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Protective effect of 
epigallocatechin-3-gallate (EGCG) 
via Nrf2 pathway against oxalate-
induced epithelial mesenchymal 
transition (EMT) of renal tubular 
cells
Rattiyaporn Kanlaya, Supaporn Khamchun, Chompunoot Kapincharanon & 
Visith Thongboonkerd

This study evaluated effect of oxalate on epithelial mesenchymal transition (EMT) and potential 
anti-fibrotic property of epigallocatechin-3-gallate (EGCG). MDCK renal tubular cells were incubated 
with 0.5 mM sodium oxalate for 24-h with/without 1-h pretreatment with 25 μM EGCG. Microscopic 
examination, immunoblotting and immunofluorescence staining revealed that oxalate-treated cells 
gained mesenchymal phenotypes by fibroblast-like morphological change and increasing expression 
of vimentin and fibronectin, while levels of epithelial markers (E-cadherin, occludin, cytokeratin and 
ZO-1) were decreased. EGCG pretreatment could prevent all these changes and molecular mechanisms 
underlying the prevention by EGCG were most likely due to reduced production of intracellular ROS 
through activation of Nrf2 signaling and increased catalase anti-oxidant enzyme. Knockdown of Nrf2 by 
small interfering RNA (siRNA) abrogated all the effects of EGCG, confirming that the EGCG protection 
against oxalate-induced EMT was mediated via Nrf2. Taken together, our data indicate that oxalate 
turned on EMT of renal tubular cells that could be prevented by EGCG via Nrf2 pathway. These findings 
also shed light onto development of novel therapeutics or preventive strategies of renal fibrosis in the 
future.

One of the major causes of end-stage renal disease (ESRD) is unsolved chronic kidney disease (CKD) with fibrotic 
change. Renal fibrotic scar in the kidney in concert with several mediators and inflammatory response cause dete-
riorated kidney function1. Risk factors contributing to the development of fibrotic kidney include hypertension, 
diabetes mellitus, glomerulopathies, nephrotoxicity, etc.1,2. Recently, epithelial plasticity, also known as “epithe-
lial mesenchymal transition” (EMT), has been found to be associated with renal fibrogenesis in adult kidney3–6. 
During embryonic phase, EMT is indeed the important process essential for normal development, in which 
anchored epithelial cells can be modified or rearranged to become an organ7. During pathogenic EMT, epithelial 
cell loses its epithelial phenotypes while gains the mesenchymal characteristics. Typical morphology of epithelial 
cell is changed into spindle-shape or fibroblast-like with a loss of the cell polarity, which is a characteristic of 
polarized epithelial cell7,8. In addition, epithelial markers, e.g. E-cadherin and tight junction (TJ) associated pro-
teins (occludin, zonula occludens-1 or ZO-1), are down-regulated resulting to weakening of cell-cell adhesion/
contact and paracellular/intercellular integrity. In contrast, mesenchymal markers, e.g. fibroblast-specific protein 
1 (FSP1) and vimentin, are commonly up-regulated. In addition, overproduction of extracellular matrix proteins 
(e.g., fibronectin and collagen) and metalloproteases can be found during the EMT process7,9.
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EMT can induce cytoskeletal reorganization and formation of actin stress fiber. FSP1 has been found in 
renal tubular cell after acute and chronic injury, suggesting that EMT is also involved in tissue repair process10. 
Interestingly, a previous study using a transgenic murine model has demonstrated that approximately one-third 
of renal interstitial fibroblasts were derived from tubular epithelial cells by EMT-dependent mechanism11. 
Consistently, a strong association between EMT and renal fibrosis has been confirmed in the study by Rastaldi  
et al.12. In this study, the investigators have demonstrated EMT features were correlated with degree of interstitial 
damage in 133 renal biopsies. In addition, EMT can be induced in renal epithelial cells derived from collect-
ing duct by exposure to insulin-like growth factors (IGFs) and transforming growth factor-beta 1 (TGB-β 1)13. 
Recently, an EMT marker Twist has been evidenced in renal biopsies from nephrolithiatic patients with large 
renal calculi14. Collectively, these lines of evidence have strongly indicated the association between EMT and 
renal fibrogenesis. Therefore, defining an inhibitor and its molecular mechanisms to suppress this process holds a 
great promise to pave the way for future treatment (hopefully recovery) of renal fibrosis.

