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A decade ago, reports that organic-rich soft tissue survived from dinosaur

fossils were apparently supported by proteomics-derived sequence infor-

mation of exceptionally well-preserved bone. This initial claim to the

sequencing of endogenous collagen peptides from an approximately

68 Myr Tyrannosaurus rex fossil was highly controversial, largely on the

grounds of potential contamination from either bacterial biofilms or from

laboratory practice. In a subsequent study, collagen peptide sequences

from an approximately 78 Myr Brachylophosaurus canadensis fossil were

reported that have remained largely unchallenged. However, the endogene-

ity of these sequences relies heavily on a single peptide sequence, apparently

unique to both dinosaurs. Given the potential for cross-contamination from

modern bone analysed by the same team, here we extract collagen from bone

samples of three individuals of ostrich, Struthio camelus. The resulting LC–

MS/MS data were found to match all of the proposed sequences for both

the original Tyrannosaurus and Brachylophosaurus studies. Regardless of the

true nature of the dinosaur peptides, our finding highlights the difficulty

of differentiating such sequences with confidence. Our results not only

imply that cross-contamination cannot be ruled out, but that appropriate

measures to test for endogeneity should be further evaluated.
1. Introduction
The search for ancient biomolecules from deep-time fossils has led to some excep-

tional claims regarding the preservation of organics within fossilized material. In

particular, Schweitzer et al. [1] reported on the startling discovery of soft-tissue

preservation in the femur of a Tyrannosaurus rex, apparently preserved for over

68 Myr, a length of time vastly greater than thought possible given the exper-

imentally measured rates of decay for the component structural proteins,

particularly collagen [2]. With exceptional preservation of organic molecules

comes the possibility of retrieving a wealth of genetic information from periods

of time long before our presence on the Earth. However, it has long been accepted
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Table 1. Peptide matches to Brachylophosaurus collagen from Schweitzer et al. [14] and the taxa they can be found in as originally stated (with added
observations by BLAST search in parentheses, with an emphasis on the potential contaminants). Underlined residues indicate post-translational modification
(oxidation of P; deamidation of N).

peptide sequence protein taxa

GLTGPIGPPGPAGAPGDKGEAGPSGPPGPTGAR COL1A1 ostrich and mammals

GSAGPPGATGFPGAAGR COL1A1 Tyrannosaurus rex, chicken and mammals (and others, including alligatora)

GATGAPGIAGAPGFPGAR COL1A1 Tyrannosaurus rex, chicken, alligator and amphibians (and other reptiles and birds)

GETGPAGPAGPPGPAGAR COL1A1 chicken (and other birds, including ostrich)

GVQGPPGPQGPR COL1A1 Tyrannosaurus rex, chicken, alligator and opossum (and others, including ostrich)

GPSGPQGPSGAPGPK COL1A1 chicken, alligator, rat and opossum (and others, including ostrich)

GSNGEPGSAGPPGPAGLR COL1A2 chicken and alligator (and other birds, including ostrich)

GLPGESGAVGPAGPP*GSR COL1A2 Tyrannosaurus rex

*Note that this amino acid sequence (bold) was ‘corrected’ from the T. rex sequence originally proposed by Asara et al. [5].
aThis part of the sequence is not currently complete for ostrich (Struthio) by BLAST search.
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that morphological preservation does not imply molecular

preservation [3]. Yet in 2007, the same team reported on the

sequencing of collagen that they reported to be endogenous

to T. rex specimen MOR 1125 [4,5]. Obtaining molecular-

sequence information would be the gold standard for support-

ing such claims of soft-tissue survival, but confirming the

authenticity of ancient biomolecule sequences is difficult [6].

By contrast, Manning et al. [7] reported on the exceptionally

preserved remains of a hadrosaur from the Hell Creek For-

mation (USA), which included mineralized skin, tendon and

associated skeletal material, but even from such an exception-

ally preserved specimen, they were only able to demonstrate

the presence of protein breakdown products using total

amino acid analyses, pyrolysis gas chromatography mass

spectrometry (Py-GCMS), Fourier transform infrared (FTIR)

spectroscopy, matrix assisted laser desorption ionization

time of flight (MALDI-TOF) mass spectrometric peptide

mass fingerprinting and proteomic analyses [7].
(a) Tyrannosaurus rex collagen sequences
In the case of the T. rex specimen (MOR 1125), these initial

studies were supported by two main lines of supporting

molecular evidence: immunological data and sequence infor-

mation [1]. This first choice of support is no longer widely

accepted as ideal for such claims, given that immunological

techniques have been shown to yield false-positive results [8].

The authenticity of any findings based on this approach rests

solely on sequence interpretation. In its first release, this was

fraught with multiple incorrect post-translational modification

(PTM) assignments in the form of hydroxylated glycine resi-

dues [5]; a clear indication of the potential problems is the

reliance on probability-based matching algorithms of current

proteomics-based techniques. In direct response to this first

report, several criticisms arose related to potential forms of

contamination [6,9,10] or statistical artefact relating to such a

proteomics approach [11].

