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Abstract

We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen
Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but
not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine
monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while
loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus
species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-
resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche.
We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for
drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the
position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique,
exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased
survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.
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Introduction

Fungal infections of humans are highly refractive to pharma-

cological intervention due to the similarities in eukaryotic cell

physiology. The limited array of fungal cell-specific features has

therefore been the focus of antifungal drug research for many

years, with the fungal cell wall and cell membrane being primary

targets. Recent studies exploring potential drug targets in fungal

genomes have found a surprisingly small number of essential

targets with little identity to a human homologue [1–4]. An

alternate approach to targeting fungal-specific components is

therefore to instead target shared proteins that are well charac-

terized in both the host and pathogen, and exploit more subtle

differences between the two. This approach is exemplified by the

novel antifungal sordarin and its derivatives [5,6].

One of the leading life-threatening fungal infections worldwide

is cryptococcal meningitis caused by Cryptococcus neoformans, a

pathogen that infects primarily immunocompromised individuals,

and its sister species Cryptococcus gattii, which generally infects

immunocompetent individuals [7]. The estimated annual global

incidence of cryptococcal meningitis is estimated to be 1.1 million

cases annually, causing ,624,000 deaths per year, mostly in areas

with high HIV rates, such as sub-Saharan Africa. These are

alarming numbers for a pathogen whose treatment regimen has

not altered significantly in over a decade [8–10]. Treatment of

systemic fungal infections predominantly relies on a small group of

antifungals comprising azoles, polyenes, echinocandins and the

antimetabolite flucytosine. Numerous problems exist with these

treatments however, including their notoriously variable efficacy

across the limited spectrum of human fungal pathogens, high cost

and toxicity, a frequent requirement for hospitalization, and

emerging drug resistance [10,11]. The design of new classes of

effective, readily available and affordable antifungals is therefore a

matter of urgency.

Rational drug design was pioneered in the purine metabolic

pathway, a conserved series of processes responsible for providing

the cell with a ready supply of ATP and GTP as both an energy

source and for critical cellular processes including replication,

transcription, translation and signal transduction. This pathway

has continued to serve as a fertile source of therapeutic agent

development for over fifty years [12], and growing evidence

supports it as a potential source of effective antifungal targets.
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Disruption of de novo ATP or GTP biosynthesis genes in Candida

albicans and Aspergillus fumigatus leads to complete avirulence in

mammalian models [13–15]. In Cryptococcus, mutations that

globally affect ATP and GTP biosynthesis lead to attenuated or

complete loss of virulence in vivo, as well as general growth defects

and impaired virulence factor expression [16,17].

Two key enzymes supplying guanine nucleotides to a cell are

inosine monophosphate (IMP) dehydrogenase (IMPDH), the rate-

limiting catalyst and first committed step of de novo GTP

biosynthesis, and hypoxanthine-xanthine-guanine phosphoribosyl-

transferase (HXGPRT), responsible for recycling purine nucleo-

bases into nucleoside monophosphates in the GTP and ATP

salvage pathways. As a key metabolic enzyme, IMPDH is highly

expressed in proliferating cells and has become a major target of

immunosuppressive and antiviral chemotherapy, and has attracted

great interest as an anticancer, antiprotozoal, antibacterial and

antifungal target [18–21]. Four IMPDH inhibitors are currently

approved for treatments: the immunosuppressants mycophenolic

acid (MPA) and mizoribine, the anticancer agent tiazofurin, and

the antiviral ribavirin. There are significant structural and

functional differences between microbial and human IMPDHs,

suggesting that species-specific inhibitors of key metabolic

pathways hold considerable potential as novel therapeutics

[19,21–23]. In this study we have investigated the potential of

the GTP biosynthesis pathway and the enzymes IMPDH and

HXGPRT as candidate antifungal targets using genetic, structural

and functional approaches to validate purine metabolism as a

viable chemotherapeutic target in C. neoformans.

Results

Purine metabolism in Cryptococcus lacks several
canonical pathway elements

Unlike the purine-rich pigeon guano natural environment of C.

neoformans, the human central nervous system inhabited during systemic

infection is purine-poor [24], suggesting that during infection de novo

purine synthesis could be important for cell survival. A bioinformatic

survey of the available C. neoformans and C. gattii genomes to identify

components of the purine biosynthetic pathway identified Cryptococcus

homologs of most genes of the canonical purine pathway (Figure 1A),

with the exception of adenosine deaminase, adenine deaminase, and

GMP reductase. As previously reported [25], xanthine dehydrogenase

is also absent but a potential equivalent, an a-ketoglutarate-dependent

dioxygenase, is present. Each gene identified is present as a single copy,

including those encoding two key components of the GTP biosynthetic

pathway: IMPDH required for de novo GTP synthesis (IMD1) and a

phosphoribosyltransferase (PRTase) required for the GTP salvage

pathway (HPT1).

IMPDH is essential for de novo GTP biosynthesis
IMPDH performs the rate-limiting, first step in de novo GTP

biosynthesis, the NAD+-dependent conversion of inosine mono-

phosphate (IMP) to xanthosine monophosphate (XMP) via a two-

step oxidation and hydrolysis reaction. The reaction mechanism is

complex and involves a large conformational change mid-reaction,

which a number of inhibitors exploit [26–30]. To determine if the

C. neoformans IMD1 gene encodes a bona fide IMPDH, we deleted it

in the well-characterized C. neoformans var. grubii strain H99. The

imd1D strain was a guanine auxotroph and could not grow on

minimal medium (Figure 1B). Supplementation of the medium

with exogenous guanine restored growth, which we later showed

was via a salvage pathway. Introduction of the E. coli IMPDH guaB

into the deletion mutant fully restored growth on minimal

medium, confirming that the IMD1-encoded enzyme performs

the conversion of IMP to XMP (Figure 1B). Finally, the imd1D
phenotype could be mimicked by the addition of the IMPDH

inhibitor MPA to the growth medium; both the wild-type and

IMD1 complemented strains were equally sensitive to MPA at low

concentrations (5 mg/mL). This phenotype is abolished when the

media is supplemented with guanine, as the salvage pathway is

able to bypass the block at IMPDH.

imd1D rescue via purine salvage is mediated by
phosphoribosyltransferase Hpt1

Purines present in both the bird guano ecological niche of

Cryptococcus and within the human host are potential substrates of a

GTP salvage pathway. Purine salvage is mediated by PRTase

enzymes, which catalyze the transfer of a ribose 5-phosphate-

derived phosphoribosylpyrophosphate group to guanine or other

purine nucleobases [31]. Upon deletion of the identified HPT1 gene

in strain H99, the mutant exhibited wild-type growth on rich and

minimal media (Figure 1B). MPA-mediated growth inhibition was

abolished by the presence of guanine in all strains but the hpt1D
mutant, demonstrating that Hpt1 mediates salvage of guanine

(Figure 1B). Heterologous expression of the E. coli PRTase gpt in the

hpt1D mutant restored wild-type growth on guanine, confirming the

role of the C. neoformans gene as a PRTase. Further testing revealed

that Hpt1 could accept hypoxanthine, xanthine and guanine as

substrates, defining the enzyme as a hypoxanthine-xanthine-

guanine phosphoribosyltransferase (HXGPRT) (Figure S1).

Loss of IMPDH delays synthesis of the cryptococcal
polysaccharide capsule and melanin

As GTP biosynthesis is crucial to many cellular processes, we

sought to determine if guanine auxotrophy affected pathogenicity

via effects on virulence factor production. Despite addition of

guanine, the wild-type phenotype was not completely restored in

the imd1D mutant, which exhibited slow growth at 30uC and was

unable to grow on rich media. Accordingly, in a growth curve

assay the imd1D mutant had an extended lag phase of almost

48 hours compared to wild-type and reached a much lower final

cell density (Figure 2A). In capsule-inducing conditions the imd1D

Author Summary

The fungal pathogen Cryptococcus neoformans is respon-
sible for up to a million deaths annually, and the currently
available antifungal medicines used to combat this
infection are limited and patently inadequate. We have
investigated the GTP biosynthesis pathway as a new drug
target, a pathway that has been a chemotherapy target in
humans for many years. We found that inhibiting or
deleting one specific enzyme in this pathway, IMP
dehydrogenase, was extremely effective at weakening
Cryptococcus as a pathogen or killing it outright. Intrigu-
ingly, we isolated an extremely rare Cryptococcus isolate
that was naturally drug resistant, suggesting that microbial
competitors of Cryptococcus may also use this strategy to
out-compete it in the wild. By comparison of the subtype
responsible for the majority of infections worldwide with
this rare drug resistant form, we have characterized the
enzyme’s structure and mechanism, revealing a number of
strategies to develop more potent and specific anti-IMP
dehydrogenase drugs for Cryptococcus. Treating nema-
todes grown on Cryptococcus with the inhibitors led to
longer survival times for the worms, validating our
strategy.