More recently, Camellia Sinensis (green tea) has drawn lots of attention from scientists and clinicians because 
of its beneficial effects to prevent humans from lifestyle-related diseases15. Clinical investigations have demon-
strated that green tea not only has anti-oxidative function but also offers anti-allergic, anti-carcinogenic, and 
anti-bacterial effects16–19. Among several polyphenols found in green tea extract, epigallocatechin-3-gallate 
(EGCG) is the major abundant catechin with a potent anti-oxidative property20,21. Interestingly, inhibitory effect 
of green tea on calcium oxalate (CaOx) crystallization has been demonstrated in animal models of kidney stone 
disease22,23. Its anti-oxidative property has been demonstrated in nephrolithiatic rat model induced by ethylene 
glycol22. Furthermore, the rats treated with green tea had decreased urinary oxalate excretion and diminished 
CaOx deposition in the kidney, while superoxide dismutase (SOD) activity was increased23. In addition to renal 
fibrosis, anti-fibrotic property of green tea has been demonstrated in experimental models of hepatic fibrosis24 
and pulmonary fibrosis25.

Interestingly, histopathology shows lowered deposition of collagen in the kidney of animals treated with 
green tea24. In addition, administration of EGCG in a rat model of bleomycin-induced pulmonary fibrosis has 
demonstrated the involvement of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and Kelch-like 
ECH-associated protein 1 (Keap1) signaling. This pathway can enhance the anti-oxidative activity of phase II 
enzymes, including glutathione-S-transferase and NAD(P)H:quinineoxidoreductase 1 (NQO1), which can sup-
press inflammatory process. These findings suggest that green tea extract has combined beneficial effects on 
anti-inflammation, anti-oxidative stress and anti-fibrosis25.

Our group has recently reported the cellular adaptive responses of renal tubular epithelial cells in high-oxalate 
environment26. In this study, oxalate caused alterations in various biological processes associated with several 
cellular proteins, including those involved in stress response and actin cytoskeletal assembly26. In addition, global 
protein network analysis predicted one of the interacting proteins involved in Rho signaling. These findings 
prompt us to link between the oxidative stress and the induction of EMT by oxalate. The present study thus aimed 
to investigate EMT induction in renal tubular cells by oxalate and to examine protective effect of EGCG on such 
EMT induction, as well as molecular mechanisms underlying its anti-fibrotic property.

Results
Effect of EGCG on MDCK cell viability. Considering the potential cytotoxicity of EGCG in mammalian 
cells, MDCK cells were treated with various doses of EGCG for 1 h and cell viability was determined by trypan 
blue exclusion assay. The results showed that EGCG at 12.5–50 μ M did not cause significant change in cell via-
bility although it tended to be declined at a dosage of 50 μ M (but did not reach statistical significant threshold) 
(Fig. 1). The mid-range dosage (25 μ M) was then used for all subsequent experiments.

Induction of EMT in MDCK cells by oxalate and protective effect of EGCG against oxalate- 
induced EMT. After treatment with 0.5 mM sodium oxalate for 24 h, cell morphology was observed under 
a phase-contrast microscope. The result showed that morphology of oxalate-treated MDCK cells was changed 

Figure 1. Effect of EGCG on MDCK cell viability. MDCK cells were treated with various doses of EGCG (0, 12.5,  
25, and 50 μ M) for 1 h and cell viability was determined by trypan blue exclusion assay. Statistical analysis of  
percentage of cell viability revealed no significant differences among different dosages used in this study.
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from typical epithelial cells into elongated fibroblast-like cells as compared to those of the untreated (controlled) 
cells (Fig. 2A,B).

To evaluate the protective effect of EGCG against oxalate-induced EMT, MDCK cells were pretreated with 25 μ 
M EGCG for 1 h prior to oxalate treatment as aforementioned. Microscopic examination revealed that epithelial 
cobblestone morphology was found in controlled cells and those pretreated with EGCG (Fig. 2A,C). Remarkably, 
the fibroblast-like morphology was not seen in the cells pretreated with EGCG followed by oxalate treatment 
(Fig. 2C).

Examinations of epithelial and mesenchymal markers by Western blot analysis and immuno-
fluorescence study. To further confirm that oxalate could induce EMT in renal tubular cells, Western blot 
analysis and immunofluorescence assay were performed to examine markers of epithelial (E-cadherin, occlu-
din, cytokeratin, and ZO-1) and mesenchymal (vimentin and fibronectin) cellular phenotypes. The results by 
Western blot analysis revealed that oxalate significantly decreased expression of E-cadherin, occludin and ZO-1, 
but increased vimentin level. Pretreatment with EGCG could preserve these epithelial and mesenchymal markers 
at their basal levels (Fig. 3). Immunofluorescence study also revealed the decreased levels of epithelial mark-
ers (including cytokeratin, occludin and ZO-1) and increased levels of mesenchymal markers (vimentin and 
fibronectin) in oxalate-treated cells (Fig. 4). Moreover, the immunofluorescence data also showed that EGCG 
pretreatment successfully restored cytokeratin, occludin, ZO-1 and fibronectin to their basal levels, whereas the 
restoring effect on vimentin was partial (Fig. 4). Interestingly, there was a redistribution of the TJ proteins, occlu-
din and ZO-1. These two TJ proteins were translocated from cell border into the cytoplasm in the oxalate-treated 
cells. However, EGCG pretreatment could successfully preserve these epithelial markers’ localizations and pre-
vent their decrease induced by oxalate (Fig. 4A,C,D).

