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Modeling Binaural Unmasking of Speech
Using a Blind Binaural Processing Stage
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Abstract

The equalization cancellation model is often used to predict the binaural masking level difference. Previously its application

to speech in noise has required separate knowledge about the speech and noise signals to maximize the signal-to-noise ratio

(SNR). Here, a novel, blind equalization cancellation model is introduced that can use the mixed signals. This approach does

not require any assumptions about particular sound source directions. It uses different strategies for positive and negative

SNRs, with the switching between the two steered by a blind decision stage utilizing modulation cues. The output of the

model is a single-channel signal with enhanced SNR, which we analyzed using the speech intelligibility index to compare

speech intelligibility predictions. In a first experiment, the model was tested on experimental data obtained in a scenario with

spatially separated target and masker signals. Predicted speech recognition thresholds were in good agreement with mea-

sured speech recognition thresholds with a root mean square error less than 1 dB. A second experiment investigated signals

at positive SNRs, which was achieved using time compressed and low-pass filtered speech. The results demonstrated that

binaural unmasking of speech occurs at positive SNRs and that the modulation-based switching strategy can predict the

experimental results.
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In everyday life, human listeners deal with complex
acoustic scenarios, in which target speech and interfering
sound sources arise at different locations. This phenom-
enon is termed the “cocktail party problem” (Cherry,
1953, p. 976). When target speech and interfering
sound sources are spatially separated, they differ in
their interaural level differences (ILDs), interaural time
differences (ITDs), and interaural phase differences
(IPDs; Bronkhorst, 2000). Two mechanisms are thought
to play a primary role in such adverse spatial acoustic
conditions: better-ear listening (i.e., listening with the ear
that receives the better signal-to-noise ratio [SNR]) and
binaural unmasking (i.e., using ITD and ILD differences
for separating the target from interfering signals).
Binaural unmasking is often modeled by the equaliza-
tion cancellation (EC) mechanism (Durlach, 1963),
which equalizes ITDs and ILDs, then calculates the dif-
ference between left ear channel and right ear channels.
In many computational models, the EC mechanism is
combined with a band pass filter bank, which mimics

auditory frequency selectivity on the basilar membrane,

and some metric quantifying the amount of speech infor-
mation in the signal to predict the speech recognition

threshold (SRT). This metric is often referred to as the

back end.
Particular back ends include the speech intelligibility

index (SII; ANSI S3.5-1997, 1997; (Beutelmann &

Brand, 2006; Beutelmann et al., 2010; Jelfs et al., 2011;

Lavandier & Culling, 2010; Lavandier et al., 2012; Wan
et al., 2010), analyzing the SNR in the modulation fre-

quency domain (Chabot-Leclerc et al., 2016), and the

correlation between the clean speech and the noisy
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speech (Andersen et al., 2016). All of these models are
based on assumptions about the EC process made by
Durlach (1963), namely that the equalization process
has inherent processing errors in level and time, leading
to an imperfect alignment of the left and right ear signals
and, therefore, to an imperfect cancellation of the
masker signal. Durlach’s original specifications of the
error parameters were subsequently updated by vom
H€ovel (1984) to better agree with data by Langford
and Jeffress (1964) and (Egan, 1964). vom H€ovel’s
results have since been incorporated into the binaural
speech intelligibility model by Beutelmann and Brand
(2006) and its revised version (Beutelmann et al., 2010;
termed here BSIM2010).

BSIM2010 and the other models mentioned earlier
require a top-down process that optimizes the equaliza-
tion parameters of the EC model to achieve optimum
unmasking. These parameters are found by analyzing
separately the clean speech and noise signals. This has
the drawback that the model can only by applied if these
clean signals are available (i.e., the model cannot be
applied to the mixed speech and noise signals directly)
or if assumptions are made about the direction from
which one signal originates. To overcome this drawback,
we propose here a bottom-up EC front end that is driven
only by the mixed input signals. Our EC process can be
regarded as blind, as it does not require target speech and
interfering signals in isolation nor knowledge of their
positions.