GTP Biosynthesis in Cryptococcus
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strain showed a significantly smaller capsule after 24 hours at both

30uC and 37uC (Figure 2B), approximately one-third and one-

quarter smaller, respectively. Capsule size after extended growth

($96 hours) was similar to wild-type (data not shown). On solid

melanization media the imd1D mutant demonstrated reduced

melanin production at both 30uC and human body temperature

of 37uC (Figure 2C), although this defect was not apparent in liquid

L-DOPA medium (Figure S2). Elaboration of hyphae was notably

attenuated in matings involving an imd1D mutant created in an

isogenic MATa mating-type background, while the imd1D mutant in

the MATa mating-type background was unaffected (Figure 2D). In

contrast to the pleiotropism of the imd1D mutation, the hpt1D
mutant showed no apparent defect in growth at human body

temperature, capsule production, or melanization at either 30uC or

37uC, and loss of Hpt1 also appeared to have no effect on hyphal

filamentation during mating (Figure 2B, C, D and data not shown).

The GTP salvage pathway is dispensable for C.
neoformans virulence in two animal models

GTP salvage pathways are known to play an important role in

recycling metabolically expensive guanine nucleobases and main-

taining purine homeostasis. Although the hpt1D salvage deficient

mutant showed no phenotype on rich or minimal media, we

hypothesized that as the infection process might pose a greater

metabolic strain, this enzymatic function may play an important

role. We cultured Caenorhabditis elegans, a natural predator of

Cryptococcus, on the wild-type, hpt1D and hpt1D HPT1 strains. No

significant difference was observed between survival times of the

worms on the three strains on either rich or minimal media

(Figure 3A). The addition of guanine to both the minimal and rich

media again produced no significant difference between the three

strains (data not shown), indicating that Hpt1-dependent salvage

of purines is dispensable in the nematode model. We also tested

the impact of loss of HPT1 on virulence in the murine inhalation

model of cryptococcosis. Again, there was no significant difference

between the three strains (Figure 3B). Despite the extra stresses of

increased temperature and the murine immune system, de novo

purine biosynthesis alone proved sufficient for full virulence of

Cryptococcus in a mammalian host.

Figure 1. Components of the purine metabolic pathway in Cryptococcus. (A) BLASTp analysis using S. cerevisiae orthologs reveals that the
majority of the components of the canonical purine biosynthetic pathway are present in the genome of C. neoformans var. grubii. Enzymes or
activities missing are greyed. (B) 10-fold serial dilutions of indicated strains were spotted onto YNB medium supplemented with specified purines
(1 mM) and/or MPA (5 mg/mL) and incubated for two days at 30uC. The imd1D deletion strain is an auxotroph; MPA mimics the effect of an imd1D
deletion, while E. coli guaB is highly resistant to MPA. A phenotype for the hpt1D strain is only observed in the presence of MPA.
doi:10.1371/journal.ppat.1002957.g001
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De novo GTP biosynthesis is critical to cryptococcal
virulence in vivo

Metabolic enzymes in Cryptococcus have been shown previously

to play ‘moonlighting’ roles in virulence, most famously urease

[32,33], and some are found in extracellular vesicles of virulence

components secreted by Cryptococcus, including IMPDH [34,35]. In

the C. elegans virulence model on standard worm assay rich media

or rich media supplemented with exogenous guanine, the imd1D
strain did not display any significant difference in killing from the

wild-type strain H99 or the complemented strain imd1D IMD1

(Figure 3C and data not shown). On minimal media lacking

guanine however, the imd1D strain was severely compromised for

virulence (p,0.0001) in the worm.

We next assessed the requirement for the GTP de novo pathway

using the murine inhalation model of cryptococcosis. As in the

nematode minimal media model, the imd1D mutant was unable to

kill mice, even after 50 days (p,0.0001; Figure 3D). Certain

functions of IMPDH are therefore critical for successful infection

of a mammalian host by Cryptococcus. To more precisely examine

the effect of loss of IMPDH on Cryptococcus, we determined the

fungal burden for the imd1D strain for various organs at multiple

timepoints during murine infection. Compared to the proliferation

and dissemination that occurs during a wild-type infection, imd1D
cell counts dropped rapidly after initial inoculation and the strain

Figure 2. Contribution of purine biosynthesis genes to the virulence component of Cryptococcus. (A) Strains were grown for five days in
RPMI 1640 media supplemented with 10% serum and monitored spectrophotometrically at 600 nm. (B) C. neoformans capsule biosynthesis was
examined by growth in RPMI 1640 media plus 10% serum for 16 hours at 30uC and visualized using India ink; the halo of clearance denotes the
capsule. Scale bar is 10 mm. Capsular diameter was measured relative to cellular diameter using CellProfiler image analysis software. Bars denote the
average relative diameter from three biological replicates. Standard error bars are shown; p,0.05 *; p,0.01 **; p,0.001 ***; p,0.0001 ****. (C)
Melanin production was determined on Cryptococcus L-DOPA melanization plates incubated for two days. (D) Mating proficiency was assayed by co-
culturing strains on Murashige-Skoog or V8 medium in the dark for two weeks at 25uC. Magnification is 406. All assays involving the imd1D strain
were supplemented with 1 mM guanine.
doi:10.1371/journal.ppat.1002957.g002
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was not found in the lungs after just seven days (Figure 4A). Cells

were found in the brain on day one (CFU = 328/g), although after

three days these were no longer present. No dissemination to the

spleen, liver or kidneys was observed (data not shown). It is

unusual for cells to be recovered from the brain at 3 days after

intranasal infection, which typically take at least 7 days to

disseminate to the CNS from the lungs [36]. By comparison, at 14

days post infection when we observed total clearance, the wild-

type strain is expected to have a log CFU/g of ,8 in the lungs and

,5 in the brain [37].

IMPDH inhibitors protect C. elegans from infection in the
nematode model of cryptococcosis

To validate IMPDH as an antifungal chemotherapeutic target

in vivo, we utilized the C. elegans model of cryptococcosis to test the

effect of IMPDH inhibitors on survival times. Nematodes were

cultured on Cryptococcus in the presence of three concentrations of

MPA in the media (5, 10 and 20 mg/mL) under typical assay

conditions. As a control we simultaneously cultured nematodes in

the presence of the fungistatic antifungal fluconazole (5 mg/mL).

C. elegans cultured on Cryptococcus plus fluconazole displayed

significantly enhanced survival (p,0.01). The addition of 10 or

20 mg/mL MPA also significantly enhanced survival times of

worms (p,0.01; p,0.01) (Figure 4B). MPA is toxic to C. elegans

with a LD50 of ,90610 mM (28.8 mg/mL) [38], however, the

lower concentrations of MPA utilized appear tolerable and

protective against C. neoformans infection; similar effects have been

demonstrated with fluconazole, which is toxic to the worm at

concentrations of ,100 mg/mL but is protective against C. albicans

infection at up to 32 mg/mL [39]. Control experiments did not

reveal significant changes in mortality in worms cultured on

20 mg/mL MPA plus a food source versus worms on a food source

alone (Figure S3).

With the exception of a rare subtype, Cryptococcus is
sensitive to the IMPDH inhibitor MPA

Based on our virulence studies, Imd1 but not Hpt1 could serve

as a potential antifungal target. To test this hypothesis, the

sensitivity of the entire Cryptococcus species complex to two IMPDH

inhibitors, MPA and mizoribine, was examined. The C. neofor-

mans/C. gattii species complex consists of eight haploid molecular

subtypes, VNI, VNII, VNIII and VNB of C. neoformans and VGI,

VGII, VGIII and VGIV of C. gattii, which vary in their

distribution, ecology and epidemiology [40,41]. While other

fungal pathogens such as C. albicans are sensitive to mizoribine

inhibition at very low concentrations, we did not observe any

impact on Cryptococcus, even when high concentrations were used

(100 mg/mL) in both MIC and serial dilution plate assays (data not

shown) [21]. All subtypes were highly sensitive to low concentra-

tions of MPA (5 mg/mL) in defined minimal medium, with one

exception: the rare C. gattii VGIV molecular type (Figure 5A).