Protective effect of EGCG was dose-dependent. To investigate whether the protective effect of EGCG 
was dose-dependent, the cells were pretreated with various doses of EGCG (0–50 μ M) for 1 h prior to oxa-
late treatment. The results by immunofluorescence study confirmed that EGCG had its protective role against 
oxalate-induced EMT (as demonstrated by the prevention against oxalate-induced decrease in ZO-1 and increase 
in vimentin expression levels) in a dose-dependent manner (Fig. 5).

Oxalate-induced overproduction of reactive oxygen species (ROS) and reduction by EGCG.  
As oxidative stress is one of the possible factors inducing EMT, we addressed whether the oxalate-induced EMT 
was also due to the increased intracellular production of ROS or not. As expected, the data using DCFH-DA 
assay and flow cytometry confirmed that percentage of intracellular ROS-positive cells was significantly increased 
(approximately 9-fold) in oxalate-induced EMT cells as compared to the controls (2.72 ±  0.72 vs. 24.07 ±  5.65% 
in controlled vs. oxalate-treated cells, respectively; p <  0.05) (Fig. 6). Interestingly, EGC pretreatment could dra-
matically reduce (although not completely abolished) the intracellular ROS production by approximately 2/3 
(to remain only 1/3) as compared to oxalate-treated cells (24.07 ±  5.65 vs. 7.90 ±  1.67% in oxalate-treated vs. 
EGCG+ oxalate-treated cells, respectively; p <  0.05) (Fig. 6). These results confirmed the potential role of oxida-
tive stress in EMT induction by oxalate and demonstrated the potent anti-oxidant property of EGCG to prevent 
such induction.

EGCG induced Nrf2 activation and intracellular catalase overproduction to prevent oxalate- 
induced EMT. In normal cellular response, chemicals-induced oxidative stress can be coped or controlled 
by activation of Nrf2 signaling pathway and overexpression of anti-oxidants. In this study, we thus performed 
indirect immunofluorescence study and laser-scanning confocal microscopic examination to determine the 
activation of Nrf2 by EGCG, which can be signified by its nuclear translocation. The results revealed that, in 
the controlled cells, Nrf2 expression was predominantly found in the cytoplasm with some degrees of nuclear 

Figure 2. Induction of EMT in MDCK cells by oxalate and protective effect of EGCG against oxalate-
induced EMT. Controlled or untreated MDCK cells (A) had typical cobblestone-like morphology, whereas the 
cells treated with 0.5 mM sodium oxalate (B) turned into fibroblast-like morphology within 24 h. Pretreatment 
with 25 μ M EGCG for 1 h prior to sodium oxalate treatment (C) could prevent the cells from oxalate-induced 
fibroblast-like morphological change. Original magnification power =  400X.
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localization (Fig. 7A). Oxalate treatment, however, lowered the overall expression of Nrf2 and its activated form 
as determined by lowered nuclear translocation of Nrf2. Pretreatment with EGCG dramatically increased Nrf2 
expression in both cytoplasm and nuclei (Fig. 7A). Quantitative analysis of Nrf2 level showed that oxalate reduced 
Nrf, whereas EGCG pretreatment, on the other hand, increased Nrf level as compared to both controlled and 
oxalate-treated conditions (Fig. 7B).

Since EGCG has been reported as a modulator or inducer of Nrf2-mediated anti-oxidant enzyme, we there-
fore investigated the intracellular level of catalase induced by Nrf2 signaling. Western blot analysis revealed that 
oxalate reduced intracellular anti-oxidant enzyme catalase, whereas EGCG pretreatment, vice versa, increased 
the catalase level as compared to both controlled and oxalate-treated conditions (Fig. 8), consistent to the data 
on Nrf2 level (Fig. 7). These results suggested that EGCG could induce Nrf2-mediated anti-oxidant enzyme 
production.