On the grounds that mineralized and non-mineralized

coatings have been found extensively in the porous trabecular

bone of a variety of vertebrate fossils across time, including

dinosaurs, Kaye et al. [10] proposed that the T. rex specimen

was likely similarly contaminated with bacterial biofilm, thus

explaining the morphological similarity to the blood vessels
and osteocytes that they attack. In addition, the blood-cell-

like iron–oxygen spheres found in the vessels were identified

as an oxidized form of formerly pyritic framboids. Interest-

ingly, similar thin linings on Haversian canals within apatite

were identified by infrared and electron microprobe analysis

of ossified tendon by Manning et al. [7] and clearly showed

preserved mineral zonation, with silica and trapped carbon

dioxide. FTIR analysis of the tendon showed clear structural

control of organic compounds within the Haversian canals,

suggesting that organic material may have persisted. However,

this study concluded that the organic signal may have been

associated with breakdown products of the original biomater-

ial deposited within the tendon, consistent with the presence

of the endogenous breakdown products of organic material

identified from other regions of the specimen but not able to

yield any such sequence information [7].

Bern et al. [9] reanalysed the original T. rex sequence data to

infer that the sample was predominantly laboratory contami-

nants, soil bacteria and bird-like haemoglobin and collagen.

They suggested that of the six peptides that Asara et al. [5]

deposited in GenBank (GATGAPGIAGAPGFPGARGA-

PGPQGPSGAPGPK, GSAGPPGATGFPGAAGR, GVQG-

PPGPQGPR, and GVVGLPGQR from collagen alpha-I type

I, GLVGAPGLRGLPGK from collagen alpha-1 type II and

GLPGESGAVGPAGPIGSR from collagen alpha-2 type I),

only the first three of these could be considered statistically sig-

nificant, calling for the latter to be dropped from GenBank.

However, despite the unexpected presence of haemoglobin,

a protein only typically seen in relatively recent samples

[12,13], the presence of the remaining collagen peptides

was not accepted as being contamination for reasons that

remain unclear.
(b) Brachylophosaurus canadensis collagen sequences
Following the initial 2007 report [5], the same team reported

similar collagen peptide sequence matches from a hadrosaur-

ine dinosaur, an approximately 78 Ma Brachylophosaurus
canadensis (MOR 2598; table 1) [14]. However, although it

had already been suggested that standards be set in place,

like those for the field of ancient DNA, this second study

once again aimed to rely on an immunological approach as

the main line of support, despite the ability to record



Table 2. Peptide matches to Brachylophosaurus collagen from Schroeter et al. [22] and the taxa they can be found in by BLAST search in parentheses, with an
emphasis on the potential contaminants. Underlined residues indicate post-translational modification (oxidation of P). The emboldened peptide is reported as
having two hydroxylated prolines even though we routinely observe this peptide with only one (at P3), with a nearby A – S transition identified previously as
being problematic to distinguish; they acknowledge in the electronic supplementary material that it could be either.

peptide sequence protein taxa

*GSAGPPGATGFPGAAGR COL1A1 Tyrannosaurus rex, chicken, mammals (and others, including alligator)

*GATGAPGIAGAPGFPGAR COL1A1 Tyrannosaurus rex, chicken, alligator and amphibians (and other reptiles and birds)

GFPGADGIAGPK (GFPGADGIsGPK) COL1A1 ostrich and others (*alligator)

GFPGLPGPSGEPGK COL1A1 alligator and ostrich (and others, ranging from fish to mammals)

GQAGVMGFPGPK COL1A1 alligator and ostrich (and others)

EGPVGFPGADGR COL1A2 alligator and ostrich (and others, including reptiles, birds and mammals)

GATGLPGVAGAPGLPGPR COL1A2 alligator (and rodents)

GEPGNIGFPGPK COL1A2 alligator and ostrich (and others, including birds and mammals)

*Note that these were the two peptides observed in both analyses [5].
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chemical decay within proteins through PTMs such as oxi-

dations and deamidations [15–17], or even a range of

others identified by the same team in ancient moa [18].

Following Schweitzer et al. [14], there have been no

further published attempts to verify the endogeneity of

either published samples of purported dinosaur collagen

sequences from other research groups, despite the lack of

potential means to clarify the extent of decay within the pro-

teins, of which we would expect substantial alteration [7];

members of the same team subsequently went on to report

even more exceptional peptide matches to soft-tissue struc-

tures, in which they interestingly did report on the levels of

deamidation and made clear attempts to separate modern

from fossil material during the laboratory process [19]. The

published record to date could be considered to lean in

favour of endogeneity, with Peterson et al. [20] arguing

against the microbial biofilm interpretation, suggesting that

the crystallization of microbial biofilms on decomposing

organic matter within vertebrate bone in early taphonomic

stages may contribute to the preservation of primary soft

tissues deeper in the bone structure [14].

A subsequent study mapping the molecular locations of

the matched collagen peptides from both dinosaurs also

implied that it was functionally significant regions of the col-

lagen fibrils that were matched [21]. Although it was

suggested that this non-random distribution could support

the hypothesis that the peptides are produced from the

extinct organisms, while also suggesting a chemical mechan-

ism for survival, it does not rule out cross-contamination in

which the same ‘mechanism for survival’ could equally

apply to enhanced likelihood of contaminant peptides.

More recently, a second collagen-based study has been pub-

lished that placed further emphasis on the cleaning of the

instrumentation used in addition to separate laboratories

for extant and fossil material [22], presenting an overlapping

set of peptides. Intriguingly, these do not include the peptide

sequence found as unique to both dinosaurs (table 2). As a

result, the phylogenetic analysis of this latest extraction

places the Brachylophosaurus as sister-group to alligators as

well [22], clearly highlighting concern regarding the limit-

ations of the study to date. They do, however, all match

with peptides from alligator type 1 collagen, a species concur-

rently analysed in their previous works as modern reference
material [5,14] even if not necessarily contamination caused

at the time of the most recent sampling.