Our approach has similarities to an earlier blind
model by Cosentino et al. (2014) which uses the binaural
localization model proposed by Dietz et al. (2011) to
estimate the IPD of both the target source and the inter-
fering source. They differentiate between signal and
interferer by assuming that the target speech source is
located directly in front of the listeners, that is, at 0� in
the horizontal plane. Therefore, the other IPD, different
to 0�, is associated with the position of the interferer.
The estimated IPDs of both target and interferer are
then used to calculate the binaural masking level differ-
ence (for details, see Culling et al., 2004, 2005). Note that
this model assumes that the sound sources can be local-
ized to perform binaural unmasking. Localization cer-
tainly plays a role in our everyday communication, but
binaural unmasking does not necessarily require a cor-
rect localization of target and interferer, because it
works best for stimuli with an IPD of p (e.g.,
Licklider, 1948). Such stimuli have a frequency-
dependent ITD which prevents the perception of a
clear direction or lateralization.

A similar but more technical approach was presented
by Tang et al. (2018), who proposed a blind model for
speech intelligibility prediction, which combines a blind
source separation algorithm with a nonblind speech
intelligibility back end. Like Cosentino et al. (2014),

they assumed that the target source is directly in front
of two microphones and, additionally, that only one
masker source is present. Using these assumptions, the
blind source separation algorithm was able to extract
estimates of the speech signal and the noise signal
from the mixed signals, which were then further ana-
lyzed using different speech intelligibility back ends.

A third binaural speech intelligibility model that
works blindly was presented by Geravanchizadeh and
Fallah (2015). They combined a model of the auditory
periphery (Dau et al., 1996) and an EC mechanism to the
mixed signals. The back end was a dynamic time warp
speech recognizer (Sakoe & Chiba, 1978), which com-
pares the processed mixture of speech and noise with
an internally stored reference of the target speech.
However, this approach is limited to negative SNRs:
Positive SNRs are explicitly excluded as for those
normal EC processing would cancel the signal, not the
noise. In the real world, SNRs vary over a wide range,
and thus any model has to deal with both negative and
positive SNRs. This leads to a problem, in that a blind
binaural SNR improvement needs to do two opposing
things: the cancellation of the dominant source if the
SNR is negative and the enhancement of the dominant
source if the SNR is positive. The first can be done by
power minimization of the EC output, the latter by
power maximization of the EC output. It is unclear if
there is binaural unmasking of speech at positive SNRs
for human listeners. At positive SNRs, a properly artic-
ulated speech signal is usually fully intelligible for listen-
ers with normal hearing, even when it is presented
monaurally and consequently binaural release from
masking is not detectable due to ceiling effects.
However, listeners with impaired hearing and elderly
listeners with cognitive processing deficits show SRTs
in the range of 0 dB SNR (e.g., Kollmeier et al., 2016).
Moreover, in realistic environments, most SNRs are pos-
itive (Smeds et al., 2015), and many hearing aid algo-
rithms require positive SNRs (e.g., Brons et al., 2013;
Fredelake et al., 2012). Rennies and Kidd (2018)
showed that binaural hearing decreases listening effort
at positive SNRs when target and interferer are spatially
separated, indicating that binaural unmasking might be
relevant at positive SNRs. Therefore, investigating bin-
aural hearing at positive SNRs is ecologically very rele-
vant and critical for understanding binaural listening.

Aim of This Study

Our aim was to develop a blind, signal-driven binaural
processing stage that considers both negative and posi-
tive SNRs. To do this, we needed to address two ques-
tions: (a) Can a blind EC process be realized without
assuming a certain direction of the target or interferer?
(b) How should positive SNRs be considered?
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Blind Model Proposed in This Study

According to Lord Rayleigh’s Duplex theory (1907) of
sound source localization, the binaural auditory system
uses ITDs (and thus IPDs) at frequencies below 1500Hz
to localize sound sources, but above 1500Hz, ILDs are
used. Motivated by this theory, in our model, we apply
the EC model of binaural unmasking for frequencies up
to 1500Hz, while the better ear is used at frequencies
above 1500Hz.