Knockdown of Nrf2 by small interfering RNA (siRNA) abrogated protective effect of EGCG 
against oxalate-induced EMT. To confirm that the protective effect of EGCG against oxalate-induced 
EMT was mediated via Nrf2 pathway, we performed Nrf2 knockdown of the cells using siRNA specific to Nrf2 
(si-Nrf2), whereas the cells transfected with an equal dose of controlled siRNA (si-Control) served as the con-
trol. Efficacy of the Nrf2 knockdown was validated by immunofluorescence staining, which showed significantly 
decreased expression level of Nrf2 in the si-Nrf2-transfected cells as compared to the si-Control-transfected 
cells (Fig. 9A,B). While the si-Control-transfected cells exhibited all the effects of oxalate and EGCG identi-
cal to the non-transfected cells, the si-Nrf2-transfected cells showed that the protective effect of EGCG against 
oxalate-induced EMT was completely abolished as demonstrated by expression of epithelial (Fig. 9C,D) and 
mesenchymal (Fig. 9E,F) markers, as well as catalase level (Fig. 9G,H). These data confirmed that the protective 
effect of EGCG against oxalate-induced EMT was mediated via Nrf2 pathway.

Discussion
In this study, we reported that oxalate could induce EMT in renal tubular epithelial cells. The concentration 
of sodium oxalate used in the present study was selected based on a previous study by Coe et al.27 reporting 
that approximately 0.5 mM oxalate is the maximal concentration of oxalate excreted into the urine by healthy 

Figure 3. Western blot analysis of epithelial and mesenchymal markers. (A) Immunoreactive protein bands 
representing E-cadherin, occludin and ZO-1 (epithelial markers), and vimentin (mesenchymal marker) in 
different conditions. (B–E) Quantitative band intensity data revealed decreased levels of E-cadherin, occludin 
and ZO-1 and increased level of vimentin in oxalate-treated MDCK cells. Pretreatment with 25 μ M EGCG for 
1 h prior to sodium oxalate treatment could prevent the cells from such changes. GAPDH served as the loading 
control. N =  3 independent experiments. *p <  0.05 vs. control; #p <  0.05 vs. oxalate group.
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Figure 4. Examinations of epithelial and mesenchymal markers by immunofluorescence study.  
(A) Cytokeratin, occludin and ZO-1 (epithelial markers) were decreased, whereas vimentin and fibronectin 
(mesenchymal markers) were increased in oxalate-treated cells. Pretreatment with 25 μ M EGCG for 1 h prior to 
sodium oxalate treatment could prevent the cells from such changes. Original magnification power =  1,000X. 
(B–F) Fluorescence intensity representing protein level was measured and analyzed from 10 random high-
power fields (HPF) and at least 100 cells in each sample. N =  3 independent experiments. *p <  0.05 vs. control; 
#p <  0.05 vs. oxalate group.
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individual. The dosage of EGCG was selected based on cell viability assay. Such dosage was in the middle range 
of the dosages tested in our present study that showed no obvious cytotoxicity induced by EGCG chemical expo-
sure (Fig. 1). Induction of EMT by oxalate was supported by change in cell morphology from typical epithe-
lial cell into fibroblast-like feature (Fig. 2). In addition to morphological change, oxalate-treated cells gained 
mesenchymal characteristics in which mesenchymal protein markers, including vimentin and fibronectin, were 
highly expressed in the oxalate-treated cells as compared to the controlled cells (Figs 3 and 4). In addition, loss 
of epithelial features was observed as demonstrated by lowered expression of E-cadherin, a hallmark of epithelial 
protein marker, and also decreased expression of tight junction (TJ) markers, occludin and ZO-1 (Figs 3 and 4). 
Moreover, redistribution of occludin and ZO-1 was obvious in oxalate-treated cells – they were almost absent 
from the TJ located at the cell borders and translocated into the cytoplasm, indicating disruption of cell-cell con-
tact (Fig. 4). Interestingly, EGCG pretreatment could prevent all of these deteriorate effects of oxalate.

Several lines of evidence have revealed that oxalate could induce oxidative stress by increasing reactive oxygen 
species (ROS) production in renal tubular epithelial cells. Rashed et al.28 have demonstrated that peroxidative 
injury induced by oxalate was associated with an induction of TGF-β 1 and imbalance of redox reaction by glu-
tathione system. However, glutathione redox status and TGF-β 1 were restored to their basal levels by treatment 
with anti-oxidants, including vitamin E and catalase28. Importantly, TGF-β 1, a potent fibrotic factor that can also 
promote EMT, could trigger production of intracellular ROS in rat proximal tubular epithelial cells29 and MDCK 
cells30. From these studies, it has been hypothesized that ROS overproduction and alterations in redox homeosta-
sis may potentially contribute to EMT progression.