Given that the only reports that appear to favour the most

recent studies cannot rule out cross-contamination, we set out

to test whether or not the reported set of unique collagen pep-

tides (i.e. [5,14], excluding [22] as not containing unique

peptides) could simply reflect cross-sample contamination

from the modern reference material used; in this case, ostrich

(S. camelus) bone (alligator was also used in the latter study,

but not evaluated here in determining the unique dinosaur

peptide because it was not used in the earlier study). In

this study, we aimed to investigate the differences between

sequences from ostrich bone collagen and those reported

for both T. rex (MOR 1125) and B. canadensis (MOR 2598).
2. Material and methods
(a) Proteomics analysis of modern ostrich bone
Three modern ostrich bone specimens were sampled, two (CC1254

and CC507) from Creswell Crags Heritage Centre (Derbyshire, UK)

and one from our own collections (UM902) purchased from

Ostrich Solutions (UK). Proteome extraction was solely restricted

to our standard GuHCl-based approach following decalci-

fication [13]. In brief, decalcification with 0.6 M hydrochloric

acid (HCl) for approximately 18 h (overnight), and centrifuged at

14 000 r.p.m. for 5 min. The supernatant was removed and

frozen, while the acid-insoluble residue was gelatinized with 6 M

guanidine hydrochloride/5 mM Tris–HCl for a further 18 h. The

acid-soluble collagen was applied to a 10 kDa ultrafilter (Vivaspin,

UK) and centrifuged, which was repeated with the centrifuged

supernatant from the acid-insoluble residue extraction. Once the

acid-soluble proteins had passed through the ultrafilter, two

volumes of ammonium bicarbonate (50 mM; ABC) were also

passed through. Once both volumes had filtered through, a further

200 ml of ABC were added to the filter, mixed and recovered. This

was incubated with 10 ml 100 mM dithiothreitol (in 50 mM ABC)

for 10 min at 608C. After cooling, 40 ml of iodoacetamide were

added to each sample and stored in the dark at room temperature

for 45 min. A further 10 ml 100 mM dithiothreitol were added to

quench the reaction and the sample digested overnight with 2 mg

sequencing grade trypsin (Promega, UK) at 378C. The tryptic

digests were cleaned using C18 ziptips following manufacturer’s

protocol (Varian OMIX, UK), dried down and resuspended with

10 ml 5% acetonitrile/0.1% formic acid.



Table 3. Mascot search result scores of digested proteome extracts from three different ostrich bone specimens analysed months apart and the similarity to the
ostrich (Struthio) sequence as a percentage. Note that the first tryptic peptide of the emboldened sequence was also matched in every sample without the
missed cleavage at the K residue. Underlined residues indicate post-translational modification (oxidation of P/K; deamidation of N); scores in parentheses
represent higher scores with deamidated peptides or with one additional oxidation. m/z, mass-to-charge ratio.

peptide sequence m/z CC1254 CC507 UM902 similarity (%)

BrachyA1/TrexA1 GVQGPPGPQGPR 1161.6 57 53 (60) 59 (65) 100

BrachyA1 GPSGPQGPSGAPGPK 1305.6 71 74 53 (80) 100

BrachyA1/TrexA1 GSAGPPGATGFPGAAGR 1458.7 94 120 123 100

BrachyA1 GETGPAGPAGPPGPAGAR 1531.7 84 85 66 100

BrachyA1 GLTGPIGPPGPAGAPGDK 1589.8 58 75 45 100

BrachyA1 GLTGPIGPPGPAGAPGDKGEAGPSGPPGPTGAR 2878.4 45 45 36 (44a) 100

BrachyA2/TrexA2 GLPGESGAVGPAGPPGSRb 1577.8 70 76 78 89

BrachyA2 GSNGEPGSAGPPGPAGLR 1608.7 80 (93) 58 (79) 71 100

BrachyA1/TrexA1 GATGAPGIAGAPGFPGAR 1571.8 74 73 58 100

TrexA1 GAPGPQGPSGAPGPK 1305.6 69 62 46 (71) 100

TrexA1 GVVGLPGQR 897.5 50 46 50 100
aScore with one additional oxidation.
bPeptide was considered unique to T. rex but see electronic supplementary material, S1 – S6.
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(b) Liquid chromatography – mass spectrometry/mass
spectrometry analyses

Digested samples were analysed by LC–MS/MS using an Ulti-

Matew 3000 Rapid Separation LC (RSLC, Dionex Corporation,

Sunnyvale, CA, USA) coupled to an Orbitrap Elite (Thermo

Fisher Scientific, Waltham, MA, USA) mass spectrometer

(120 k resolution, Full Scan, Positive mode, normal mass range

mass-to-charge ratio (m/z) 350–1500). Peptides in the sample

were separated on a 75 mm � 250 mm i.d. 1.7 mM ethylene

bridged hybrid (BEH) C18 analytical column (Waters, UK)

using a gradient from 92% A (0.1% formic acid in water) and

8% B (0.1% formic acid in acetonitrile) to 33% B in 44 min at a

flow rate of 300 nl min21. Peptides were automatically selected

for fragmentation by data-dependent analysis; six MS/MS

scans (Velos ion trap, product ion scans, rapid scan rate, Cen-

troid data; scan event: 500 count minimum signal threshold,

top six) were acquired per cycle, dynamic exclusion was

employed and one repeat scan (two MS/MS scans total) was

acquired in a 30 s repeat duration, with that precursor being

excluded for the subsequent 30 s (activation: collision-induced

dissociation (CID), 2þ default charge state, 2 m/z isolation

width, 35 eV normalized collision energy, 0.25 Activation Q,

10.0 ms activation time).