The modeling of binaural unmasking below 1500Hz
is achieved in two steps: First, in the equalization step,
the left and right ear signals are equalized in level (by
amplification and attenuation) and in phase (by delaying
the band pass filtered signals). Second, in the cancella-
tion step, two alternative strategies are used. If the SNR
is negative, and thus the noise is dominant, the signal
from one ear is subtracted from the other which cancels
the noise by destructive interference causing a minimiza-
tion of the model’s output level and therefore an
improvement of the SNR. If instead the SNR is positive,
then the two ear signals are added, which enhances the
signal by constructive interference causing a maximiza-
tion of the model’s output level. Including both strate-
gies in the binaural processing stage requires a slight
modification of the EC mechanism to allow for con-
structive interference. The concept of allowing a summa-
tion of left and right ear signal was previously proposed
by Green (1966). But he considered only situations
where subtraction was beneficial. Moreover, the aim of
his article was neither to propose a binaural model that
can be applied to arbitrary SNRs, nor to propose a
method to differentiate addition and subtraction as the
better strategy.

To determine whichever of level minimization or level
maximization is required, we use a modulation analysis
based on the speech-to-reverberation modulation ratio
(SRMR; Santos et al., 2014). The output of the SRMR is
the ratio between modulation energy in low and high
modulation frequency channels. A high value is associ-
ated with the presence of speech-like modulation. A low
value is associated with the presence of reverberation or
noise as both decrease the modulation depth at low
modulation frequencies. The SRMR approach is con-
ceptually similar to the classification of signals based
on modulation spectra, which was proposed by
Ostendorf et al. (1998).

Whichever of the two EC paths yields the higher
SRMR value is then used for further processing in the
model. We call this modulation-based selection. It is done
independently for each frequency channel of the EC
mechanism below 1500Hz (in Beutelmann et al., 2009,
it was shown that independent EC processing can be
assumed across frequency channels). The SRMR is
also used for selecting the better ear above 1500Hz,

that is, the ear yielding the higher SRMR value is select-
ed. The blindly selected outputs of the EC processed
low-frequency channels (below 1500Hz) are combined
with the blindly selected better ear, high-frequency chan-
nels (above 1500Hz).

In this study, we focus on the binaural processing
stage of the model and do not modify the SII back end
from BSIM2010, allowing for maximum comparability
to that. In addition, the comparability to other nonblind
back ends is basically conserved: As the whole model
processing is linear (apart from the nonlinear control
strategy of selecting the EC parameters and level mini-
mization vs. maximization), it is in principle possible to
process target speech and interfering signals separately
(see later). We call our new model BSIM2020.

Note that the blind model front end is independent of
the model back end, as the speech intelligibility measure
is not required for optimizing the EC parameters. The
front end can be combined with arbitrary back ends, for
example, with intrusive back ends like SII (ANSI S3.5-
1997, 1997), or with blind back ends, which use princi-
ples of automatic speech recognition (e.g., Sch€adler
et al., 2016; Spille et al., 2018).

Organization of This Article

In Experiment I, we evaluated whether the new
BSIM2020 model predicts SRT data in stationary
noise, located at different azimuths in the horizontal
plane, with the same accuracy as the earlier, nonblind
BSIM2010 model by Beutelmann et al. (2010).

In Experiment II, we collected new data to test whether
the proposed maximization strategy is actually required
to model human performance in speech-in-noise experi-
ments at positive and negative SNRs or whether simply
switching off EC processing at positive SNRs and using
the ear with the better SNR was sufficient. To provoke
binaural release from masking at positive SNRs, we low-
pass filtered speech and noise (which can be regarded as a
simple model of high-frequency hearing loss) and time
compressed them (which can be regarded as a simple
model of reduced central processing speed). In the
model analyses of both experiments, we compared the
new modulation-based selection between level minimiza-
tion and maximization with using either level minimiza-
tion only or level maximization only to determine if the
new selection process was indeed necessary.