Theoretically, EGCG with potent anti-oxidative activity might control the progression of EMT by serving as 
a ROS scavenger. However, there was no direct evidence to show that ROS production induced by oxalate could 
trigger the process of EMT and EGCG could inhibit such effects. In attempt to address this issue, we then meas-
ured intracellular ROS after oxalate treatment with or without EGCG pretreatment by pulsing with DCFH-DA 
and analyzing by a flow cytometer. As expected, the results clearly showed that intracellular ROS was significantly 
increased when the cells were induced by oxalate and underwent EMT comparing to the untreated controlled 

Figure 5. Protective effect of EGCG in oxalate-induced EMT was dose-dependent. (A) ZO-1  
(a representative epithelial marker) and vimentin (a representative mesenchymal marker) were evaluated when 
the cells were pretreated with various doses of EGCG (0–50 μ M) for 1 h prior to sodium oxalate treatment. 
Original magnification power =  1,000X. (B,C) Fluorescence intensity representing protein level was measured 
and analyzed from 10 random high-power fields (HPF) and at least 100 cells in each sample. N =  3 independent 
experiments. * p <  0.05 vs. control; #p <  0.05 vs. oxalate group.
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cells (Fig. 6). In addition, we showed that EGCG pretreatment could prevent the conversion of epithelial cells into 
fibroblast-like cells (Fig. 2) and the increase of intracellular ROS production by oxalate (Fig. 6). In consistent with 
the study of peritoneal fibrosis in a mouse model, EGCG could suppress NF-kB activation and ROS generation, 
and thus prevent those animals from peritoneal fibrosis31.

Furthermore, EGCG has been reported as an inducer of anti-oxidant enzymes (e.g. glutathione-S-transferase, 
glutathione peroxidase, superoxide dismutase, hemeoxygenase 1, catalase, etc.). The key mechanism of 
EGCG-induced anti-oxidant enzyme production has been reported to be related with activation of nuclear fac-
tor erythroid-derived 2-related factor 2 (Nrf2) signaling32. Nrf2 is an important transcription factor that plays 
a central role in cytoprotection by maintaining cellular homeostasis through anti-oxidant enzyme expression 
and xenobiotic transporters33. Under normal or physiologic condition, Nrf2 is within a complex with Kelch-like 
ECH-associated protein 1 (Keap 1), which in turn facilitates the degradation of Nrf2 by proteasome33. Based on 
our present data, the mechanism by which EGCG induced Nrf2 has been proposed to occur via conjugation of 
reactive forms of EGCG with glutathione (GSH). This could lower cellular GSH level, thereby transiently dis-
turbed redox status, resulting in activation of mitogen-activated protein kinases (MAPKs) (e.g. c-Jun, JNK, PI3K, 
ERK) and subsequent phosphorylation and activation of Nrf232,34,35. Alternatively, some reactive (or electrophilic) 
forms of EGCG might interact with cysteine residues present in Keap1, leading to conformational change and 
dissociation of Keap1-Nrf2 complex32,35,36. Activation of Nrf2 by EGCG could ultimately lead to increased levels 
of detoxifying or anti-oxidant enzymes through association between Nrf2 and anti-oxidant-response element 
(ARE).

Interestingly, the renoprotective role of activated Nrf2 has been demonstrated in several previous studies. Shin 
et al.37 have shown that triggering of Nrf2-heme oxygenase-1 (HO-1) system could protect cyclosporin A-induced 
renal fibrosis by modulating EMT genes. Kang et al.38 have illustrated that angiotensin II-induced EMT could 
reduce levels of several Nrf2-dependent anti-oxidant enzymes and might contribute to progression of renal fibro-
sis. Hence, targeting Nrf2 using a powerful activator would provide a promising strategy to improve the treatment 
of CKD induced by sustained oxidative stress and inflammation39.

Therefore, we also hypothesized that EGCG might negatively regulate EMT via modulating Nrf2 pathway. Our 
results revealed that pretreatment with EGCG could induce Nrf2 activation in MDCK cells treated with oxalate 
as demonstrated by increasing expression and nuclear translocation of Nrf2 (Fig. 7). However, it was unexpected 
that treatment with oxalate alone resulted in decreased Nrf2 and its activation. Basically, under stress condition, 

Figure 6. Oxalate-induced overproduction of reactive oxygen species (ROS) and reduction by EGCG. 
ROS production was evaluated by DCFH-DA assay and analyzed by flow cytometry. (A) Representative flow 
cytometric histograms and (B) Quantitative data of ROS production in different conditions. Untreated MDCK 
cells served as negative control, whereas those treated with hydrogen peroxide (H2O2) served as the positive 
control. The tested groups included those treated with 0.5 mM sodium oxalate for 24 h and those pretreated with 
25 μ M EGCG for 1 h prior to treatment with 0.5 mM sodium oxalate for 24 h. N =  3 independent experiments.  
* p <  0.05 vs. control; #p <  0.05 vs. oxalate group.
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cellular defense mechanisms are triggered in order to cope with oxidative damage. It might be possible that the 
cells were struggled by the sustained high oxalate exposure and could not overcome such extreme condition 
that ultimately led to the decreased Nrf2 activation. However, our findings were consistent to those reported 
by a recent study demonstrating that intraperitoneal administration of EGCG in rats with unilateral ureteral 
obstruction (UUO) efficiently suppressed oxidative stress induced by acute kidney injury (AKI)40. This inhibitory 
effect was mediated by its anti-oxidative property that might be partially activated by Nrf2 signaling pathway 
because the EGCG-treated group showed the increased nuclear Nrf2 expression along with the improved renal 
ultrastructure40.

