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Objective: This paper quantitatively explores determinants of governments’ non-
pharmaceutical policy responses to the COVID-19 pandemic. Our focus is on the extent
to which geographic mobility affected the stringency of governmental policy responses.

Methods: Using cross-country, daily frequency data on geographic mobility and COVID-
19 policy stringency during 2020, we investigate some of the determinants of policy
responses to COVID-19. In order to causally identify the effect of geographic mobility on
policy stringency, we pursue an instrumental variable strategy that exploits climate data to
identify arguably exogenous variation in geographic mobility.

Results: We find that societies that are more geographically mobile have governmental
policy responses that are less stringent. Examining disaggregated mobility data, we show
that the negative relation between geographic mobility and policy stringency is the stronger
for commercially-oriented movements than for geographic movements that relate to civil
society.

Conclusion: The results suggest that policy-makers are more willing to trade-off public
health for economic concerns relative to other civil concerns.
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INTRODUCTION

In 2020 policy-makers around the world grappled with how to slow the spread of the novel
coronavirus through their populations. There has been heterogeneity across countries and over time
as to the stringency of policy responses and their effects, which has been the subject of much recent
research in the social sciences (e.g., [1–4]). This paper contributes to the research on the
determinants of country-level policy responses to the COVID-19 pandemic. We examine one
specific factor, geographic mobility, that may influence the stringency of policy responses. Using
daily variation in country-level mobility data from smartphones, we demonstrate a robust negative
correlation between geographic mobility and policy stringency in a country-day panel regression
analysis (see review of similar literature by [5]). An instrumental variable strategy allows us to
identify the causal impact of geographic mobility.

Our explanation for the result is that the implementation of stringent policies is costlier
(economically and politically) in more geographically mobile societies. Further analysis suggests
that business interests play a larger role in limiting the intensity of governments’ policy responses
than other civil society interests. An Supplementary Appendix provides an extensive robustness
analysis of our main results as well as some further analysis. The last section before the conclusion
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details its contents. Our results have broader implications for
preventing and controlling pandemics. After all, many times,
mobile societies are those most in need to restrict people’s
movements. An important contribution from social scientists
is to identify and better understand the constraints on policy-
makers.

METHODS

Overview of Data
Our study employs country-level data over a sample of non-
advanced economies (according to the International Monetary
Fund classification) over the period of 22nd January 2020 until
31 August 2020. The countries are listed in Supplementary Table
SA1. Our principal variables are high frequency, varying daily, while
most of the control variables are fixed over the period of analysis.

Our main dependent variable is the Stringency Index of the
Oxford COVID-19 Government Response Tracker (OxCGRT),
which aggregates governmental responses over 17 distinct policy
areas [6] for 197 countries and territories since the beginning of
2020. We also consider the disaggregated policy measures
implemented by countries in a further analysis.

The main explanatory variable of interest is geographic
mobility. Mobility Trend Reports (MTR) summarize requests
for directions in Apple Maps, whereas Community Mobility
Reports (CMR) include aggregated mobility statistics from
Google Maps. Note that there is no one-to-one correspondence
between using an Apple/Google device and having one’s
movement recorded as data point in MTR/CMR. For instance,
one can use Google Maps when planning a journey on an iPhone.
In our analysis, we primarily rely on mobility data from Google, as
it has better coverage for non-advanced economies and also allows
us to disentangle mobility trends related to leisure, commercial or
business purposes, or staying at home. CMRdata shows the relative
change in number of visitors (or time spent in) places categorized
as supermarkets and pharmacies, parks, public transport, retail and
recreation, residential areas and workplaces, compared to baseline
days. These broad place categories are results of Google grouping
multiple places with similar characteristics, such as public gardens
and camp grounds for parks. Google uses a 5-week period
immediately before the widespread disruption caused by
COVID-19; the median value between 3 January–6 February
2020 serves as the baseline day in CMR. The dataset has been
widely used by public health, social science and economics scholars
to capture movement (see Supplementary Table SA.21 for related
literature).

In our baseline specification, we lag the mobility data by its
seven-day moving average, as we do not expect mobility to have
instantaneous impact on policy decisions. In distinguishing between
mobility related to the economy from that related to civil society, we
make use of the COVID-19 Disorder Tracker, a curated selection of
the Armed Conflict Location and Event Dataset (ACLED). It
provides daily frequency data on political violence and protests
related to COVID-19, with a coverage of 150 countries.