Broth microdilution susceptibility assays supported this finding

(Figure 5B). To confirm this observation, we tested a further 106

isolates and again found that the eight VGIV isolates in this

Figure 3. Virulence of imd1D and hpt1D in invertebrate and mammalian host systems. (A) Survival of Bristol N2 strain nematodes co-
cultured with indicated Cryptococcus strains cultured on rich Brain Heart Infusion medium or minimal YNB medium at 25uC. (B) Survival of female
BALB/c mice infected with 56105 cells via nasal inhalation. (C) Virulence of indicated Cryptococcus strains co-cultured with nematodes on rich and
minimal medium at 25uC. (D) Virulence of the imd1D mutant in BALB/c mice infected with 56105 cells via nasal inhalation. Virulence was determined
using Kaplan-Meier survival analysis with statistical significance determined using a log-rank test. Survival times were not significantly different for the
hpt1D strain in either model. imd1D was significantly attenuated in the nematode model on minimal medium (p,0.0001) and in the murine model
(p,0.0001).
doi:10.1371/journal.ppat.1002957.g003
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Figure 4. IMPDH is essential for pathogenicity in murine and nematode hosts. (A) Fungal burden of imd1D cells recovered from the lungs
and brain of BALB/c mice infected with 56105 cells via nasal inhalation. Bars represent mean colony-forming units (CFU)/g 6 standard error. (B) N2
Bristol young adult nematodes were co-cultured with C. neoformans wild-type strain H99 on minimal medium supplemented with 5, 10 or 20 mg/mL
MPA or 5 mg/mL fluconazole. MPA significantly enhanced nematode survival over eight days, as did fluconazole treatment; p,0.05 *; p,0.01 **.
doi:10.1371/journal.ppat.1002957.g004

Figure 5. The C. gattii VGIV molecular type is resistant to MPA. (A) Resistance to the IMPDH inhibitor MPA was assessed in all haploid
molecular types of the pathogenic C. neoformans/C. gattii species complex using a serial dilution spotting assay on YNB plus 5 mg/mL MPA. (B) Precise
sensitivity to MPA was determined via MIC broth microdilution assay. MIC50 and MIC90 are the concentrations at which growth was inhibited by 50%
or 90%, respectively. Standard error bars are displayed for all strains.
doi:10.1371/journal.ppat.1002957.g005
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collection were easily identified by their MPA resistance, while all

others were sensitive (data not shown). VGIV MPA resistance was

uniform and 100% reproducible, supporting this as an inherent

characteristic of the VGIV molecular type.

We reasoned that resistance to MPA could arise from mutations

in the IMD1 ORF, overexpression of Imd1, increased IMD1 copy

number, or changes in drug uptake or efflux from the cell. To

determine if MPA resistance could result from changes in

expression level of IMPDH in C. gattii VGIV, we assessed the

transcriptional response of C. neoformans (strain H99) and C. gattii

(strain MMRL2651) IMD1 to challenge by guanine and MPA via

qRT-PCR. After treatment with guanine, both C. neoformans and C.

gattii IMD1 were significantly downregulated, consistent with de

novo GTP synthesis not being required when abundant salvageable

guanine is present (Figure S4). Importantly, no real difference was

observed between the two strains’ responses to either substrate or

inhibitor, suggesting that resistance to MPA may in fact be an

intrinsic property of the VGIV IMPDH isoform. To determine if

either copy number or a feature of the C. gattii VGIV IMD1 allele

(CgIMD1) confer MPA resistance, we introduced both the C.

neoformans var. grubii VNI allele (CnIMD1) from the MPA-sensitive

strain H99 and CgIMD1 from the MPA-resistant strain

MMRL2651 into wild-type H99 and the imd1D mutant. In the

wild-type H99 background, introduction of a second copy of

CnIMD1 resulted in only a very modest increase in MPA

resistance, while introduction of the CgIMD1 allele was sufficient

to enable robust growth and VGIV-level resistance to MPA

(Figure 6). In the imd1D deletion background, introduction of

CnIMD1 restores wild-type MPA sensitivity, while single-copy

CgIMD1 successfully confers VGIV-level MPA resistance

(Figure 6).

Spontaneous resistance to MPA does not arise readily in
Cryptococcus

To present an attractive target for antifungal chemotherapy,

spontaneous resistance to a drug should not arise readily through

mechanisms such as single point mutations or rapid amplifications

of target genes. In C. albicans, MPA-resistant strains were selected

by extended incubation on sub-lethal concentrations of the drug

resulting from a point mutation that changed the conformational

equilibrium of IMPDH [21]. We performed equivalent selection

using the VNI strain H99, but despite repeated attempts, we were

unable to isolate colonies that were stably resistant to the drug

after transfer onto media containing the same or increasing

concentrations of MPA (data not shown).

Cryptococcus gattii VGIV IMPDH has multiple unique
polymorphisms

To investigate the nature of the VGIV resistance to MPA, we

compared the IMD1 coding region between all known haploid

molecular types. While there are 22 residue differences between

VNI (MPA-sensitive) and VGIV (MPA-resistant) IMPDH, there

are only six residues unique to the VGIV subtype: three

conservative and three nonconservative substitutions (Figure S5).

To establish the precise mechanism for MPA resistance, we

introduced the six VGIV unique substitutions into the sensitive

VNI enzyme. No single mutation was sufficient to confer VGIV-

level resistance to MPA when introduced into the imd1D or the

wild-type background, however the simultaneous introduction of

all six mutations into the CnIMD1 allele did confer MPA resistance

(Figure 6 and Figure S6). This finding confirms that a combination

of these six residues is sufficient to confer MPA resistance, which

explains our inability to isolate spontaneous MPA-resistant isolates

of VNI. We therefore generated VNI/VGIV IMPDH chimeras

using convenient restriction sites that split the IMPDH gene into

three parts to combine CnIMD1 and CgIMD1 into six possible

Figure 6. C. gattii IMPDH confers resistance to MPA, mediated by two amino acids. Serial dilution spotting assays of selected IMPDH
mutants on YNB plus 5 mg/mL MPA. Robust growth on MPA is observed in the deletion mutant imd1D transformed with either the CgIMD1 allele or
any IMD1 allele uniting the residues K336 and E446. Two copies of the MPA-sensitive CnIMD1 allele (in H99 CnIMD1) result in only a very modest
increase in resistance to MPA and IMPDH heterotetramerization (in H99 CgIMD1) does not appear to produce novel phenotypes. The juxtaposed
image depicts which portions of the IMPDH allele are present, with yellow representing CnIMD1 and blue representing CgIMD1, split into three thirds
with the vertical bars depicting the six unique residues. Two proteins are depicted for the H99 background where the wild-type allele is also present.
doi:10.1371/journal.ppat.1002957.g006
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configurations. Only the construct comprising the first third of

CnIMD1 and the last two-thirds of CgIMD1 (bearing R446E,

G450A and A500V) conferred VGIV-level resistance to MPA

(Figure 6 and Figure S6). Based on this observation we employed

site-directed mutagenesis of the MPA sensitive VNI allele to

introduce the conservative R336K substitution (the only unique

residue in the middle fragment) in turn with each of the three

residues from the last fragment; the combination of K336 and

E446 was sufficient to confer MPA resistance (Figure 6 and Figure

S6). Again, transformation of these constructs into the wild-type

H99 background yielded levels of MPA resistance comparable

with the imd1D deletion strain, suggesting that simple gene

amplification may be insufficient to produce robust resistance,

and the resulting mixed IMPDH heterotetramers in these strains

did not appear to possess novel drug-resistant characteristics.