In addition to the above, one ostrich bone proteome digest

was also analysed using high resolution in the MS/MS to demon-

strate the ability to resolve sequence ambiguity of the homologous

ostrich peptide unique T-rex peptide (GPP(Oxidation)GESGA

VGPAGPIGSR versus GLPGESGAVGPAGPP(Oxidation)GSR,

respectively). This was done by employing a method in which

peptides were automatically selected for fragmentation by

data-dependent analysis; and performing six MS/MS scans. How-

ever, in this instance, three MS/MS scans were low-mass accuracy

CID scans and three were high-mass accuracy higher energy colli-

sional dissociation (HCD) scans. Each precursor that was first

selected for CID fragmentation was then selected for HCD frag-

mentation. As described above, the CID spectra were acquired

in the Velos ion trap, with the same parameters as above. HCD

spectra were acquired in the Orbitrap, with a mass resolution of

15 k. All other parameters were as with the Velos, except no selec-

tion is made for Activation Q.
(c) Database searching
Peptide spectra obtained via LC–MS/MS were searched against

the SwissProt database for matches to primary protein sequences

using the Mascot search engine (v. 2.2.0.6; Matrix Science,

London, UK). Each search included the fixed carbamidomethyl

modification of cysteine (þ57.02 Da) and the variable modifi-

cations for asparagine and glutamine deamidation (þ0.98 Da),

serine and threonine phosphorylation (þ79.99 Da) and oxidation

of lysine, proline and methionine residues (all þ15.99 Da) to

account for PTMs and diagenetic alterations (the oxidation of

lysine and proline being equivalent to hydroxylation commonly

observed in collagen, the dominant protein in bone). Enzyme

specificity was limited to trypsin (trypsin/P) with up to two

missed cleavages allowed, mass tolerances were set at 5 ppm

for the precursor ions and 0.5 Da for the fragment ions; all spec-

tra were considered as having either 2þ or 3þ precursors and the

peptide ion score cut-off was set at 30 for more confident

matches. Repeat searches were also carried out using Error Toler-

ant search parameters with only one missed cleavage and the

carbamidomethyl fixed modifications, and oxidations of both

lysine and arginine selected to ensure that collagen would

be adequately matched. These were carried out against the

SwissProt database to retain similar search conditions to those

available to the original studies, despite more avian and reptilian

sequences being available elsewhere.
3. Results
(a) Modern ostrich bone collagen matches
In our analyses of modern ostrich bone samples, which were

analysed several months/years apart and from three distinct

individuals, there were unequivocal 100% sequence matches

both for the Brachylophosaurus and Tyrannosaurus uploaded

to SwissProt (table 3). In almost every case the Mascot

score was relatively high, whereby even the ‘unique dinosaur

peptide’ GLPGESGAVGPAGPPGSR was identified with all

scores 70 or above (although not directly comparable,

higher than the originally reported Mascot score of 54.3),



Figure 1. Tandem mass spectrum from high-resolution (HCD) fragmentation analysis of the peptide sequence (GPPGESGAVGPAGPIGSR) matched from our analysis of
ostrich bone collagen that is homologous to the peptide proposed as unique to T. rex and B. canadensis.
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despite this not being reported in the ostrich bone collagen

analyses by Asara et al. [5].

The only peptide that appears unique to the dinosaurs is

the peptide at m/z 1577.7. However, the homologous sequence

in chicken, Gallus gallus domesticus, is almost identical in terms

of mass (GLPGESGAVGPAGPP(Oxidation)GSR in T. rex),

where the proposed hydroxylation of the P15 is an isoleucine

in chicken, which it was originally identified as in the T. rex
specimen by Asara et al. [5]. In their later publication [14],

they claimed this peptide as deriving from a similar but

uniquely dinosaur peptide, emphasizing that their high-

resolution instruments were capable of distinguishing

between the two residues (high-resolution instruments

should be capable of the separation, e.g. Ile monoisotopic

mass 131.094635, Hyp 131.058243; difference 0.036392). How-

ever, this distinction would still require a near complete ion

series particularly at both ends of the peptide, but their data

for this peptide are not shown. In this case, their later interpret-

ation that ‘hydroxyproline is more accurate than isoleucine/

leucine’ is likely true, but its placement at position 15 may

not necessarily be well supported without showing this

‘unique’ dinosaur peptide spectrum.