Our strategy for identifying the causal effect of geographic
mobility employs precipitation as an instrument for mobility.

Data on rainfall comes from the Global Surface Summary of the
Day (GSOD) database, collected by the National Oceanic and
Atmospheric Administration (NOAA). We compute daily average
values for each country by adding up reported observations of
precipitation levels for each country-day dyad and dividing them
by the number of weather stations within a particular country.
Following [7], we create a binary variable, rainy day, that takes
value 1 with rainfall higher than 0.10 inch and 0 otherwise; we then
subsequently calculate their 7-day moving averages.

We employ several control variables in our analysis: an
indicator of quality of government, the level of democracy,
which is an average of Freedom House and Polity indicators
from the Quality of Government dataset, the (log of the) number
of confirmed COVID-19 cases, the (log of) real GDP per capita,
population density, the share of the elderly within the population,
the share of trade as percentage of GDP, the number of hospital
beds per 1,000 people, experience with the SARS epidemic in
2002–2003, as well as the (log of the) number of airports in the
country. Besides the COVID-19 cases, these controls are repeated
daily observations from data measured in 2019. Supplementary
Section SA.1 describes the reasons for including these particular
controls in our analysis.

Supplementary Figure SA.1 shows world maps of the
incidence of our two principal mobility variables and the
policy stringency index. Supplementary Tables SA.1–SA.3,
SA.17–SA.19 provide summaries of the data and the samples
used in the analysis, as well as a description of our data sources.

Quantitative Methods
Our analysis employs regression techniques. First, we utilize the
standard Ordinary Least Squares (OLS) regression with world
regional and period (day) fixed effects.

Policy_stringencyi,j,t � αMobilityi,j,t−1 + Xi,j′ β + γj + δt + ui,j,t,

(1)
where Mobilityi,j,t−1 is the measure of geographic mobility that
was described above for country i of region j on day t − 1. The γj’s
denote regional dummies that capture any time-invariant regional
characteristics that affect countries’ policy responses and the δt’s
denote day dummies that capture common shocks to policy
stringency levels. The vector Xi,j includes the battery of controls
described in the previous section. The error term ui,j,t captures all
other factors not correlatedwith our controls whichmay also explain
policy stringency, withE(ui,j,t) = 0 for all i, j, and t. All models include
Driscoll-Kraay standard errors that are robust to cross-sectional and
temporal dependences and autocorrelated consistent. Following [4],
in some specifications, we also control for policy “adoption density,”
which is calculated as the neighborhood average of the policy
stringency index. For country i in a region j with K countries in
period t, it is calculated as follows:

Adoption_densityi,j,t � 1
K − 1

∑
K

k≠i

Policy_stringencyk,j,t (2)

The policy adoption density variable adds a powerful time-
varying control.
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One concern with estimating such a specification with OLS is
that geographic mobility, even when lagged, may be
endogenously determined. Such a concern would introduce a
bias into our estimation of α and preclude a causal interpretation
of the estimated results. We therefore pursue an instrumental
variable identification strategy, in which we identify exogenous
variation in lagged geographic mobility using lagged rainfall data.
Rainfall is well-suited to instrumenting for geographic movement
because it is intuitive that people stay more at home and walk less
during rainy days. References [8, 9] review the literature that
examines the direct impacts of weather variation on economic
outcomes and political conflict, respectively. References [7,
10–12] use rainfall as an instrumental variable for political
instabilities.

In our baseline specification, we use the binary rainy day
variable as the instrument. Employing a Two-Stage Least Squares
(TSLS) estimation procedure, in the first stage we estimate the
following:

Mobilityi,j,t−1 � ηRainyi,j,t−1 + Xi,j′ θ + γj + δt + ei,j,t, (3)
We use the fitted values from Eq. 3 to estimate the impact of

exogenous variation in geographic mobility on policy stringency
in the second stage:

Policy_stringencyi,j,t � α2S ̂Mobilityi,j,t−1 + Xi,j′ β + γj + δt + ui,j,t.