Steady-state kinetics of CnIMPDH and CgIMPDH
The catalytic mechanism of IMPDH involves a transition from

a dehydrogenase to a hydrolase reaction; initially, the substrate

IMP and cofactor NAD+ bind, IMP is then oxidized and forms a

covalent transition state complex E-XMP* via a catalytic cysteine,

while NAD+ is simultaneously reduced to NADH. The enzyme

then undergoes a conformational change whereby a large mobile

flap folds into the vacant NAD+ site, carrying a catalytic arginine

residue that activates a water molecule to hydrolyze the E-XMP*

covalent complex, releasing XMP [26,42,43]. To investigate if

resistance to MPA is due to functional differences between

CnImd1 and CgImd1, we determined the steady-state kinetic

parameters (Figure S7). Plots of velocity versus IMP concentrations

were best fit by the Michaelis-Menten equation

(Km(IMP) = 84612 mM, Km(NAD) = 634697 mM for CnImd1 and

Km(IMP) = 178615 mM, Km(NAD) = 532665 mM for CgImd1). How-

ever, both enzymes showed strong NAD+ substrate inhibition

above concentrations of 1,500 mM (Kii(NAD) = 4,4006900 mM for

CnImd1 and Kii(NAD) = 4,0006600 mM for CgImd1), which is

common for IMPDH and is attributed to the formation of an E-

XMP*NNAD+ complex but meant that the data had to be fitted to

a modified version of the Michaelis-Menten equation that takes

substrate inhibition into account. The Km values for both enzymes

were significantly different from the values for both human

isoforms of IMPDH (Table 1) while the turnover numbers were

similar (kcat = 1.560.1 s21 for CnImd1 and kcat = 2.260.2 s21 for

CgImd1); IMPDH has a generally low turnover and the rate for

Cryptococcus is similar to those determined for IMPDHs from

humans, other fungi and parasites [19,21,28].

Inhibitor kinetics of CnIMPDH and CgIMPDH
MPA is an NAD+ analogue and an uncompetitive inhibitor that

traps the E-XMP* enzyme-substrate covalent complex by

competing with the flap for the vacant NAD+ site [44]. To further

investigate the mechanism behind increased MPA resistance, we

examined the response of both enzymes in the presence of

inhibitor and varying amounts of both substrates. The concentra-

tion of MPA used was similar to the concentration of enzyme in

the assays, which necessitated tight-binding inhibitor treatment, as

found in C. albicans and Aspergillus nidulans IMPDH [45]. MPA

dependent changes in kinetic parameters were studied for both

isoforms and were best described by an uncompetitive, tight

binding inhibition mechanism versus NAD+, indicative of forma-

tion of E-XMP*NMPA complexes, as has been observed for

multiple organisms (Figure S8). The Kii for the MPA-sensitive

CnIMPDH allele (240618 nM) is higher than the Kii observed for

the well-characterized human type I, human type II and C. albicans

IMPDHs, suggesting that the NAD+ site (Table 1), which is also

the drug-binding site, is functionally different in the wild-type

Cryptococcus enzyme. Curiously, the inhibition constant for MPA is

actually lower for the MPA-resistant CgImd1 enzyme

(Kii = 9665 nM), although it displays a greater kcat/Km (NAD) ratio

(4,135663 M21 s21) compared to CnImd1 (2,366639 M21 s21),

suggesting greater enzymatic efficiency. We note that fits for

noncompetitive/mixed tight-binding inhibition for the MPA-

resistant CgImd1 enzyme were extremely similar to those obtained

Table 1. Kinetic parameters for IMPDH from characterized species.

IMPDH kcat (s21) Km(IMP) (mM) Km(NAD) (mM) Kii(NAD) (mM)
Kii(MPA) (nM) vs.
NAD+ Kii(MPA) (nM) vs. IMP

E. coli 13.0 61 2000 2.8 $10000 ND

C. parvum 3.3 29 150 2.9 9300 ND

T. foetus 1.9 1.7 150 6.8 9 ND

H. sapiens type I 1.8 14 42 ND 11 ND

H. sapiens type II 0.4 4 6 0.6 6 ND

A. nidulans 0.7 10 170 1.5 25 (UC) 22 (UC)

P. chrysogenum A 0.8 40 290 2.4 ND ND

P. chrysogenum B 0.0075 600 640 NA ND ND

P. brevicompactum A 0.7 130 340 4.7 500 (UC) 450 (NC/mixed)

P. brevicompactum B 0.4 1400 790 NA 14000 (UC) 20000 (NC/mixed)

C. albicans 6 60 3500 1.5 11 ND

C. neoformans VNI 1.560.1 84612 634697 4.460.9 240618 (UC) 198663 (NC/mixed)

C. gattii VGIV 2.260.2 178615 532665 4.060.6 9665 (UC) 107631 (NC/mixed)

Steady-state and inhibition constants for species with well-characterized IMPDHs. UC, uncompetitive; NC, noncompetitive; ND, no data; NA, not applicable. Values are
from [19,21,28,58].
doi:10.1371/journal.ppat.1002957.t001
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for uncompetitive tight-binding inhibition and yield a much higher

Kii (293676 nM; data not shown), which may indicate some

affinity of the inhibitor for other enzyme forms. Surprisingly, fits of

MPA versus IMP for both enzymes were best described by

noncompetitive/mixed patterns of inhibition (Figure S8), with a

Kii = 198663 nM for CnImd1 and a Kii = 107631 nM for

CgImd1. This suggests that in Cryptococcus IMPDH, MPA binds

to additional enzyme forms such as free enzyme or E-IMP. Such a

scenario is also found in MPA-resistant Penicillium brevicompactum

IMPDH, where the initial hydride transfer step (as opposed to the

subsequent hydrolysis step) is either partially or completely rate-

limiting, resulting in the predominate enzyme form being E-IMP-

NAD+ instead of E-XMP*, conferring MPA resistance [46].

Crystal structure of CnImd1
To provide a foundation for fungus-specific inhibitor develop-

ment, we determined the crystal structure of the clinically relevant

C. neoformans var. grubii IMPDH in complex with the substrate IMP

and the inhibitor MPA. CnImd1 forms a tetramer and in the final

model each monomer contains 395 of the 544 residues in the

typical eight-stranded a/b barrel structure, plus one molecule each

of IMP and MPA bound in the active site, consistent with our

functional observations suggesting an uncompetitive mechanism of

enzyme inhibition (Figure 7A). The large accessory subdomain

between residues 130–244 and residues 438–449 from the mobile

flap have no interpretable electron density, common to previous

structural studies on this class of enzymes.

Many of the active site residues are invariant, and the purine

ring, the ribose group and the nucleotide phosphate group of IMP

make mostly conserved interactions to those found in the Chinese

hamster IMPDH:IMP:MPA structure [26]. MPA makes far fewer

interactions in the cryptococcal IMPDH:IMP:MPA complex than

observed in the hamster IMPDH structure, perhaps accounting for

some of the differences in Ki between the mammalian and fungal

enzyme. In particular, T347 (Cryptococcus numbering) faces away

from the active site in the Cryptococcus enzyme and does not bind

MPA, while several other residues including N317, D288 and

G340 participate in fewer interactions with the ligands in the

cryptococcal complex. The six unique residues found in CgImd1

map to the amino terminal region near a monomer-monomer

interface (V55M), the accessory cystathionine-b-synthase (CBS)

domain (A153T), adjacent to the active site loop in the NAD+ and

MPA-binding cavity (R336K), close to a catalytic arginine in the

movable flap (R446E and G450A), and near the carboxy terminus

(A500V). R/K336 forms hydrogen bonds with IMP and MPA in

the hamster enzyme, and R/E446 and G/A450 are near the

catalytic arginine (R458) that resides on the mobile flap. Of note,

one of the two residues responsible for MPA resistance in C. gattii

VGIV IMPDH, R336 (K336 in the resistant enzyme), forms direct

contacts with only IMP in the cryptococcal complex, suggesting a

possible mechanistic explanation for the failure of the R336K

single mutant to exhibit any altered sensitivity to MPA.

Substitution of R336 with K336 in silico increases the distance

from the amine nitrogen of R336K to the IMP ribose O3 hydroxyl

from 3.1 Å to 3.9 Å, which would lead to the loss of contacts with

IMP.