In another study on bleomycin-induced pulmonary fibrosis, EGCG exerted roles in Nrf2-Keap1 signaling 
through enhancing anti-oxidant enzyme activities and inhibition of inflammation25. Similarly, the study on 
cisplatin-induced nephrotoxicity in rats has shown that EGCG administration could restore anti-oxidant enzyme 
activities, including catalase, through Nrf2 activation and attenuate kidney injury and inflammation41. We thus 
examined level of anti-oxidant enzyme catalase in our present study. Our data on catalase (Fig. 8) was in con-
cordance with the expression and activation of Nrf2. Catalase level was significantly increased when the cells 
were pretreated with EGCG prior to oxalate exposure. The increased catalase level was expected to be a cellular 
defense mechanism mediated by EGCG-induced Nrf2 pathway in order to restore the cells to a basal state. Our 
data also supported a major role of catalase in the defense against oxidative tissue injury and renal interstitial 
fibrosis observed in the catalase-deficient mice42. Finally, we confirmed that the protective effect of EGCG was 
specifically mediated via Nrf2 signaling by evaluation of expression of epithelial and mesenchymal markers as 

Figure 7. EGCG induced Nrf2 activation to prevent oxalate-induced EMT. (A) The cells were stained by 
indirect immunofluorescence assay using a specific antibody against Nrf2 (shown in green), whereas nuclei 
were counterstained with propidium iodide (shown in red). The images were captured under a laser-scanning 
confocal microscope. In merged fields and sagittal views, nuclear localization/translocation of Nrf2 is shown 
in yellow (in the nuclei). Original magnification power =  630X. (B) Fluorescence intensity representing Nrf2 
level was measured and analyzed from 10 random high-power fields (HPF) and at least 100 cells in each sample. 
N =  3 independent experiments. *p <  0.05 vs. control; #p <  0.05 vs. oxalate group.
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well as level of catalase (one of the Nrf2 downstream products) in the si-Nrf2-transfected cells compared to the 
si-Control-transfected cells. Our data nicely confirmed that the molecular mechanisms of EGCG in prevention 
of oxalate-induced EMT were mediated via Nrf2 pathway (Fig. 9).

In summary, the present study has shown that oxalate could induce EMT of renal tubular cells. We also 
demonstrated that pretreatment with EGCG prior to oxalate induction successfully prevented oxalate-induced 
deteriorated changes by restoring epithelial phenotypes/markers and abolishing mesenchymal phenotypes/mark-
ers. Molecular mechanisms underlying the protective effect of EGCG were mediated through its anti-oxidant 
property by activation of Nrf2 signaling pathway, resulting to the increased level of catalase to cope with intra-
cellular ROS overproduction. Our findings provided another piece of evidence that oxidative stress is one among 
various factors driving epithelial cells to EMT. It should be noted that high oxalate-induced EMT may be found 
in patients with hyperoxaluria and may increase a risk of developing renal fibrosis. Our data also implicated that 
EGCG may potentially be useful as an anti-fibrotic molecule for hindering EMT progression and may be of great 
value to patients with renal fibrosis in the future.

Materials and Methods
Cell culture. Mardin-Darby Canine Kidney (MDCK), a distal renal tubular epithelial cell line43,44 was culti-
vated in the growth medium containing Eagle’s minimum essential medium (MEM) (Gibco; Grand Island, NY) 
supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco) in the presence of 100 U/ml penicillin 
G and 100 mg/ml streptomycin (Sigma; St. Louis, MO). Cells were maintained in a humidified incubator at 37 °C 
with 5% CO2.

Cytotoxicity test of EGCG. MDCK cells were seeded in 24-well plate in the growth medium 24 h prior 
to treatment. The cells were then incubated with 0, 12.5, 25 and 50 μ M EGCG (Sigma) for 1 h. Thereafter, the 
cells were detached from the cultured well using 0.1% trypsin in 2.5 mM EDTA and immediately resuspended 
in MEM supplemented with 10% FBS to terminate trypsin activity. Aliquots of cell suspension were mixed with 
0.4% trypan blue solution (Gibco) and the cells were then counted using a hemacytometer. Percentage of trypan 
blue-negative cells representing viable cells is reported.

Induction of epithelial mesenchymal transition (EMT) by oxalate. MDCK cells were seeded at a 
density of 4 ×  104 cells/well and maintained in the growth medium for 24 h. Thereafter, the cells were washed with 
serum-free medium and then treated with 0.5 mM sodium oxalate (Sigma) in a maintenance medium (MEM 
supplemented with 1% heat-inactivated FBS) for 24 h. The cells without any treatment served as the control.