(4)
In order for the estimation of α2S to provide a credible causal

estimate of the impact of mobility on policy stringency, the
rainfall instrument must satisfy two criteria: relevance and the
exclusion restriction. First, the instrument should be strongly
correlated with the main independent variable. The economic

literature conventionally uses a first-stage F-statistic greater than
10 to indicate a strong instrument. The second condition requires
that the instrument’s effect on the outcome variable occurs only
through its influence on the potentially endogenous variable. As
this assumption is not verifiable, we appeal to the intuition that
rainfall affects mobility, but it does not directly affect
governmental policy responses against the COVID-19
pandemic. To guard against possible exclusion restriction
violations, we also employ a rich set of control variables,
robustness checks, and a sensitivity analysis.

RESULTS

More geographical movement leads to less stringent policy
responses. An analysis with valid instruments lends a causal
interpretation of the relation, and the magnitude of the effect
is strongest for movements related to economic and commercial
activities.

Ordinary Least Squares Results
First, Table 1 presents results from estimation of Eq. 1 with OLS.
In columns (1)–(3) we use the Google data on staying put in
residential areas, while in columns (4) and (5) we use the Apple
data on walking.

The first column of Table 1 presents the raw bivariate
correlation between residential mobility and the stringency
index. The positive coefficient on the residential mobility
variable indicates that as countries become more residential
compared to the baseline of January 2020, the stringency of
responses has tended to increase. Using the summary statistics
for the sample (see Supplementary Table SA.2), we calculate that

TABLE 1 | OLS regressions—Stringency index (Worldwide, 2020).

(1) (2) (3) (4) (5)

Dependent variable: Stringency index
Residential (7-day moving averages) 2.029*** (0.109) 1.567*** (0.193) 1.560*** (0.192)
Walking (7-day moving averages) −0.059** (0.021) −0.055** (0.020)
Level of Democracy (Freedom House/Imputed Polity) 1.529+ (0.817) 1.624* (0.794) −3.216*** (0.752) −3.240*** (0.741)
ICRG Indicator of Quality of Government −39.004*** (10.685) −40.432*** (10.678) 56.498*** (16.842) 57.481*** (16.546)
Log (Confirmed cases) 0.237 (0.847) 0.299 (0.813) 3.808*** (0.722) 3.847*** (0.758)
Log (Real GDP per capita) 1.327 (2.741) 1.535 (2.646) −13.971** (4.565) −14.272** (4.620)
Population density (people per sq. km of land area) 0.006+ (0.003) 0.006+ (0.003) 0.028 (0.021) 0.028 (0.021)
Population ages 65 and above (% of total population) −1.175+ (0.694) −1.238+ (0.676) −1.928** (0.675) −1.970** (0.671)
Trade (% of GDP) −0.100 (0.061) −0.090 (0.059) −0.084* (0.039) −0.086* (0.040)
Hospital beds (per 1,000 people) −0.648 (1.961) −0.693 (1.955) 2.603 (2.469) 2.748 (2.478)
SARS 0.600** (0.183) 0.596*** (0.179) −0.246 (0.171) −0.255 (0.173)
Log (Airports) 1.600+ (0.928) 1.597+ (0.881) −3.838* (1.857) −3.983* (1.854)
Adoption density −0.014 (0.066) 0.149** (0.055)
Historical rainfall 3.027 (2.281) 3.445 (2.796)
R-squared 0.534 0.430 0.438 0.441 0.451
Country-days 93 69 69 26 26
N 16,907 11,720 11,535 4,574 4,562

Region fixed effects ✓ ✓ ✓ ✓
Day fixed effects ✓ ✓ ✓ ✓

Notes: All specifications include Driscoll-Kraay (DK) standard errors (in parenthesis). DK non-parametric standard errors are heteroskedasticity robust to cross-country and day
dependences and autocorrelated consistent (up to three-day lags). +p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
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one standard deviation increase in residential movement is
associated with an 0.58 standard deviation increase in the
policy stringency index. This result is confirmed as we add a
battery of controls to the specification in column (2). Our most-
preferred battery of controls follows from previous work on
COVID-19 policy responses [1, 4]. First, we control for a
measure of COVID-19 incidence, using daily data on
confirmed cases (which we also lag using a seven-day moving
average). We additionally include some time-invariant country-
level controls for political institutions, state capacity, economic
development, population density and demographics, economic
globalization, experience with the SARS pandemic, and health
care capacity. The coefficient on residential movement is
estimated to be somewhat smaller when we include the battery
of controls, but it remains positive and statistically significant at
the 0.1% level. In column (3) of Table 1, we include the policy
adoption density measure [cf. 4] and historical rainfall patterns,
which do not substantially affect the estimate on residential
movement.