Interestingly, we observe a subtle difference in the

sequence for this peptide, at least in ostrich collagen regardless

of the actual sequence identity of the dinosaur specimens (to

which the ostrich confidently matches). From both the low-

mass accuracy (CID) and high-mass accuracy (HCD) spectra,

it is clear that the sequence identity at residues 1–3 as

GPP(Oxidation)- can be readily determined, as indicated by

the y16/b2 fragment ion pair (figure 1). However, typically

determining the sequence identity at residue 15 in such an

instance (i.e. distinguishing between an oxidated proline and

an isoleucine/leucine residue) is not as straightforward

because the mass difference is much smaller (at 75 ppm for

y4). Here, we demonstrate that it can be done by acquiring

an appropriate HCD spectrum for the precursor in question,

i.e. at m/z 789.8972, and comparing the observed fragment

ion masses with those calculated for the two carboxy-terminal
peptide sequences in question (table 4). The mass differences

between the observed values and those calculated for

peptide sequence GLPGESGAVGPAGPP(Oxidation)GSR

were found to be in the region 22.4–140.6 ppm, and outside

the accuracy determined for the analyses. However, those

for peptide sequence GPP(Oxidation)GESGAVGPAGPIGSR

were between 0.5 and 11.6 ppm (table 4) demonstrating how

it is possible to confirm the identity of the peptide (note that

the precursor m/z observed for this peptide was identical to

three decimal places to that observed for the homologous

T. rex peptide). Interestingly, when we download the spectrum

of the unique dinosaur peptide (100407RHad062807ndzip-

CID.2654.2654.2) from the published Brachylophosaurus
dataset and search it against SwissProt using Mascot, the

only match is to the peptide sequence (GPP(Oxidation)

GESGAVGPAGPIGSR; score 50/expect value 0.0067). What

is most telling is the absence of the expected y ion peak at

m/z 1408.7 in their own spectrum (figure 2), but dominance

of the peak at m/z 1424.4, as we would expect for the ostrich

sequence (figure 1). However, regardless of the true sequences

of the dinosaur peptides, our finding of 100% match to all

sequences for both dinosaurs, including this variant sequence,

highlights the difficulty of separating such sequences with

confidence without clearly identifying the appropriate parts

of the MS/MS spectra.
4. Discussion
(a) Similarity between ostrich and alligator with the

proposed ‘unique’ dinosaur peptides
Clearly, it would not be possible to disprove the hypothesis

that the collagen sequences produced are indeed of dinosaur

origin without sequencing an intermediate species between

the extinct species in question and all of the extant taxa that

had been sampled in the laboratory. Unfortunately, because

ostrich was used, the species most commonly agreed as



Table 4. The m/z values for detected fragment y ions for the peptide at 789.898 selected for HCD fragmentation. The observed value is given, along with the
calculated values for each fragment according to the two sequences (T. rex and Struthio) under question, emphasizing the ability to distinguish between an
oxidated proline and isoleucine/leucine residue in the carboxy-terminal region of the peptide.

Frag ion observed P(Oxidation)- L ppm L-P(Oxidation) ppm ppm calc

y4 — 432.2565 — 432.2201 — 75

y5 529.3055 529.3093 7.2 529.2729 61.6 69

y6 586.3375 586.3307 11.6 586.2944 73.5 62

y7 657.369 657.3678 1.8 657.3315 57 55

y8 754.4185 754.4206 2.8 754.3842 45.5 48

y9 811.4386 811.4421 4.3 811.4057 40.5 45

y10 910.5069 910.5105 4 910.4741 36 40

y11 981.5446 981.5476 3.1 981.5112 34 37

y12 1038.5646 1038.5691 4.3 1038.5327 30.7 35

y13 1125.5952 1125.6011 5.2 1125.5647 27.1 32

y14 1254.6443 1254.6437 0.5 1254.6073 29.5 29

y15 1311.6582 1311.6652 5.3 1311.6288 22.4 28

y16 1424.7063 1424.7128 4.6 1408.6815 — —

Figure 2. Tandem mass spectrum of the peptide sequence claimed as being endogenous to both dinosaurs with sequence (GLPGESGAVGPAGPPGSR) downloaded
from the B. canadensis analysis by Schweitzer et al. [14].

rspb.royalsocietypublishing.org
Proc.R.Soc.B

284:20170544

6

being earliest diverging from the extant bird lineage [23], this

became no longer possible. If the original analyses had been

carried out by comparison to a neognath bird (i.e. chicken), or

at least a comparative species that left more basal extant taxa

for others to sequence for phylogenetic support, this would

have proven a testable hypothesis.

In our previous statement of concern [6] on the original

reports [1,5], we pointed out that collagen is an ideal molecu-

lar target for assessing the risk of contamination. Despite its

highly characteristic sequence motif, collagen is sufficiently

variable for comparison between distinct taxa, if enough

sequence is obtained. The results presented here show a com-

plete match to all previously published peptides from both

dinosaur specimens, indicating that this condition has not

been met in either case. It may be that the proposed Brachylo-
phosaurus sequence does differ from our ostrich sequence

rather than a matching error. However, this would place

Brachylophosaurus phylogenetically closer to chicken than
ostrich [22], an unlikely scenario albeit with too few sequence

changes to be of much value.

Cleland et al. [19] take this one step further and describe

the matching of peptides from soft-tissues supposedly pre-

served in their Brachylophosaurus specimen. They do point

out the observations of deamidation, although these will

occur at high levels depending on extraction methods,

likely more so in soft tissues than bone. In order to rule out

cross-sample contamination, they present one peptide for

‘ostrich tubulin’ (AILVDLEPGTMDSVR) as being different

from the B. canadensis (AVLVDLEPGTMDSVR), therefore

reportedly attesting to the lack of contamination by ostrich

and chicken proteins in the B. canadensis extractions (see

Cleland et al. [19] and electronic supplementary material

therein). However, what appears to have potentially been

overlooked is that AVLVDLEPGTMDSVR (the reported ‘B.
canadensis tubulin peptide’) is present in tubulin b-3