Prevention of EMT by pretreatment with epigallocatechin-3-gallate (EGCG). MDCK cells were 
seeded at a density of 4 ×  104 cells/well and maintained in the growth medium for 24 h. Thereafter, the cells were 
washed with serum-free medium and then pretreated with 25 μ M EGCG in the maintenance medium (MEM 
supplemented with 1% heat-inactivated FBS) for 1 h (Note that 0, 6.25, 12.5, 25, and 50 μ M EGCG were used 
at this step for the dose-dependent study). Thereafter, the cells were treated with 0.5 mM sodium oxalate in the 
maintenance medium for 24 h. The cells without any treatment served as the control.

Figure 8. EGCG induced intracellular catalase overproduction to prevent oxalate-induced EMT.  
(A) Immunoreactive protein band representing catalase in different conditions. (B) Quantitative band intensity 
data revealed decreased level of catalase in oxalate-treated MDCK cells. Pretreatment with 25 μ M EGCG for 1 h 
prior to sodium oxalate treatment markedly increased the level of catalase when compared to both controlled 
and oxalate-treated groups. GAPDH served as the loading control. N =  3 independent experiments. *p <  0.05 
vs. control; #p <  0.05 vs. oxalate group.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:30233 | DOI: 10.1038/srep30233

Morphological study and immunofluorescence staining of epithelial and mesenchymal markers.  
Cell morphology was observed under a phase contrast microscope (Olympus CKX41; Tokyo, Japan). For 

Figure 9. Si-Nrf2 abrogated the protective effect of EGCG against oxalate-induced EMT. (A,B) Efficacy 
of Nrf2 knockdown by si-Nrf2 was confirmed by immunofluorescence staining in the si-Nrf2-transfected 
cells, whereas the si-Control-transfected cells served as the control. (C,D) ZO-1 expression was evaluated as 
a representative epithelial marker. (E,F) Vimentin expression was evaluated as a representative mesenchymal 
marker. (G,H) Catalase, a product of Nrf2 activation, was evaluated by Western blotting (GAPDH served as 
the loading control). Original magnification power =  1,000X in all panels of (A,C,E). Fluorescence intensities 
representing Nrf2 (B), ZO-1 (D), and vimentin (F) levels were measured and analyzed from 10 random high-
power fields (HPF) and at least 100 cells in each sample. N =  3 independent experiments. *p <  0.05 vs. control; 
#p <  0.05 vs. oxalate; †p <  0.05 vs. si-Control group.
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indirect immunofluorescence assay, the cells were grown on coverslip and EMT was induced as described 
earlier. After washing with PBS, the cells were fixed with 3.7% (v/v) formaldehyde in PBS for 10 min and 
then permeabilized with 0.2% Triton X-100 in PBS for 10 min. After washing, the cells were incubated with 
each of primary antibodies, including mouse monoclonal anti-vimentin conjugated with Alexa Fluor 488 
(Invitrogen; Eugene, OR), mouse monoclonal anti-fibronectin (Santa Cruz Biotechnology; Santa Cruz, CA), 
mouse monoclonal anti-cytokeratin (Santa Cruz Biotechnology), rabbit polyclonal anti-occludin (Santa Cruz 
Biotechnology), and mouse monoclonal anti-ZO1 (Invitrogen) at 4 °C overnight (all were diluted 1:50 in 
1%BSA/PBS). Except for vimentin staining, the cells were further incubated with corresponding secondary 
antibody conjugated with Cy3 (Dako; Glostrup, Denmark) at a dilution of 1:2,000 in 1%BSA/PBS at room tem-
perature (RT) (set at 37 °C) for 1 h. Thereafter, the cells were extensively washed with PBS and mounted onto 
a glass slide using ProLong Gold anti-fade reagent (Invitrogen). The images were captured under the Nikon 
Eclipse 80i fluorescence microscope (Nikon; Tokyo, Japan). Mean fluorescence intensity representing protein 
level was analyzed from 10 random high-power fields (at least 100 cells in each sample) using NIS-Elements D 
V.4.11 (Nikon, Tokyo, Japan).

