and in KEGG (F). 
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knowledge provides valuable insights into enhancing the effectiveness 
of immunotherapeutic interventions against this challenging cancer. 
Essentially, our research helps improve diagnosis, prognostic assess-
ment, and treatment strategies for PDAC, bringing hope for better out-
comes and quality of life for affected individuals. Future studies should 
delve more deeply into the functional mechanisms of these genes and 
explore their therapeutic implications. PDAC research remains a dy-
namic field with great promise. 

Although our study gained valuable insights, certain limitations 
should be acknowledged. First, although our risk score model showed 
good predictive power in different datasets, further validation in a larger 
and more diverse patient population is needed. Secondly, our analysis is 
mainly based on bioinformatics data, and the expression levels of the 
identified genes need to be experimentally verified in pancreatic cancer 
tissues or cells using techniques such as real-time PCR and Western blot 
analysis. Furthermore, our study focused on the prognostic impact of the 
identified genes without in-depth investigation of their functional 
mechanisms. Future studies should explore the potential biological 
processes by which these genes influence PDAC progression. Finally, 
while our study provides insights into immune cell function and 
immunotherapy, the actual clinical application of our findings requires 
further investigation and validation. 
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