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Abstract: Metamaterials made from artificial subwavelength structures hold great potential in
designing functional devices at microwave, terahertz, infrared, and optical frequencies. In this
work, we study the active switching effect of the plasmonic resonance modes in triangular dimer
(DTD) structure using graphene in the terahertz regime. The sole DTD structure can only support a
dipolar bonding dimer plasmonic (BDP) mode, whose field enhancement factor at the gap center
can reach 67.4. However, with a metallic junction in the dimer, the BDP mode switches to a charge
transfer plasmonic (CTP) mode. When changing the metallic junction to a graphene stripe, an active
modulation effect of the CTP mode can be realized by altering the nonlinear conductivity of graphene
through strong-field terahertz incidence. The proposed design is quite promising in terahertz sensing,
amplitude switching and nonlinear effect enhancement, etc.
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1. Introduction

Metamaterials, which possess unique electromagnetic properties far beyond those achieved by
naturally formed materials, have drawn huge attention in recent years. The functions of metamaterials
can be designed nearly at will by properly engineering the subwavelength structures and their
arrangement at frequencies of interest. In the terahertz regime where the current mature technologies
are almost not applicable, metamaterials serve as a potential tool in realizing functional devices. Many
metamaterial devices have been well demonstrated, including filters [1–3], sensors [4,5], wavefront
modulators [6–8], and nonlinear devices [9–11]. It is clear to see that those functions were all achieved
based on utilizing certain resonances, such as LC resonance, Fano resonance, dipolar resonance, etc.
However, those devices mainly functioned in a passive manner. Once the structures were determined,
the performances were fixed. New ways of realizing active metamaterials devices are highly demanded
for future compact and convenient applications.

Recently, active terahertz metamaterial devices have become a hot topic. By integrating functional
materials whose conductivity can be externally changed, such as silicon on sapphire, vanadium dioxide,
and gallium arsenide, etc., into the structural unit cells, the responses could be actively tuned by
optical pump, heating, and bias voltage, respectively [12–16]. Beside those materials, graphene, as a
two-dimensional material with fast tunable optical conductivity affected by either a optical pump or
bias voltage, has become a new favorite material for researchers. To date, many graphene based active
metamaterial devices have been demonstrated in the terahertz regime, including terahertz diodes,
tunable slow-light devices, chiral switches, and so on [17–26].
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In this paper, we study the mode switching effect by employing planar metamaterials composed
of arrays of metallic double triangular dimers (DTD). We find that when the dimer is collected by metal
or dynamic material junction with high conductivity, the supported resonance mode would transit
from the BDP mode to the CTP mode. By changing the junction with graphene stripe, dynamic mode
transition effect can be observed. We also observed that the DTD structure could enhance the field
at the gap, which becomes stronger when decreasing the gap distance. It is supposed that such an
effect could be utilized to realize active mode switching by tuning the graphene conductivity using
nonlinear effect of graphene under strong-field terahertz incidence. The presented results offer a
possible avenue to realize highly sensitive sensors, nonlinear devices, and active amplitude modulators
in the terahertz regime.

2. Sample Design and Characterization

The basic unit cell of the metamaterial is illustrated in Figure 1a, which is a DTD structure
consisting of two equilateral triangles with a period of P = 100 µm. The corresponding geometric
parameters of the DTD are illustrated in Figure 1b, in which the length L = 36 µm and the gap distance
g = 6 µm. The structures are made from 200 nm-thickness aluminum on a p-type silicon wafer with a
thickness of t = 640 µm. The samples were fabricated by employing conventional lithography. Each
sample has the size of 1 cm × 1 cm, which contains 104 unit cells.
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Figure 1. (a,b) Schematics of the DTD structure.

The samples were experimentally characterized using a broadband terahertz time-domain
spectroscopy (THz-TDS) [27]. During the whole measurement, the humidity was kept less than 5%
to eliminate water absorption. The amplitude transmission was defined by

∣∣∣̃t(ω)∣∣∣ = ∣∣∣Ẽs(ω)/Ẽr(ω)
∣∣∣,

where Ẽs(ω) and Ẽr(ω) are the Fourier transformed spectra of the time-domain signals passing through
the sample and the reference (a bare silicon substrate), respectively.