Columns (4) and (5) of Table 1 estimate the impact of walking
mobility using the Apple data. Including our standard battery of
controls, column (4) estimates a statistically significant (at 0.1%
level) negative relationship between lagged walking mobility and
policy stringency. This estimated negative effect is consistent with
the previous results on staying put. Geographic mobility out of
residential areas (by walking) leads to less stringent COVID-19
policy responses. According to our calculations, one standard
deviation increase in walking movement is associated with a
0.11 standard deviation decrease in the policy stringency index. In
column (5), we have also included the policy adoption density
and historical rainfall controls.

Two-Stage Least Squares Results
In this subsection we implement our instrumental variable
strategy, replicating columns 2–5 from Table 1. In Table 2 we
show in Panel A the coefficient on our excluded rainfall

instrument in the first stage regression, while Panel B shows
the second stage regression output for the variables of interest. To
conserve space, we suppress the estimates for the control
variables. As expected, more rainfall is associated with people
staying put more at residential locations and less walking
mobility. The first stage impact of rainfall on our preferred
mobility variable (residential) is highly statistically significant
(usually at the 0.1% level) and the relevant first stage diagnostic,
the K-P F-statistic, is above its threshold value of ten. Since the
Cragg-Donald (C-D) F-statistic assumes homoskedastic errors,
the Kleibergen-Paap (K-P) F-statistic, which is valid under non-
i.i.d errors, is more reliable for our data. Thus the relevance
criteria for a valid instrument is satisfied.

The second stage estimations, shown in Panel B of Table 2, are
consistent with the results from the OLS estimations. Staying put
at residential locations is positively associate with policy
stringency and walking mobility is negatively associated. In
column 2, one standard deviation increase in residential
movement is associated with 0.54 standard deviation increase
in the stringency index. This increase in the magnitude is
consistent with the supposition that OLS was under-estimating
the impact due to a reverse causality bias. For example, if
households anticipate an increase in policy stringency
tomorrow, they may increase their mobility levels today
(staying home less and walking more), so the reverse causal
mechanism would predict a positive relation which would deflate
the negative coefficient if not corrected for.

The main identifying assumption is that the instrument
satisfies the “exclusion restriction,” which requires that the
instrument (rainfall) affects the dependent variable (policy
stringency) only through its impact on the potentially
endogenous variable (mobility). One possible violation of the
exclusion restriction would be if rainy weather leads to an uptick
in colds and flus, which may put a strain on public health care
systems and make public officials more sensitive to upticks in
coronavirus cases (for any level of mobility). We believe that our

TABLE 2 | Two-Stage Least Squares regressions—Stringency index (Worldwide, 2020).

(1) (2) (3) (4)

Dependent variable: Mobility (7-day moving averages)
Panel A: First-Stage

Residential Residential Walking Walking
Rainfall (7-day moving averages) 1.035*** (0.277) 0.961** (0.300) −8.197* (3.833) −7.472 (4.738)

Dependent variable: Stringency index
Panel B: Second-Stage
Residential (7-day moving averages) 2.288*** (0.475) 1.873** (0.571)
Walking (7-day moving averages) −0.391* (0.159) −0.396+ (0.236)
First-stage C-D F-stat 23.178 18.306 6.115 4.718
First-stage K-P F-stat 13.935 10.230 4.575 2.488
Country-days 192 191 216 215
N 11,009 10,920 4,574 4,562

Complete controls ✓ ✓ ✓ ✓
Region fixed effects ✓ ✓ ✓ ✓
Day fixed effects ✓ ✓ ✓ ✓

Notes: All specifications include Driscoll-Kraay (DK) standard errors (in parenthesis). The full table with the coefficients of the control variables is reported in the Supplementary
Appendix. + p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
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control for hospital beds per 1,000 people effectively deals with
this channel. A second possible violation may be that extreme
rainfall conditions (droughts and floods, eg) lead directly to some
governmental restrictions on public life (school and public
transport closures, eg) that may get lumped together with
other COVID-19 policy responses. On this possibility, we note
that closures of public services are only a fraction of the overall
index of policy stringency that we use.