Comparison of the hamster and cryptococcal IMPDH active

site loops with IMP and MPA-bound states indicates differences in

conformations, despite considerable similarity at sequence level; in

the human type I IMPDH structure (bound to the IMP analog 6-

chloropurine ribotide) this loop adopts yet another distinct

Figure 7. Structure of C. neoformans IMPDH. (A) Active site residues of C. neoformans IMPDH with IMP and MPA ligands in ball-and-stick
representation, with hydrogen-bonding interactions indicated by dashed lines. Figure displays residues within 4 Å of the active site except for T347,
which adopts a strikingly different conformation in the Cryptococcus enzyme. (B) Residues 339–356 of Cryptococcus IMPDH (green) form the active
site loop and are highly conserved. Comparison of the C. neoformans ENIMPNMPA complex active site loop conformation with the hamster E-
XMP*NMPA complex and the human type I IMPDH in complex with the substrate analogue 6-chloropurine ribotide (CPR) are shown. IMP, CPR and the
catalytic cysteine are shown in stick representation, while MPA is omitted. (C) Surface representation of the active site pocket of C. neoformans and
Chinese hamster IMPDH. The white arrow indicates the region around T347, which forms a unique, potentially exploitable cavity in the fungal
enzyme. MPA is omitted for clarity.
doi:10.1371/journal.ppat.1002957.g007
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conformation (Figure 7B). The change in orientation of the loop in

CnImd1 creates a large, Cryptococcus-specific pocket in the active

site (Figure 7C). There is considerable flexibility in the conforma-

tion of the active site loop observed in structures of different

enzyme complexes, which suggests that it can mimic the changes

during the reaction cycle where it may modulate closure of the flap

[47]. While IMP is covalently bound to the catalytic cysteine in the

hamster and human structures, which may be responsible for the

altered orientation, comparison with Tritrichomonas foetus IMPDH

bound to IMP or mizoribine phosphate (where the ligands are not

covalently bound in either structure) suggests the conformation

observed in the cryptococcal complex to be unique, thus offering a

potential avenue for species-specific inhibition. IMPDH crystal

structures have been demonstrated to provide a reliable indication

of the position of the loop at different parts of the reaction cycle,

suggesting the pocket observed in the Cryptococcus structure to be a

legitimate target [47].

The cryptococcal IMPDH structure is unique in having most of

the mobile flap, except for 12 residues that encompass a small

insertion region unique to Cryptococcus, sufficiently ordered to

permit all but three residues corresponding to the flap in human

IMPDH to be observed. The only comparable structural evidence

for the flap is presented for the parasite T. foetus IMPDH

complexed with mizoribine phosphate, in which the flap is in the

closed conformation within the cofactor site [29] and the Bacillus

anthracis apoenzyme structure [48]. The cryptococcal structure

reveals the flap in the ‘open’ conformation, as would be required

for the initial dehydrogenation before the flap folds into the NAD+

site to hydrolyze the covalent enzyme intermediate. The flap is

folded back onto itself, with residues A455–A465 facing the

following V466–V476, with the catalytic R458 positioned more

than 13 Å away from the C2 carbon of the IMP purine ring

(Figure 8A). Comparison with both the T. foetus and B. anthracis

enzymes suggests that the flap undergoes significant conforma-

tional rearrangement, swinging completely around and under-

neath itself to bring the catalytic arginine into close juxtaposition

to the substrate (Figure 8B). Despite being uncomplexed with

substrate or inhibitor, the B. anthracis structure also clearly shows

the enzyme in the closed conformation, with the flap folded into

the active site (Figure 8C). Superposition of the bacterial enzyme

onto the fungal enzyme reveals that the mobile portions of the flap

comprise residues H436-A465 (30 residues in Cryptococcus but only

15 residues in human), while the remaining residues of the flap,

Y414-E435 and V466-K479, appear stationary. Comparison of

the open conformation of the C. neoformans enzyme (MPA-sensitive)

with the closed conformation of the T. foetus and B. anthracis

enzymes (both MPA-resistant) readily demonstrates how MPA can

more easily access the cofactor site in enzymes where the

conformational equilibrium favors the open state [44]. Unfortu-

nately the second residue responsible for MPA resistance in C. gattii

VGIV, E446 (R446 in the sensitive enzyme), was not observed in

the electron density, however this is a strong indicator of

considerable flexibility within the immediate structural context of

this residue, indicating it unlikely to be proximal to the well-

ordered active site in the open conformation. However, as the flap

undergoes structural rearrangement, the residue is likely to be

brought into closer proximity to the active site pocket during the

reaction cycle.

Discussion

New drug targets and novel approaches to treatment are

urgently needed as the immunocompromised population grows

and the burden of opportunistic fungal infections increases. We

have examined and characterized two of the key enzymes from the

GTP de novo biosynthetic and salvage pathways, revealing the

potential of this pathway as a target of anticryptococcal therapy.

We discovered that only the rare C. gattii VGIV molecular type is

resistant to a natural product inhibitor of IMPDH, presenting an

opportunity to investigate the evolution of drug resistance in

IMPDH in the Cryptococcus species complex, and whether this poses

a risk to potential therapies.

GTP synthesis appears to be a natural antimicrobial target, as

both MPA and mizoribine are produced as secondary metabolites

by various mould species. The ubiquity of MPA resistance among

C. gattii VGIV isolates suggests that it may be an adaptation,

perhaps to competitors in its environmental niche. Very little is

known on the ecology of VGIV isolates in particular, and while it

has been isolated from clinical samples from a small number of

countries in South America, sub-Saharan Africa and the Indian

subcontinent, reports of environmental isolates are limited to

certain trees (primarily the Indian almond tree Terminalia catappa)

from Colombia and Puerto Rico [49]. The VGIV subtype is

nevertheless extremely rare, while the clinically-relevant VNI type

is widespread and exquisitely sensitive to MPA.

The finding that the purine salvage deficient hpt1D mutant was

fully virulent in both the worm and mouse model was somewhat

surprising, given the intense nutritional and metabolic stresses and

hostile immune system pressures Cryptococcus is under during the

infection process. Similar PRTase mutants in the apicomplexan

parasites Leishmani donovani and Toxoplasma gondii are viable and

virulent however, although many display certain fitness defects or

partial attenuation of infectivity [50,51]. Given that de novo purine

biosynthesis is an energy intensive process, salvage of purines from

a host could serve as an excellent way to conserve energy during

infection; as the hpt1D mutant is not perturbed for virulence, this

may reflect a generally low concentration of salvageable purines

during the infection process. This model is supported by the

avirulence of the imd1D mutant; generating a ready supply of GTP

via the de novo pathway is obviously of critical importance to the

fungus during infection.

These findings are consistent with other studies demonstrating

that IMPDH and de novo GTP biosynthesis mutants from a range

of pathogenic bacteria are attenuated for virulence [52], and in

pathogenic E. coli, Salmonella enterica and B. anthracis, de novo purine

biosynthesis has been proposed to be the single most critical

metabolic function for growth in human serum and blood [53].

Purine de novo biosynthesis may potentially be rate-limiting to

growth of Cryptococcus during infection, and therefore present an

outstanding target for anti-cryptococcal chemotherapy. Further-

more, in contrast to the simple guanine auxotrophy of S. cerevisiae

and E. coli IMPDH mutants [54,55], the imd1D mutant of

Cryptococcus exhibits a range of pleiotropic phenotypic defects even

when supplemented with exogenous guanine, including slow

growth, attenuated virulence factor expression, and impaired

dissemination and avirulence in two animal models of infection.

Intriguingly, recent studies have revealed that both IMP dehy-

drogenase and GMP synthase, the first and second enzymes of de

novo GTP biosynthesis, act as transcriptional repressors in

Drosophila [35,56], while the accessory CBS domain of IMPDH

has been demonstrated to regulate purine homeostasis in E. coli

[54,57]. It would be valuable to investigate the potential regulatory

roles of IMPDH in Cryptococcus and establish any contributions to

pathogenicity.