(NP_001074329.2) and b-5 (NP_001026183.1) chains in
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Gallus, tubulin b-5 (KFV86939.1) chain in Struthio (tubulin b-2

is the protein from which the above peptide they referred to

originates), tubulin b-6 (XP_006269797.1) and b-4a

(XP_006023414.1) chains in Alligator and several other tubulin

chains among many other archosaur taxa. Likewise, AILV-

DLEPGTMDSVR (their ‘ostrich tubulin peptide’) is a tubulin

b-2 sequence found not only in Struthio (KFV82917.1), but

also in b-2 (NP_001004400.1), b-4 (NP_001026769.1) and b-7

(NP_990646.1) chains in Gallus, in b-2 (XP_006263527.3) and

b-4b (XP_014462111.1) chains in Alligator and several other

tubulin chains among many other archosaurs. All of the

above matches are to the complete sequences, with 100%

identity found from default protein BLAST searches.
R.Soc.B
284:20170544
(b) Potential sources of contamination
There are three general sources of sample contamination,

either (i) in the field, whether during the recovery or before-

hand, (ii) during laboratory analyses or (iii) when curated

and handled in museum/research collections. In consider-

ation of the former [1]: the pes elements, tibia and fibula of

B. canadensis were collected in 2006, whereas the femur was

reported as being ‘protected under approximately 7 m of

Judith River Formation sandstones’ until 2007. It is unlikely

that environmental contamination did arise at this point,

but it cannot be ruled out. What is far more likely, given

what we have observed with our own analyses, is laboratory

cross-contamination of samples, coupled with long-term

handling in collection environments (museum and research).

It is not appropriate to list all specimens analysed within a

particular laboratory or museum environment over a set

time period (although this level of recording may indeed be

necessary for ‘palaeoproteomics’ laboratories in the future).

If the same laboratory has produced several publications

relating to modern ostrich bone analysis, due diligence

should note this as part of the samples’ history. For example,

Asara et al. [5] used modern ostrich bone, Schweitzer et al.
[24] used modern emu bone, Schweitzer et al. [14] used

modern ostrich and alligator, and modern ostrich blood

vessels were used in the 2013 study [24].

The possibility of cross-contamination is typically dis-

missed on the grounds of sequence differences, and absence

in sediment and analytical blanks. However, the latter alone

cannot be considered appropriate grounds for such dismissal

if the fossils are contaminated at a particular stage (e.g. hand-

ling, or sampling, for which both could differ between fossils

and their sediment blanks), whereas the sequence differences

are the primary focus of our study. In this regard, the authors

in their original publication [1] only appeared to observe 30%

sequence coverage of their ostrich bone collagen, despite typi-

cal values of greater than 60% (see electronic supplementary

material, S1–S6). Given that we were able to observe high

(76–80%) sequence coverages against even the chicken (I) col-

lagen sequences, the lack of using closely related species in the

searched database should not cause such a low coverage; even

when a peptide ion score cut-off at the level suggested by

Mascot for homology is used, sequence coverages remained

more than twice that observed by Asara et al. [5].

In addition to this, at least a further 10 matches can be

found in all three biological replicates with simple error toler-

ant searches (electronic supplementary material, S4–S6),

along with a range of post-translational modifications

expected with bone collagen, such as oxidations (M, P and
K), deamidations (N and Q) and even those less commonly

observed, such as glucosylgalactosyl modifications (K).

Despite the overall poor sequence coverage for their

modern ostrich collagen digest, one of the only two a 2(I)

peptides that they did report (GLPGESGAVGPAGPIGSR)

was homologous to the reported T. rex unique peptide

(GLPGESGAVGPAGPPGSR). Nonetheless, our analyses

(electronic supplementary material, S1–S6) demonstrate

that their interpretation of the ostrich peptide sequence was

likely incorrect, and that highly scoring peptide matches to

the T. rex sequence are also observed from modern ostrich

bone analysis. Phylogenetic analyses of such data (e.g. [4])

are entirely redundant, given that there are no confident

differences in the amino acid sequences between the dino-

saurs and the ostrich studied within the same laboratory.

Separately, the same is true for the second set of peptides

added for B. canadensis [22], which could independently

derive solely from modern alligator. As such, the dangers

of combining proteomics-derived datasets together from fos-

sils should also be taken into account, particularly with

phylogenetic reconstruction.

In 2011, San Antonio et al. [21] attempted to propose a

preservation mechanism reported for the observed peptides

that could potentially support the longevity of particular pep-

tides. However, these could arguably be equally appropriate

for sample cross-contamination and the peptides that survive

within the laboratory environment. There are matches to

other proteins, where Bern et al. [9] note that Arachis hypogaea
(peanut) allergen appears out of place. However, in core

facilities such as these, there is typically less control over pre-

vious runs without increasing costs. This is significant as we

have also noticed carry-over from other samples submitted to

our own core facility that are difficult to remove from LC–

MS/MS of ever-increasing sensitivity. Bern et al. [9] pointed

out that complete sequencing of ostrich collagen would

help dispel one contamination scenario. Here, we have

shown that even partial sequencing of ostrich collagen is

enough to bring the findings for both dinosaur sequences

into serious doubt. Given that modern ostrich (as well as alli-

gator [14]) continued to be used as reference material ([5,19]),

this is not an unrealistic speculation, but only the records of

the laboratory itself could confirm the movement of the

modern material throughout the various laboratories.
5. Conclusion
This report makes no attempt to address what the structures