3. Results and Discussion

The red curve in Figure 2a illustrate the measured amplitude transmission spectra of the DTD
sample under x-polarized incidence. It can be seen that there is a broad resonance at around 1.71 THz.
However, when the DTD structures were connected with a 10 µm × 6 µm aluminum junction (denote
them as DTDJ structures), as indicated by the inset of Figure 2c, the transmission under x-polarized
incidence became completely different. As shown in the red curve in Figure 2c, a sharp and strong
resonance at 0.58 THz emerges in the measured result whose quality (Q) factor is 5.26, while the original
resonance mode at 1.71 THz disappears. We also studied the cases under y-polarized incidences, as
illustrated in the blue curves in Figure 2a,c. Such a mode transition effect was not observed. Both the
DTD and DTDJ structures exhibited a broad resonance mode at around 1.75 THz.
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Figure 2. (a,c,e) Measured transmission spectra of the DTD, DTDJ and DTDS structures under
x-polarized (red) and y-polarized (blue) incidences, respectively. The insets are the schematics of
the corresponding structures. (b,d,f) Simulated transmission spectra of the DTD, DTDJ and DTDS
structures under x-polarized (red) and y-polarized (blue) incidences, respectively. The insets in (b) and
(d) are the simulated electric field distributions at the corresponding resonances, as indicated by the
inset arrows. The “+” and “−” in the insets represents the sign of the accumulated charges at the ends
of the corresponding structures. All the inset field distributions in (b,d) share a same color bar in (b).

In order to gain in-depth understanding of the resonance modes of the DTD and DTDJ structures,
finite-element time-domain (FDTD) method was carried out to simulate the transmission spectra.
In the simulation, the metal was modeled as a material with a conductivity of 3.72 × 107 S/m, and
the substrate was modeled as loss free silicon with relative permittivity of 11.9. Periodic boundary
conditions were applied at both x and y directions. A plane wave (x-polarized or y-polarized) was set
to normally illuminate onto the structure. The corresponding simulated transmission spectra of the
DTD and DTDJ structures are respectively illustrated in Figure 2b,d, respectively. It can be seen clearly
that the simulated results under both x- and y-polarized incidences are in good agreement with the
experimental results in Figure 2a,c, which reveals the validity of the applied simulation method.

To investigate the resonant behaviors of the observed resonance modes, we also simulated the
electric field distributions at the corresponding resonance frequencies, as illustrated by the simulated
electric field distributions at the structure plane in the insets of Figure 2b,d. For the DTD structure, the
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field maxima have opposite signs at the ends of the gaps under x-polarized incidence. Thus, it can
be seen as a BDP mode resonance [28–31]. In this mode, the double triangles works as two in-phase
dipoles along the x direction. A large amount of carriers with opposite sign can be accumulated at
the ends of the gap, resulting in a strong field enhancement at the gap. For the DTDJ structure, the
field maxima are at the side ends of the triangles under x-polarized incidence, since the charges could
directly pass across the gap through the junction. Thus, it can be seen as a CTP mode. In this mode, the
connected triangles serve as a single dipole which has a higher horizontal size, resulting in a stronger
resonance strength at a lower frequency. However, under y-polarized incidence, the two triangles in
both the DTD and DTDJ structures behave as two identical dipoles along the y direction. In this case,
the charges are mainly driven to move along the y-direction, the junction no longer serve as a charge
transfer link between the two triangles. Therefore, the corresponding transmission spectra are nearly
the same.

The electric field distributions above also reveal a field enhancement effect in the DTD structures.
The field enhancement is an important effect of metamaterials which could enhance the light-matter
interaction in a subwavelength scale, and has potential applications in enhancing sensing and nonlinear
effect. To investigate the field enhancement effect, we changed the gap distance of the DTD structures
and monitored the electric field distributions at the BDP resonances. Figure 3a illustrates the simulated
transmission spectra when the gap distance g decreases from 6 µm to 1 µm under x-polarized incidences,
which show very little difference except for a minor red shift of the resonance frequency due to the
decrease of the overall structure length. Figure 3b–g illustrates the corresponding simulated electric
field distributions at the structure plane, it can be seen that the electric field at the gap becomes stronger
as g decreases, which can be attributed to the enhanced capacitive coupling strength. The obtained
maximum field enhancement factor Fe at g = 1µm reaches about 67.4, which is much higher than
previous report [28]. Here, the field enhancement factor Fe = |Esam|/