That IMPDH is absolutely critical for virulence of Cryptococcus,

and the observation that the most clinically prevalent forms of

Cryptococcus are exquisitely sensitive to the IMPDH-inhibiting drug

MPA, is encouraging for the investigation of IMPDH and de novo
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GTP biosynthesis as an antifungal drug target. Kohler et al. [21]

previously established that the C. albicans form of the enzyme

displays an altered kinetic profile relative to human IMPDH,

suggesting that fungus-specific inhibitors could be developed that

target the MPA binding site. Functionally, the two Cryptococcus

enzymes appear quite similar to other fungal IMPDHs, including

the C. albicans and A. nidulans enzymes, and GTP biosynthesis is

critical for virulence of both C. albicans and A. fumigatus (closely

related to A. nidulans). Cryptococcal IMPDH also shows significant

differences from the human enzyme, despite ,56% sequence

identity. The Km for both IMP and the cofactor NAD+ are

substantially different from the human forms, suggesting that

there are exploitable aspects of the reaction cycle of the

cryptococcal enzyme. It is less clear why VGIV CgImd1 should

have a lower Kii for MPA than the VNI variant. Residues K336

and E446 together appear to play a pivotal role in C. gattii VGIV

resistance, as demonstrated by their introduction into the

sensitive form, perhaps by altering the affinity of the flap for

the cofactor site or other changes in the enzyme mechanism or

conformation. The dynamics of the flap movement are known to

be key to resistance to cofactor mimic drugs in IMPDH, and key

mutations can alter the preferred state from open and MPA-

sensitive (the state observed in our structure, with the flap poised

above the active site and the cofactor site exposed), to closed,

which restricts access of MPA to the cofactor site and confers

resistance [44]. Residues close to the catalytic arginine are

involved in hydrogen bonding interactions when the flap folds

into the NAD+ site in T. foetus and presumably other species [29].

The combination of residues observed in C. gattii VGIV is

reminiscent of the well-characterized MPA-resistant T. foetus

enzyme, which requires K310 (equivalent to Cryptococcus K336)

and E431 (equivalent to Cryptococcus Q470, also on the flap) in

tandem to provide robust resistance [30]. Our data suggests that

while MPA affinity increased, a compensatory increase in enzyme

catalytic efficiency may have occurred through the combination

of K336 and E446. Recent work also demonstrates that if the

Figure 8. The open and closed conformations of the IMPDH mobile flap. (A) The Cryptococcus neoformans IMPDH structure indicates that
the flap adopts an open conformation in the ligand-bound state, with the catalytic R458 folded above the active site. The flap is rainbow colored and
the catalytic arginine and IMP in the active site are depicted in stick representation. (B) The Tritrichomonas foetus IMPDH structure in complex with
mizoribine phosphate (MZP) is in the closed conformation, with the flap extending out over the active site pocket and the catalytic arginine
positioned underneath. (C) The Bacillus anthracis structure shows the unbound apoenzyme also adopts the closed conformation, with the flap closed
over the active site.
doi:10.1371/journal.ppat.1002957.g008
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initial hydride transfer step becomes rate-limiting, this reduces

accumulation of the enzyme-substrate covalent complex and thus

reduces susceptibility to MPA inhibition. Notably, this has

occurred in MPA-resistant Penicillium brevicompactum IMPDH

without significant residue changes around the substrate/cofactor

binding sites [46,58]. Our work demonstrates that MPA binds to

additional cryptococcal IMPDH forms (an uncompetitive inhib-

itor should bind only to the enzyme-substrate covalent complex),

suggesting the enzyme to be fundamentally functionally different

from the human isoforms.

To provide a solid foundation for chemotherapeutic agent

development, we have determined the structure of C. neoformans

var. grubii IMPDH in complex with IMP and MPA. While the

accessory domain is presumably disordered and was not observed,

we were able to successfully model the residues comprising the

mobile flap domain, which to date had only been structurally

characterized in the closed conformation in the T. foetus and the B.

anthracis enzymes [29,48]. While Cryptococcus IMPDH possesses an

insertion within the flap that was mostly disordered and there is

considerable flexibility associated with the flap region, the

structural evidence suggests that the flap undergoes a drastic

conformational change during the reaction cycle, which has been

demonstrated functionally but not structurally in previous studies

[27,59,60]. In the open enzyme conformation, the catalytic

arginine is positioned away from the active site, with the flap

undergoing a 270u swinging rotation to perform the hydrolysis

reaction. The near-complete flap structure in the open orientation

will aid future drug design efforts, as the flap folds into the cofactor

site – a critical target site for inhibitors. The cofactor site, and the

adenosine subsite in particular, also present an opportunity for

fungus-specific inhibitor development, as there are a number of

critical residues that vary in the Cryptococcus enzyme; for example,

the adenine ring of NAD+ likely stacks between R267 and Y296 in

Cryptococcus IMPDH, and these two residues differ from the

corresponding H253 and F282 in the human enzyme. The

eukaryotic parasite T. foetus shares these two substitutions, which

have been suggested as potential species-specific targets [61]. The

adenosine portion of the cofactor site is also a monomer-monomer

interface, and one of the more variable parts of the enzyme

between species. Recent strategies extend inhibitors from the

nicotinamide subsite (where MPA binds) out to the adenosine

subsite to increase specificity [44,62]. The unique pocket in the

active site loop region of Cryptococcus IMPDH will enable the design

of inhibitors with moieties that occupy the cavity, which should be

selective for the fungal enzyme over the human enzymes.

Overall, we have demonstrated that de novo GTP biosynthesis is

crucial for cryptococcal virulence factor expression and patho-

genesis, and multiple exploitable avenues exist in IMPDH to

develop inhibitors that are specific for the fungal enzyme. This

work lays the foundation for purine biosynthesis as a legitimate

antifungal target, and the functional similarity between the

Cryptococcus and Candida enzymes presents an intriguing opportu-

nity to develop novel IMPDH inhibitors that could lead to

effective therapy against a spectrum of fungal pathogens.

Materials and Methods

Ethics statement
The Cryptococcus murine virulence assay protocol was approved

by the Molecular Biosciences Animal Ethics Committee of the

University of Queensland (AEC# SCMB/473/09/UQ/

NHMRC). Assays were conducted in accordance with the

guidelines in the Australian code of practice for the care and use

of animals for scientific purposes by the National Health and

Medical Research Council. Infection and euthanasia were

performed under methoxyfluorane anesthesia, and all efforts were

made to minimize suffering via strict adherence to the Guidelines

to promote the wellbeing of animals used for scientific purposes by

the National Health and Medical Research Council.

Strains and media
C. neoformans and C. gattii strains were cultured in YPD or YNB

(Becton Dickinson, Franklin Lakes NJ) media at 30uC. imd1D
mutants are guanine auxotrophs and were grown on minimal

YNB media supplemented with 1 mM guanine for all manipula-

tions; ade2D and hpt1D ade2D mutants are adenine auxotrophs and

were maintained on rich media. Cloning and plasmid propagation

was performed in E. coli strain Mach1 (Life Technologies,

Carlsbad CA). Genomic DNA for E. coli gene isolation was

prepared from strain K12. C. elegans strain N2 Bristol was

maintained at 20uC on lawns of the E. coli uracil auxotroph strain

OP50 on Nematode Growth Medium using standard procedures

[63]. Recombinant Cryptococcus IMPDH was heterologously

expressed in E. coli strain BL21(DE3)pLysS (Merck, Darmstadt,

Germany). MPA, mizoribine, 5-fluoro-29-deoxyuridine, G418,

NAD+, Tris, Bis-Tris, glycine, NaCl, KCl, DTT, EDTA, DMSO,

uric acid, inosine, hypoxanthine, xanthine, xanthosine, guanine,

guanosine, adenine, adenosine, IMP, AMP, XMP and GMP were

purchased from Sigma (St Louis, MO). Nourseothricin (clonNAT)

was purchased from Werner BioAgents (Jena, Germany). MPA

was dissolved in DMSO and was used at a concentration of 5 mg/

mL. Supplemental purines when required were added to a final

concentration of 1 mM [63].

Molecular techniques
Standard molecular techniques were performed as described by

Sambrook et al. [64]. C. neoformans genomic DNA for Southern blot

analysis was prepared as described [65]. Oligonucleotides used are

given in Table S1. For Southern hybridizations, DNA was

digested with appropriate enzymes, electrophoresed on TAE-

agarose gels and blotted onto Hybond-XL membrane (GE

Healthcare, Little Chalfont, United Kingdom) using standard

procedures. Probes were generated using the Rediprime II

Random Prime Labeling Kit (GE Healthcare) with PCR products

from H99 or MMRL2651 template DNA, and a32P dCTP

(PerkinElmer, Waltham MA). Blots were hybridized overnight at

65uC and membranes were exposed onto Fuji Super RX medical

X-ray film (Fujifilm, Tokyo, Japan). Splice overlap PCR, knockout

transformations and gene complementations were performed as

described [66–69], using particle delivery using a BioRad He-1000

Biolistic Device (Bio-Rad, Hercules CA).