proposed by Schweitzer et al. [1] derive from, but emphasizes

that the proteomic results may still be found to derive from

laboratory contamination. With direct sequencing of biomole-

cules (DNA or protein), determination of whether sequences

differ from those of all extant taxa taken into any of the labora-

tory environments should be a necessity with specimens of

such antiquity. Although future analyses may reveal the survi-

val of biomolecules of such antiquity, the fact that no other

research groups have done so in the past decade since the

2007 study is itself informative. Our results suggest that

cross-contamination should not be so readily dismissed as

the likely source of collagen matched in earlier studies [5,14],

thereby yielding the false-positive results for supposed dino-

saur-derived collagen. The most recent 2017 study [22] does

not find their unique dinosaur peptide (which we show as
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producing a good match for the homologous ostrich peptide)

and entirely matches alligator. Yet in both studies, the levels of

deamidation were suspiciously low, which can be used to

detect recent contamination [25]. Hence, we urge that appro-

priate measures to test for endogeneity should remain an

important part of the scientific process. The axiom that extra-

ordinary claims require extraordinary evidence still stands

and the case for dinosaur proteins is clearly no exception.

Data accessibility. The raw data are available on the PRIDE proteomics
data repository as ‘Ostrich bone proteome’ (accession PXD006360;
doi:10.6019/PXD006360) [26].
Authors’ contributions. M.B. developed the idea, conducted the research
and wrote the manuscript. S.W. conducted research and helped
prepare the manuscript. B.v.D., P.L.M. and A.C.K. contributed
through developing the idea of the research and helped prepare
the manuscript.

Competing interests. We declare we have no competing interests.

Funding. We acknowledge financial support from the Royal Society
(UF120473) for fellowship funding to M.B. and STFC (ST/M001814/
1) for fellowship funding to P.L.M., as well as the University of
Manchester Biomolecular Analysis facility.

Acknowledgements. The authors greatly appreciate being allowed access
to the ostrich skeletal material from Creswell Crags Heritage Centre
and from Ostrich Solutions, UK.
roc.R.Soc.
References
B
284:20170544
1. Schweitzer MH, Wittmeyer JL, Horner JR, Toporski
JK. 2005 Soft-tissue vessels and cellular preservation
in Tyrannosaurus rex. Science 307, 1952 – 1955.
(doi:10.1126/science.1108397)

2. Nielsen-Marsh C. 2002 Biomolecules in fossil
remains—multidisciplinary approach to endurance.
Biochemist 24, 12 – 14.

3. Armstrong WG, Halstead LB, Reed FB, Wood L. 1983
Fossil proteins in vertebrate calcified tissues. Phil.
Trans. R. Soc. Lond. B 301, 301 – 343. (doi:10.1098/
rstb.1983.0026)

4. Organ CL, Schweitzer MH, Zheng W, Freimark LM,
Cantley LC, Asara JM. 2008 Molecular phylogenetics
of mastodon and Tyrannosaurus rex. Science 320,
499. (doi:10.1126/science.1154284)

5. Asara JM, Schweitzer MH, Freimark LM, Phillips M,
Cantley LC. 2007 Protein sequences from mastodon
and Tyrannosaurus rex revealed by mass spectrometry.
Science 316, 280 – 285. (doi:10.1126/science.1137614)

6. Buckley M et al. 2008 Comment on ‘Protein
sequences from Mastodon and Tyrannosaurus rex
revealed by mass spectrometry’. Science 319, 33.
(doi:10.1126/science.1147046)

7. Manning PL et al. 2009 Mineralized soft-tissue
structure and chemistry in a mummified hadrosaur
from the Hell Creek Formation, North Dakota (USA).
Proc. R. Soc. B 273, 2777 – 2783. (doi:10.1098/rspb.
2009.0812)

8. Lendaro E, Ippoliti R, Bellelli A, Brunori M, Zito R,
Citro G, Ascenzi A. 1991 On the problem of
immunological detection of antigens in skeletal
remains. Am. J. Phys. Anthropol. 86, 429 – 432.
(doi:10.1002/ajpa.1330860308)

9. Bern M, Phinney BS, Goldberg D. 2009 Reanalysis of
Tyrannosaurus rex mass spectra. J. Proteome Res. 8,
4328 – 4332. (doi:10.1021/pr900349r)

10. Kaye TG, Gaugler G, Sawlowicz Z. 2008
Dinosaurian soft tissues interpreted as bacterial
biofilms. PLoS ONE 3, e2808. (doi:10.1371/journal.
pone.0002808)

11. Pevzner PA, Kim S, Ng J. 2008 Comment on ‘Protein
sequences from Mastodon and Tyrannosaurus rex
revealed by mass spectrometry’. Science 321, 1040.
(doi:10.1126/science.1155006)

12. Cappellini E et al. 2011 Proteomic analysis of a
pleistocene mammoth femur reveals more than one
hundred ancient bone proteins. J. Proteome Res. 11,
917 – 926. (doi:10.1021/pr200721u)

13. Wadsworth C, Buckley M. 2014 Proteome
degradation in fossils: investigating the longevity of
protein survival in ancient bone. Rapid Commun.
Mass Spectrom. 28, 605 – 615. (doi:10.1002/rcm.
6821)

14. Schweitzer MH et al. 2009 Biomolecular
characterization and protein sequences of the
Campanian hadrosaur B. canadensis. Science 324,
626. (doi:10.1126/science.1165069)

15. Buckley M, Whitcher Kansa S, Howard S, Campbell
S, Thomas-Oates J, Collins M. 2010 Distinguishing
between archaeological sheep and goat bones using
a single collagen peptide. J. Archaeol. Sci. 37,
13 – 20. (doi:10.1016/j.jas.2009.08.020)

16. Schroeter ER, Cleland TP. 2016 Glutamine
deamidation: an indicator of antiquity, or
preservational quality? Rapid Commun. Mass
Spectrom. 30, 251 – 255.