∣∣∣Ere f
∣∣∣, where |Esam| and

∣∣∣Ere f
∣∣∣ are

respectively the simulated electric field amplitude at the center point of the gap with and without the
dimers. This strong field enhancement effect could be explained as follows. The x-polarized terahertz
wave can excite nearly the same amount of charges with opposite sign at the ends of the gap, leading
to a capacitance effect in the gap. When the distance between the two ends (the effective capacitor
plates) decreases, the electric field in the gap would be greatly enhanced accordingly.
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Figure 3. (a) Simulated transmission spectra of the DTD structures with different g from 6 to 1 µm
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x-polarized incidences, respectively.

The large field enhancement effect is of great importance to design plasmonic sensors, modulators
and switches [29–31]. Moreover, the field enhancement could induce larger nonlinear effect and



Materials 2019, 12, 2466 5 of 10

meanwhile decrease the nonlinear modulation threshold, thus it is also a good strategy to design
nonlinear devices. Here, we combine this field enhancement effect with graphene nonlinearity to
show a dynamic resonance switching. As the conductivity of graphene can be easily controlled by
external voltage, to leave the freedom of electric control, we use a graphene stripe to fill the gap of the
DTD structure (DTDGS). Before that, we study the case of filling the gap with metallic stripe (DTDS).
Figure 2e,f illustrate the corresponding measured and simulated transmission spectra, respectively.
It can be seen that the transmission spectra of DTDS structures under x-polarized incidence are nearly
the same as those of the DTDJ structures, which indicates the possibility in realizing electric control
of the resonances when replacing the metallic strip with graphene. Under y-polarized incidences,
big transmission change appears at the lower frequency range due to the large permittivity of metal.
In this work, we only focus on nonlinear control for x-polarized incidence.

Here, we carried out numerical simulation to study the dynamic resonance switching effect using
graphene stripe instead of metallic stripe (see the inset of Figure 2e). In the simulation, we fixed the
gap distance g = 1 um to achieve a large field enhancement effect and also to make the carrier easy to
transfer across the graphene. The graphene was modeled by conductivity (σ = σintra + σinter) which
can be described by the Kubo formula [32,33]:

σintra = i
e2kBT

π}2(ω+ iτ−1)

[ EF

kBT
+ 2 ln

(
exp

(
−

EF

kBT

)
+ 1

)]
, (1)

σinter = i
e2

4π} ln

 2|EF| − }
(
ω+ iτ−1

)
2|EF|+ }(ω+ iτ−1)

, (2)

where σintra and σinter are respectively the conductivities contributed from the intraband electron-photon
scattering and interband electron transition, e is the electron charge, kB is the Boltzmann constant, T is
the temperature, h̄ is the reduced Planck’s constant, τ is the carrier scattering time, and EF is the Fermi
level. In the terahertz range, the graphene conductivity is dominated by the intraband electron-photon
scattering σintra. According to former published article [10,34,35], the strong terahertz incident field
mainly affect the carrier scattering time τ because of the field-induced redistribution of the electrons.
Larger field strength corresponds to smaller carrier scattering time. Here, we fixed the Fermi level of
graphene EF = 0.8 eV, which could be achieved by applying external bias [36,37]; meanwhile, varied
the carrier scattering time τ from 80 to 10 fs, which are in the level of previously reported works [34,35].
The corresponding required incident terahertz fluence in practice can be roughly estimated by the
saturable power transmission function (see the Appendix A). Here, parameters of EF = 0.8 eV and
τ = 80 fs correspond to an incident terahertz fluence level of ~170 µJ/cm2, and parameters of EF =

0.8 eV and τ = 10 fs correspond to an incident terahertz fluence level of ~5 µJ/cm2. Such terahertz
fluence range is easily to achieve using strong-field terahertz system in reference 36, whose maximum
terahertz fluence reaches 190 µJ/cm2. Here, we run numerical simulations to obtain the response
of the DTDGS structure under strong-field terahertz incidences. In the simulation, we assume the
thickness of the single layer graphene is 1 nm and its permittivity ε = εr + iεi is calculated by εr =