Bioinformatic analysis
The unpublished C. neoformans var. grubii genome is available from

the Broad Institute of MIT and Harvard (http://www.

broadinstitute.org/annotation/genome/cryptococcus_neoformans/

MultiHome.html). To amplify genes from C. gattii strain

MMRL2651, primers were designed from the closely related C.

gattii strains WM276 and R265, which are also available from the

Broad Institute (http://www.broadinstitute.org/annotation/

genome/cryptococcus_neoformans_b/MultiHome.html). Purine

biosynthetic genes were identified using reciprocal best-hit BLAST

analysis and annotated using MacVector 9.5 (MacVector, Cary NC)

[70]. Sequencing was performed at the Australian Genome

Research Facility (Brisbane, Australia) and sequence traces were

analyzed using Sequencher 4.7 (Gene Codes, Ann Arbor MI).

Sequences for Cryptococcus IMPDH from strains 8-1 (VNII), Bt33

GTP Biosynthesis in Cryptococcus

PLOS Pathogens | www.plospathogens.org 12 October 2012 | Volume 8 | Issue 10 | e1002957



(VNB), NIH312 (VGIII) and MMRL2651 (VGIV) are available

from GenBank under the accession numbers FJ418778–FJ418781.

Phenotypic and virulence factor assays
For growth curve analysis, cells were cultured in RPMI 1640

media (Life Technologies) plus 2% glucose, 10% fetal bovine

serum (Life Technologies) and 1 mM guanine. Cells were freshly

cultured on YNB or YNB plus guanine plates, washed, diluted to

an OD600 of 0.05 and grown in 50 mL cultures with shaking at

180 rpm at 30uC for a total of five days and monitored

spectrophotometrically. Melanization assays were performed on

solid or liquid Cryptococcus melanization media containing L-DOPA

(L-3,4-dihydroxyphenylalanine) and 10 mM asparagine at 30uC
and 37uC [71]. Spectrophotometric analysis was performed on

culture supernatant at OD475 using a NanoDrop spectrophotom-

eter [72]. Capsule growth was induced via overnight growth in

RPMI 1640 media plus 2% glucose and 10% fetal bovine serum,

and stained with India ink (Becton Dickinson) to visualize capsule.

Capsule sizes were determined from phase contrast images using

CellProfiler image analysis software [73]. An algorithm was

developed to identify the cryptococcal capsule and cell wall

boundaries by segmentation. Clumped cells, those outside size

bounds and those touching the border of the image were excluded.

Geometric parameters were measured from the identified capsule

and cell wall boundaries, and the average of the major and minor

axes from an ellipsoid fit used to estimate both capsule size and

cellular diameter. Capsule diameter was expressed as a relative

percentage of cell size. At least 10 independent images were used

from each sample with at least 50 and typically 100–200 cells

measured from each replicate; all measurements were performed

in biological triplicate [74]. Mating tests were performed on

Murashige-Skoog or V8 media plus 100 mg/mL myo-inositol

(pH 5.0) using the MATa H99 isogenic strain KN99a, as

described [75,76].

Nematode virulence assays
Assessment of cryptococcal virulence in the C. elegans model

system was performed as described [77]. Cryptococcus strains were

grown on either rich (Brain-Heart Infusion media, Becton

Dickinson) or minimal (Nematode Growth Medium plus S.

cerevisiae Synthetic Complete Supplement Mixture) media with or

without supplemental guanine. For C. elegans plus antifungal assays,

5, 10 or 20 mg/mL MPA or 5 mg/mL fluconazole were added to

the minimal media plates. For the control drug assays, worms were

cultured on NGM supplemented with 6 mM 5-fluoro-29-deoxyur-

idine to prevent egg laying, plus either OP50 bacteria or heat-

killed OP50 bacteria, with or without 20 mg/mL MPA.

Murine virulence assays and organ burden analysis
Assessment of cryptococcal virulence in the murine model

system was performed as described [78], with slight modification.

Due to the propensity for the imd1D strain to clump in liquid

media, all strains were freshly grown on YNB or YNB plus

guanine plates overnight before washing and counting for

infection. Kaplan-Meier survival curves were plotted using the

software package GraphPad Prism 5.0 (GraphPad Software, San

Diego CA), and statistical significance was assessed using a log-

rank test, with a p value ,0.05 considered significant. For organ

burden analysis, brain, lungs, liver, spleen and kidneys were

harvested from three mice per time point, weighed, homogenized

and plated in serial dilution to determine colony-forming units per

gram organ weight.

Gene expression analysis
Quantitative reverse transcription PCR analysis was performed

as described [79]. Overnight cultures of strains H99 and

MMRL2651 were grown for 16 hours to mid-log phase, before

addition of MPA (5 mg/mL) or guanine (1 mM). Cells were grown

for 15 minutes, 60 minutes or 240 minutes before harvesting and

flash freezing in liquid nitrogen. Total RNA was extracted using

TriZOL reagent (Life Technologies) and cDNA was generated

using Superscript III (Life Technologies).

MIC determination and MPA resistance
MIC susceptibility testing for MPA was performed using the

broth microdilution method according to CLSI (CLSI M27-A2)

modified for Cryptococcus neoformans [80]. Strains tested are found in

Table S2. For analysis of spontaneous MPA resistance, 161010

cells each of H99 overnight cultures were plated onto YNB with

sub-lethal concentrations of MPA (1–5 mg/mL) as described [21].

Plates were incubated at 30uC for two months. Putatively resistant

colonies were subcultured onto fresh YNB plus MPA plates.

Cloning, chimera construction and site-directed
mutagenesis

All primers used in the study are listed in Table S1. IMPDH

genes were amplified from C. neoformans and C. gattii strains, cloned

into pCR2.1-TOPO (Life Technologies) and sequenced. Wild-

type strains utilized are listed in Table S2. IMD1 from C. neoformans

strain H99 and from C. gattii strain were subcloned into

pBluescript SK- (Agilent, Santa Clara CA), then pPZP-NEO

(containing a G418 resistance cassette) and pPZP-NAT (contain-

ing a nourseothricin resistance cassette) to create complementation

constructs [81]. Complementation constructs for C. neoformans

bearing the E. coli xanthine-guanine phosphoribosyltransferase-

encoding gpt and E. coli IMP dehydrogenase-encoding guaB genes

were generated via overlap PCR using the C. neoformans ACT1

promoter and TRP1 terminator, combined with the E. coli strain

K12 gpt or guaB ORF, cloned into pCR2.1-TOPO and sequenced.

Site-directed mutagenesis was used to introduce new residues

into wild-type CnIMD1. All six variants were subcloned into

pBluescript SK- and further subcloned into pPZP-NEO or directly

into pPZP-NAT. Double mutants and the sextuple mutant were

created using successive rounds of mutagenesis. All mutagenesis

products were sequenced to confirm identity and fidelity. IMPDH

gene chimeras were created by dividing the gene into thirds using

two common restriction sites in CnIMD1 and CgIMD1 (XhoI and

NcoI) and reconstructing all six possible combinations. The first

fragment comprises 207 residues and contains the first two unique

residues V/M55 and A/T153, the second fragment comprises 225

residues and contains only the third unique residue R/K336, and

the final third comprises 111 residues and contains the final three

unique residues R/E446, G/A450 and A/V500. Subsequently, all

chimeras were subcloned into pLITMUS28i (New England

Biolabs, Ipswich MA) before further subcloning into both pPZP-

NEO and pPZP-NAT. All strains created are listed in Table S3.

Expression, purification and crystallization of
Cryptococcus IMPDH

In-frame cloning of the cDNA coding for CnImd1 and CgImd1

into expression vectors, heterologous expression in E. coli,

purification of protein and crystallization parameters have been

described previously [82]. For this study, purified protein in

crystallization buffer was mixed with a 10-fold molar excess of the

substrate IMP plus 100 mM of the inhibitor MPA dissolved in

dimethylsulfoxide prior to crystallization. Large crystals were
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obtained in wells containing 1.9 M lithium sulfate and 0.09 M

imidazole/HCl pH 6.5 with either no additive or 3.0–12.0%

pentaerythritol ethoxylate (15/04 EO/OH) for CnImd1.