17. Orlando L et al. 2013 Recalibrating Equus evolution
using the genome sequence of an early Middle
Pleistocene horse. Nature 499, 74 – 78. (doi:10.
1038/nature12323)

18. Cleland TP, Schroeter ER, Schweitzer MH. 2015
Biologically and diagenetically derived peptide
modifications in moa collagens. Proc. R. Soc. B 282,
20150015. (doi:10.1098/rspb.2015.0015)

19. Cleland TP et al. 2015 Mass spectrometry and
antibody-based characterization of blood vessels
from Brachylophosaurus canadensis. J. Proteome Res.
14, 5252 – 5262. (doi:10.1021/acs.jproteome.
5b00675)

20. Peterson JE, Lenczewski ME, Scherer RP. 2010
Influence of microbial biofilms on the preservation
of primary soft tissue in fossil and extant
archosaurs. PLoS ONE 5, e13334. (doi:10.1371/
journal.pone.0013334)

21. Antonio JDS, Schweitzer MH, Jensen ST, Kalluri R,
Buckley M, Orgel JPRO, van Veen HW. 2011
Dinosaur peptides suggest mechanisms of protein
survival. PLoS ONE 6, e20381. (doi:10.1371/journal.
pone.0020381)

22. Schroeter E. 2017 Expansion of the
Brachylophosaurus canadensis collagen I sequence
and additional evidence for the preservation of
Cretaceous protein. J. Proteome Res. 16, 920 – 932.
(doi:10.1021/acs.jproteome.6b00873)

23. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend
JP, Lemmon EM, Lemmon AR. 2015 A
comprehensive phylogeny of birds (Aves) using
targeted next-generation DNA sequencing. Nature
526, 569 – 573. (doi:10.1038/nature15697)

24. Schweitzer MH, Zheng W, Cleland TP, Bern M.
2013 Molecular analyses of dinosaur osteocytes
support the presence of endogenous molecules.
Bone 52, 414 – 423. (doi:10.1016/j.bone.2012.
10.010)

25. Buckley M, Harvey V, Chamberlain A. 2017 Species
identification and decay assessment of Late
Pleistocene fragmentary vertebrate remains from
Pin Hole Cave (Creswell Crags, UK) using collagen
fingerprinting. Boreas. (doi:10.1111/bor.12225)

26. Buckley M, Warwood S, Kitchener AC, Manning PL.
2017 Data from: A fossil protein chimera; difficulties
in discriminating dinosaur peptide sequences from
modern cross-contamination. PRIDE Proteomics Data
Repository. (doi:10.6019/PXD006360)

http://dx.doi.org/doi:10.6019/PXD006360
http://dx.doi.org/10.1126/science.1108397
http://dx.doi.org/10.1098/rstb.1983.0026
http://dx.doi.org/10.1098/rstb.1983.0026
http://dx.doi.org/10.1126/science.1154284
http://dx.doi.org/10.1126/science.1137614
http://dx.doi.org/10.1126/science.1147046
http://dx.doi.org/10.1098/rspb.2009.0812
http://dx.doi.org/10.1098/rspb.2009.0812
http://dx.doi.org/10.1002/ajpa.1330860308
http://dx.doi.org/10.1021/pr900349r
http://dx.doi.org/10.1371/journal.pone.0002808
http://dx.doi.org/10.1371/journal.pone.0002808
http://dx.doi.org/10.1126/science.1155006
http://dx.doi.org/10.1021/pr200721u
http://dx.doi.org/10.1002/rcm.6821
http://dx.doi.org/10.1002/rcm.6821
http://dx.doi.org/10.1126/science.1165069
http://dx.doi.org/10.1016/j.jas.2009.08.020
http://dx.doi.org/10.1038/nature12323
http://dx.doi.org/10.1038/nature12323
http://dx.doi.org/10.1098/rspb.2015.0015
http://dx.doi.org/10.1021/acs.jproteome.5b00675
http://dx.doi.org/10.1021/acs.jproteome.5b00675
http://dx.doi.org/10.1371/journal.pone.0013334
http://dx.doi.org/10.1371/journal.pone.0013334
http://dx.doi.org/10.1371/journal.pone.0020381
http://dx.doi.org/10.1371/journal.pone.0020381
http://dx.doi.org/10.1021/acs.jproteome.6b00873
http://dx.doi.org/10.1038/nature15697
http://dx.doi.org/10.1016/j.bone.2012.10.010
http://dx.doi.org/10.1016/j.bone.2012.10.010
http://dx.doi.org/10.1111/bor.12225
http://dx.doi.org/10.6019/PXD006360

	A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination
	Introduction
	•Tyrannosaurus rex collagen sequences
	•Brachylophosaurus canadensis collagen sequences

	Material and methods
	Proteomics analysis of modern ostrich bone
	Liquid chromatography-mass spectrometry/mass spectrometry analyses
	Database searching

	Results
	Modern ostrich bone collagen matches

	Discussion
	Similarity between ostrich and alligator with the proposed &lsquo;unique&rsquo; dinosaur peptides
	Potential sources of contamination

	Conclusion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