Western blot analyses. Proteins were extracted from individual samples using Laemmli’s buffer and pro-
tein concentrations were measured by Bradford’s method using Bio-Rad Protein Assay (Bio-Rad Laboratories; 
Hercules, CA). Equal amount of total protein (30 μ g/lane) from each sample was separated by 12% SDS-PAGE 
and transferred onto a nitrocellulose membrane. After blocking non-specific bindings with 5% skim-milk/PBS 
for 1 h, the membrane was incubated with mouse monoclonal anti-vimentin, rat monoclonal anti-E-cadherin, 
rabbit polyclonal anti-occludin, rabbit polyclonal anti-ZO-1, rabbit polyclonal anti-catalase, or mouse monoclo-
nal anti-GAPDH antibody (all were purchased from Santa Cruz Biotechnology and diluted 1:1,000 in 1% skim 
milk/PBS) at 4 °C overnight. After probing with corresponding secondary antibody conjugated with horseradish 
peroxidase (Dako) at a dilution of 1:2,000 in 1% skim milk/PBS at RT for 1 h, the immunoreactive protein bands 
were visualized by SuperSignal West Pico chemiluminescence substrate (Pierce Biotechnology, Inc.; Rockford, IL) 
and autoradiography. Band intensity data was obtained using ImageQuant TL software (GE Healthcare; Uppsala, 
Sweden).

Analysis of intracellular reactive oxygen species (ROS) production by dichlorofluoresceindiac-
etate (DCFH-DA) assay and flow cytometry. Intracellular ROS production was analyzed by DCFH-DA 
assay and flow cytometry. Briefly, the cells treated with oxalate alone or EGCG+ oxalate were collected as sus-
pension by trypsinization and incubated with 50 μ M dichlorofluoresceindiacetate (DCFH-DA) (Invitrogen) for 
30 min. The cells were then kept on ice and immediately analyzed by FACScan equipped with CellQuest software 
(Benton Dickinson; Franklin Lake, NJ). The cells left untreated were used as the negative control to determine 
basal intracellular ROS level, whereas those treated 0.02% (v/v) H2O2 served as the positive control.

Immunofluorescence staining of Nrf2 and laser-scanning confocal microscopy. Activation of 
Nrf2 was illustrated by translocation of Nrf2from cytoplasm into the nucleus by indirect immunofluorescence 
assay and laser-scanning confocal microscopy. The cells were grown on a coverslip and treated with oxalate with 
or without EGCG pretreatment as aforementioned. The cells were then fixed and permeabilized simultaneously 
by incubation in ice-cold methanol for 10 min. After washing with PBS, the cells were incubated with mouse 
monoclonal anti-Nrf antibody (Santa Cruz Biotechnology) at a dilution of 1:50 in 1%BSA/PBS at 4 °C over-
night. Thereafter, the cells were incubated with goat-anti-mouse-Ig G conjugated with Alexa Fluor 488 antibody 
(Invitrogen) at a dilution of 1:1,000 in 1%BSA/PBS at RT for 2 h. Nuclei were counterstained with 0.25 μ g/ml 
propidium iodide (BD Bioscience; San Jose, CA). Finally, the coverslip was mounted onto a slide using 50% 
glycerol/PBS. 3-D planes of X-Y, X-Z and Y-Z scanning were captured under a laser-scanning confocal micro-
scope (A1R, Nikon; Tokyo, Japan) equipped with NIS-Elements D V.4.11 (Nikon). The top view images were cap-
tured at nuclear cross-section. In addition, the cross-sectional signal was also recorded along its Z-axis (50 slices,  
25 μ M/each at Z-axis) to provide a data in sagittal view. The region of interest (ROI), which was the area in nuclei 
with yellow color in merged panel (representing nuclear Nrf2), was drawn for measuring fluorescence intensity. 
Quantitative data was analyzed from 10 random high-power fields (HPF) and at least 100 cells in each sample 
using NIS-Elements D V.4.11 (Nikon).

Nrf2 knockdown. The small interfering RNA (siRNA) duplexes against Nrf2 (si-Nrf2) (Santa Cruz 
Biotechnology) and control siRNA (si-Control) (Santa Cruz Biotechnology) were transfected to MDCK cells. 
Briefly, the cells seeded in 6-well plate were transfected with 80 pmol si-Nrf2 or si-Control mixed with siRNA 
transfection reagent in the transfection medium (Santa Cruz Biotechnology) according the manufacturer’s 
instructions. The transfected cells were then incubated in a humidified incubator with 5% CO2 at 37 °C for 6 h. 
After 24-h post-transfection, the cells were subjected to oxalate and EGCG treatments using the same protocols 
as for the non-transfected cells as detailed above. Expression levels of Nrf2, ZO-1 and vimentin were examined 
by immunofluorescence staining, whereas catalase level was evaluated by Western blotting as aforementioned.

Statistical analysis. All quantitative data are reported as mean ±  SEM obtained from at least three inde-
pendent experiments (unless stated otherwise). Comparisons between the two groups of samples were performed 
using unpaired Student’s t-test, whereas multiple comparisons of more than two groups of samples were per-
formed using one-way analysis of variance (ANOVA) with Tukey’s post-hoc test. P values less than 0.05 were 
considered statistically significant.
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