Steady-state and inhibitor kinetics
All enzymatic assays contained standard IMPDH assay buffer

(50 mM Tris-HCl (pH 8.0), 100 mM KCl, 3 mM EDTA, 1 mM

DTT, 500 mM IMP and 250 mM NAD+) and were performed as

described [21]. Enzymatic assays were performed at 25uC in

triplicate by monitoring the production of NADH at 340 nm

(e= 6.22 mM21 cm21) using a Varian Cary 50 spectrophotometer

(Agilent Technologies, Santa Clara CA). For Km determination,

IMP and NAD+ concentrations were varied over a range from

62.5 mM to 5,000 mM, with fixed second substrate concentrations

of 250 mM NAD+ and 500 mM IMP, respectively. Nonlinear

fitting of the data to the Michaelis-Menton equation (Equation 1)

and the uncompetitive substrate inhibition equation (Equation 2)

were performed using SigmaPlot 12.0 (SysStat Software, Chicago

IL). IC50 values for both proteins were determined using fixed

concentrations of IMP (850 mM or 1,800 mM) and NAD+

(1,000 mM) while varying the concentration of MPA (0 nM–

400 nM). The Km and kcat values were then determined in the

presence of concentrations of MPA that produced 0%, 25%, 50%

and 75% inhibition. Velocity data were fitted to the uncompetitive

tight-binding inhibition equation (Equation 3) and the noncom-

petitive/mixed tight-binding inhibition equation (Equation 4) in

SigmaPlot,

v~kcat½E�½S�=(Kmz½S�) ð1Þ

v~kcat½E�=(1zKm=½S�z½S�=Kii) ð2Þ

v~(v0=(2½E�)):(½E�{½I �{Kappz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((½E�{½I �{Kapp)2z4½E�Kapp))

q

Kapp~Kii(1zKm=½S�)
ð3Þ

v~(v0=(2½E�)):(½E�{½I �{Kappz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
((½E�{½I �{Kapp)2z4½E�Kapp))

q

Kapp~(½S�zKm)=((KmzKii)z(½S�=aKii))

ð4Þ

where v is the initial velocity; Km is the Michaelis constant; kcat is

the turnover number; [E] is enzyme concentration; [S] is substrate

concentration; [I] is inhibitor concentration; Kii and Kis are the

intercept and slope inhibition constants.

Structure determination
Data were collected on the MX2 beamline of the Australian

Synchrotron, Melbourne, Australia, using the Blu-Ice software

[83]. Diffraction data were processed and reduced using XDS and

SCALA [84,85]. Initial crude molecular replacement phases were

obtained using a search model based on the coordinates of the

human type I IMPDH (PDB ID 1jcn) using the fast Fourier

transform molecular replacement method as implemented in

Phaser [86] as implemented in the PHENIX suite [87,88]. After

extensive manual re-building in Coot [89], combined with

maximum-likelihood-based restrained refinement in BUSTER-

TNT [90], the final model had Rwork/Rfree values of 0.17/0.20

(Table S4). The stereochemistry of the structure was assessed and

validated with MolProbity [91]. Data collection and refinement

statistics are listed in Table S4. Figures were generated with

PyMOL (http://www.pymol.org). Atomic coordinates and struc-

ture factors have been deposited in the Protein Data Bank, www.

pdb.org (PDB ID: 4af0).

Supporting Information

Figure S1 Specificity of Cryptococcus Hpt1. (A) The

nucleobase xanthine and the nucleosides guanosine and xantho-

sine rescued the imd1D mutant, though with less robust growth

than guanine. Neither XMP nor GMP were able to complement

the auxotrophy of the imd1D strain. Hypoxanthine also did not

rescue the mutant, suggesting that the Cryptococcus a-ketoglutarate-

dependent dioxygenase is unable to perform the conversion of

hypoxanthine to xanthine found in the Schizosaccharomyces pombe

homolog. (B) All xanthylic and guanylic nucleotides rescue the

MPA phenotype in the wild-type and complemented strains. Only

nucleoside monophosphates after the IMPDH blockage by MPA

rescue the hpt1D phenotype. (C) The ade2D mutant, defective in de

novo purine metabolism before the pathway branchpoint, can

utilize either adenine or hypoxanthine for purine nucleotide

biosynthesis. Only adenine can rescue the ade2D hpt1D phenotype

on minimal media. As hypoxanthine successfully supplements the

purine auxotrophy of the ade2D mutant, Hpt1 can salvage

hypoxanthine.

(TIF)

Figure S2 Quantification of melanin production. Mela-

nin production was measured in liquid L-DOPA medium from

culture supernatant at OD475. (A) imd1D at 30uC. (B) imd1D at

37uC. (C) hpt1D at 30uC. (D) hpt1D at 37uC. Bars represent mean

OD475 from three replicates with standard error shown. No

significant differences were found between strains.

(TIF)

Figure S3 Effect of 20 mg/mL MPA on nematode
survival. N2 Bristol young adult nematodes were cultivated for

eight days on OP50 or heat-killed OP50 on standard NGM

supplemented with 6 mM 5-fluoro-29-deoxyuridine to prevent egg

laying, plus or minus 20 mg/mL MPA, the highest concentration

of MPA used in the Cryptococcus/MPA nematode virulence assays.

No significant differences were found between treatments.

(TIF)

Figure S4 Quantitative reverse transcription PCR anal-
ysis of IMD1 expression. (A) Strain H99 and strain

MMRL2651 were grown in YNB media at 30uC overnight and

treated with 1 mM guanine before harvesting at three timepoints.

(B) Strains grown overnight and treated with 5 mg/mL MPA

before harvesting at three timepoints. Transcript levels of CnIMD1

and CgIMD1 are expressed as a fold change relative to expression

of the housekeeping gene b-tubulin. Standard error bars are

shown. p,0.05 *; p,0.01 **.

(TIF)

Figure S5 Alignment of IMPDH from all eight molecu-
lar types of Cryptococcus. IMPDH was amplified and

sequenced from the four molecular types for which there was no

existing sequence data (VNII, VNB, VGIII & VGIV) and aligned

with existing sequence data for VNI, VNIV, VGI and VGII.

MPA-resistant C. gattii VGIV IMPDH has 22 substitutions

compared to MPA-sensitive C. neoformans VNI IMPDH, although

only six of these residues are not shared with another molecular

type. Residues unique to VGIV are highlighted in red. The

IMPDH accessory domain is highlighted in green, the active site

loop in blue and the mobile flap in orange.

(TIF)
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Figure S6 Growth of all IMPDH mutants on MPA. Serial

dilution spotting assays of all IMPDH mutants on YNB plus 5 mg/

mL MPA. The juxtaposed images depict which portions of the

IMPDH allele are present, with yellow representing CnIMD1 and

blue representing CgIMD1, split into three thirds with the vertical

bars depicting the six unique residues. Two proteins are depicted

for the H99 background where the wild-type allele is also present.

(A) Transformation of IMPDH variants (point mutants, double

mutants, sextuple mutants, chimeras plus the two wild-type alleles)

into the imd1D deletion background. (B) Transformation of

IMPDH variants (point mutants, double mutants, sextuple mutants,

chimeras plus the two wild-type alleles) into the wild-type H99

background, which possesses one copy of the MPA-sensitive allele.

(TIF)

Figure S7 Steady-state kinetics of Cryptococcus IMPDH.
Plots of velocity versus IMP and velocity versus NAD+ concentration

were generated by fixing one substrate (250 mM IMP and 500 mM

NAD+) and varying the other. For both enzymes, velocity versus IMP

plots were best described by the Michaelis-Menton equation, while

velocity versus NAD+ plots were best fit by the uncompetitive

substrate inhibition equation. (A) CnImd1. (B) CgImd1.

(TIF)

Figure S8 Inhibitor kinetics of Cryptococcus IMPDH.
Inhibition by MPA was investigated at fixed concentration of IMP

(850 mM for CnImd1 and 1,800 mM for CgImd1) and varying

NAD+ (62.5 mM–2,000 mM) and indicated MPA concentrations.

Initial velocity data was best described by the uncompetitive tight-

binding inhibition equation versus NAD+, while initial velocity data

of MPA versus IMP were best fit by a noncompetitive/mixed tight-

binding model. (A) CnImd1. (B) CgImd1.

(TIF)

Table S1 Primers used in this study.

(DOC)

Table S2 Wild-type strains used in this study.

(DOC)

Table S3 Strains created for this study.

(DOC)

Table S4 Crystallographic data collection and refinement

statistics.

(DOC)
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