Investigation of “Channels”
At first glance, the estimated negative relationship between
geographic mobility and policy stringency may seem counter-
intuitive. After all, more mobile societies are likely to transport
and transmit the virus at a higher rate than less mobile societies,
so the public health benefits of stringent policy responses should
be higher [13], which would imply a positive association between
mobility and policy stringency. On the other hand, it may be
more economically and politically costly for policymakers to
impose stringent regulations on a more geographically mobile
society [14, 15], which would imply a negative association
between mobility and policy stringency. In considering these
costs and benefits of policy stringency as a function of mobility,
our estimations in Tables 1, 2 imply that on net, higher mobility
seems to impact the cost side of policy stringency more than the
benefit side.

In order to investigate the cost channels that may explain the
negative relation between geographic mobility and stringency of
policy responses, we have analyzed some more focused categories
of mobility. Specifically, we look at movements related to
commerce and those related to civil society. In Table 3 we
analyze Google movement data that relates to “retail and
recreation,” “grocery and pharmacy,” “parks and recreation,”
as well as “protests” and “riots” from COVID-19 Disorder
Tracker. The TSLS results indicate that the commercial and
leisure movement variables are quite significantly negatively
related to policy stringency. The estimates on the civil society
movements are weaker. The estimated effect of protest movement

is statistically insignificant and negative (though we note that the
lower strength of the rainfall instrument for this kind of
movement may be driving the insignificant result), while the
estimated negative effect of riot is borderline statistical significant
(p < 0.1) and parks is statistically significant and negative (p <
0.05). In column (1), one standard deviation in retail and
recreation mobility decreases the stringency index by
0.26 standard deviations. In column (2), one standard
deviation in grocery and pharmacy mobility decreases the
stringency index by 0.26 standard deviations. In column (3),
one standard deviation increase in workplaces mobility decreases
the stringency index by 0.36 standard deviations.

The impact of movement related to commercial activity is a
robust explanatory factor of policy stringency, while civil
society movements do not have such a clear impact. In
Supplementary Table SA.13, we show that a variety of civil
unrest measures from conflicts that are not related to COVID-
19 do not correlate with policy stringency. Policy-makers’
decision-making should not respond to these “placebo”
treatments (unrelated to the policy issue) and that is indeed
what we find.

Furthermore, we have taken a look at finer grained policy
response measures. Those policy areas are school closures,
workplace closures, canceling public events, closing public
transport, public information campaigns, restrictions on
internal movement, international travel controls, fiscal
measures, monetary measures, emergency investment in health
care, investment in vaccines, testing frameworks, contact tracing,
restrictions on gatherings, stay-at-home measures, income
support, and international support. We now examine how the
individual policy components of the composite index respond to
the instrumented variation in geographic mobility. In Figure 1,
we show statistically significantly positive associations between
instrumented residential movement and policies such as contact
tracing, canceling public events, stay-at-home orders, regulating
international travel control, and income supports. On the other
hand, we also document statistically significant negative

TABLE 3 | Two-Stage Least Squares regressions—Business vs. civil society (Worldwide, 2020).

(1) (2) (3) (4) (5) (6)

Dependent variable: Stringency index; Instrument: Rainfall (7-day moving averages)
Retail and recreation (7-day moving avgs) −0.528** (0.161)
Grocery and Pharmacy (7-day moving avgs) −0.443** (0.154)
Workplaces (7-day moving averages) −0.596* (0.238)
Protests (7-day moving averages) −106.250 (379.767)
Riots (7-day moving averages) −36.613+ (21.473)
Parks (7-day moving averages) −0.288* (0.124)
First-stage C-D F-stat 53.011 77.972 41.567 0.217 22.828 32.336
First-stage K-P F-stat 23.216 37.279 17.086 0.076 4.729 14.661
Country-days 191 191 191 236 236 191
N 10,860 10,860 10,918 12,210 12,210 10,803

Complete controls ✓ ✓ ✓ ✓ ✓ ✓
Region fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Day fixed effects ✓ ✓ ✓ ✓ ✓ ✓

Notes: All specifications include Driscoll-Kraay (DK) standard errors (in parenthesis). The full table with the coefficients of the control variables is reported in theSupplementary Appendix.
+p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
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associations between instrumented movement and policies that
regulate public information campaigns and testing frameworks.
All statistically significant variables are ordinal variables,
registering progressively higher levels of intensity of policy
responses. Although our results are heterogeneous, statistically
significant positive variables tend to reduce mobility, increasing
business costs. In contrast, significant negative variables tend to
improve prevention, not substantially affecting commercial
activities. Therefore, the disaggregated analysis follows a
pattern consistent with our previous results.