−σi/(ωdε0) and εi = σr/(ωdε0) [33,38], where ω is the angular frequency, d is the thickness of graphene,
ε0 is the vacuum dielectric constant. Figure 4 illustrates the calculated permittivity of the graphene at
different carrier scattering time. It is seen that as the carrier scattering time decreases, the real part
of the permittivity increases while the imaginary part decreases, indicating a gradually decreasing
conductivity. Figure 5a,b illustrate the corresponding simulated transmission and reflection spectra,
respectively, by substituting the calculated graphene permittivity into the DTDGS structure with gap
distance of 1 µm, as shown by the inset in Figure 5a. It can be seen that the CTP resonance mode
gradually vanishes as τ decreases due to the fact that smaller τ corresponds to smaller graphene
conductivity, which makes the charges harder to transfer across the gap of the two triangles. Thus, the
strength of the CTP resonance mode is gradually decreases and even disappears. To reduce the effect
of misalignment in real fabrication, we design the width of the graphene to be 10 µm, which is much
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larger than the gap distance of 1 µm. Further simulation results show that, as long as the misalignment
is smaller than 3 µm (the fabrication error of conventional lithography is normally around 1 µm), the
design could still function well.
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The above mentioned process was further confirmed by the simulated electric field distributions
at the corresponding CTP resonances. As illustrated in Figure 6, when τ = 80 fs, corresponding to the
lowest incident terahertz fluence, the electric field distribution is similar to that of the DTDJ structure,
as illustrated by the left inset of Figure 2d, indicating the charges could pass through the gap due to
the shoring effect by the large graphene conductivity. When τ decreases, corresponding to increasing
the incident terahertz fluence, the electric field in the gap gradually increases, which means that
the amount of charges that can pass through the gap reduces due to the decrease of the graphene
conductivity, leading to a weaker CTP resonance.

Here, the nonlinear modulation depth of the proposed DTDGS structure at the CTP resonance
is about 20%. To improve the nonlinear modulation depth, one route is to increase the range of the
scattering time τ. However, this option mainly depends on several scattering mechanisms, including
short-range neutral impurity scattering, charged long-range impurity scattering, scattering due to
absorption of optical phonons, and the scattering rate due to interactions with acoustic phonons and
carrier-carrier scattering, while even the substrate could also have an effect on the carrier scattering
time [35,39]. Therefore, it is quite difficult to control τ. Another route to increase the nonlinear
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modulation depth using the current settings involves applying the graphene to modulate structures
to support high-Q resonances, such as dielectric structures, since their resonance strengths are quite
sensitive to the changes of the external environment.Materials 2019, 12, x FOR PEER REVIEW 7 of 10 
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4. Conclusions

In conclusion, we experimentally and theoretically investigated the mode switching effect from
BTP resonance mode to CTP resonance mode in triangular dimer metamaterials with or without a
junction in the terahertz regime. We also study the field enhancement effect of the BTP resonance
at the gap in the DTD structure. Based on these investigations, we proposed a dynamic mode
switching design by integrating graphene stripe into the gap and applying the nonlinear effect of
graphene. We found that the CTP plasmonic resonance could be effectively tuned by the incident
terahertz field strength. The proposed method may find applications in terahertz sensing and nonlinear
amplitude modulating.
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Appendix A

The fluence of the terahertz in practice could be estimated by the saturable power transmission
function as follows [36]:

T = Tns
ln

[
1 + Tlin

Tns

(
eFp/Fsat − 1

)]
Fp/Fsat

. (A1)

Here, T =
∫

Es
2(t)dt/

∫
Er

2(t)dt is the power transmission of the entire terahertz pulse, Es(t)
and Er(t) are the time-domain transmission signals through single layer graphene on substrate and
bare substrate, respectively; Tlin and Tns are the limiting linear and nonsaturable power transmission
coeffecients, respectively; Fp is the terahertz fluence; and Fsat is the saturation fluence. By assuming
Tlin = 0.41, Tns = 0.93, Fsat = 16 µJ/cm2, and using the simulated transmission results of Es(t) and Er(t),
the corresponding terahertz fluence could be estimated.
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