Further Robustness Analysis
First, readers may be concerned that the results are being driven
by specific countries. We have performed “leave-one-out” checks
that drop the lowest and highest mobility countries for both the
OLS and TSLS models, which are graphically summarized in
Supplementary Figure SA.2. Supplementary Tables SA.4–SA.6
report additional results concerning the rainfall IV, namely the
first-stage estimates, the reduced form estimates, and alternative
constructions of the instrument (the continuous variable and
binary variables with alternative thresholds). Concerning our
battery of controls, we have also considered some alternatives.
For instance, we have also reproduced Tables 1, 2 with the same

controls found in [4] in Supplementary Tables SA.7, SA.8. Some
readers may find our use of a seven-day lagged moving average to
be arbitrary, so Supplementary Table SA.9 reproduces the main
TSLS results using alternative lag structures, namely moving
averages of 5, 10, and 14 days, respectively.

We have dropped the extreme rainfall observations
(Supplementary Table SA.10), dropped the largest countries
in terms of their population (Supplementary Table SA.11) and
geography (Supplementary Table SA.12). We also have
employed quadratic effects of the IV’s (Supplementary Table
SA.14). Concerning the instrument, we have considered
alternative operationalizations, such as using the raw data, an
inverse hyperbolic sine transformation, and alternative
thresholds for the binary variable (Supplementary Tables
SA.6, SA.15). The instruments are often much stronger in
these alternative operationalizations, with first-stage K-P
F-statistics greater than 47, and coefficients are also
remarkably stable, ranging from 2.1 to 2.6. As our baseline
results in column 3 from Table 2 is 2.0, we present a slightly
conservative estimate in the main paper. Supplementary Figure
SA.3 explores the sensitivity of IV estimates to potential
violations of the exclusion restriction, which is described in
Supplementary Section SA.2. We have also considered

FIGURE 1 | Disaggregated policy responses. All Two-Stage Least Squares regression models include the same controls as column 3 from Table 1. Coefficients
are represented by open dots and their respective numbers. Bars are 95% confidence intervals, calculated with Driscoll-Kraay standard errors (Worldwide, 2020).
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alternative climate variables, such as maximum wind speed,
volatility of wind speed and visibility conditions in
Supplementary Table SA.16. To deal with spill-over effects
from our rainy instrument, columns 2 and 3 from
Supplementary Table SA.20 add countries’ latitude and
longitude as controls. To avoid ecological inferences, column
1 from Supplementary Table SA.20 estimates the paper’s
baseline model by adding a control for federal political
systems, which present more within-country variation. We
additionally check the robustness of the results when
controlling for subnational variation of policies. In
Supplementary Figure SA.4, we show how nationally-
measured stringency of disaggregated policy responses are
affected by mobility controlling for whether policies are
targeted to specific geographical regions.

DISCUSSION

Previous research (see Supplementary Table SA.21) shows
that measures to reduce mobility reduce COVID-19 cases, but
these policies are motivated more by political and economic
incentives than by strict public health considerations.
Specifically, reduction in connectivity is more vital for
municipalities with a low average income in Italy [16].
However, wealthy areas went from most mobile before the
pandemic to least mobile in France, Italy, and the U.K. [17], and
areas showing higher resilience to mobility disruptions are
those where GDP per capita is higher in the U.S [18]. This
paper has established that governments’ policy responses to the
COVID-19 pandemic are to some extent determined by how
mobile their societies are. While shutting down movement
should have the largest public health benefit in highly
mobile societies, it may also have the largest political and
economic costs. Our analysis demonstrates that geographic
mobility may have an important role in explaining why
some countries have pursued more stringent policy
responses than others.
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