Methods

Front-end Binaural Processing

The BISM2020 model is schematically shown in
Figure 1. It uses mixed speech and noise as input signals
to determine the EC parameters.
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First, the mixed signal is divided into 30 ERB (Moore

& Glasberg, 1983) spaced frequency bands ranging from

150Hz to 8500Hz using a gammatone filter bank

(Hohmann, 2002), simulating the frequency selectivity

of the auditory system. Next, EC processing is then per-

formed in frequency channels up to 1500Hz (i.e., in the

lower 15 frequency channels). The ILD is estimated in

each frequency band by calculating the power in each

frequency band, and then the power of the right ear

channel is subtracted from the left ear channel leading

to a signed ILD, where negative values correspond to a

higher level at the right ear and positive values to a

higher level at the left ear. The signals in the left ear

and right ear channel are then amplified or attenuated

such that the levels are equalized between the left and

right ear channel. We assume that the equalization is

imperfect, which we implemented via a jitter in the inter-

aural level equalization process that prevents perfect

level equalization between the left and right ear channel.

The jitter was a normally distributed random variable

(vom H€ovel, 1984; see supplementary material for

more details). The jitter is applied to the signals directly,

and thus, a Monte-Carlo simulation is required to model

the statistics of the uncertainties. This procedure is sim-

ilar to the method used by Beutelmann and Brand (2006)

and Wan et al. (2010), but different to the method used

by Beutelmann et al. (2010), where the uncertainties were

incorporated analytically with respect to their expecta-

tion values and variances. Afterward, the ITD is estimat-

ed in each frequency channel from the phase information

Figure 1. Block Diagram of the General Processing Performed in BSIM 2020. The mixed signals on the left and right ear are divided into
30 frequency bands ranging from 150Hz to 8500Hz using a gammatone filter bank (Hohmann, 2002). Afterward, frequency bands below
1500Hz are fed to the EC stage, where both a level minimization and level maximization is performed in parallel, denoted as EC_min and
EC_max. The speech-to-reverberation modulation ratio (SRMR; Santos et al., 2014), denoted as select-stage is used (a) for selecting if the
level-minimization or the level-maximization produces the best SNR improvement and (b) for determining the better ear. This is indicated
by the numbers in the selection stage. For low frequencies, either the EC-Min (1) or the EC-Max (2) path is selected. For high frequencies
(above 1500Hz), either the left ear channel (3) or the right ear channel is selected. Both, binaurally processed channels and the better ear
channels are combined, and a single-channel output is resynthesized using a gammatone synthesis filter bank. The output can then be
analyzed by an arbitrary back end, which is the SII in this study.
EC¼ equalization cancellation; SII¼ speech intelligibility index.
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of the cross-power spectral density between left and right
ear channel. After the estimation, the ITD is compensat-

ed for. This equalization process in time again includes
binaural processing inaccuracies, which are assumed to

be independent realizations of another normally distrib-
uted random variable (vom H€ovel, 1984).

The cancellation step is performed by either subtract-
ing the left ear channel from the right ear channel (as the

left and right ear signals are equalized, the subtraction
operation is symmetric and can be performed either way)

or adding, depending on the SRMR (see later). More
details about the processing in BSIM2020 can be

found in the supplementary material.

Selection of EC Path and Better Ear Based on

Modulation Analysis

In the next step, the better of the EC processing strategies
and the better ear are selected blindly to produce a bin-

aurally processed mono signal, which can be analyzed by
an arbitrary speech intelligibility back end. To do this, we

use the SRMR measure (Santos et al., 2014) applied inde-
pendently in each of the 30 frequency bands. The enve-

lope of the EC processed signals and the envelope of the
two ear signals are extracted by taking the absolute value

of the analytical signal (i.e., the Hilbert envelope).
These are then analyzed by a modulation filter bank

with eight logarithmically spaced filters ranging from
4Hz to 128Hz. In each modulation filter, the power

(i.e., energy per block) is computed by taking the
squared magnitude of the Fourier transformed envelope
(in this study, each sentence was treated as one block).

The SRMR is the ratio of the power in the four lowest
modulation filters to the power of the four highest mod-

ulation filters. For frequency channels up to 1500Hz, the
SRMR is calculated on the outputs of both the minimiz-

ing and the maximizing EC paths. The path yielding the
higher SRMR value is kept for further processing.

Above 1500Hz, however, the SRMR measure is cal-
culated on the left and right ear signals. If the left-right

difference in SRMR exceeds a value of 0.1, then the ear
providing the higher value is selected as better ear chan-

nel, but otherwise, the ear providing the lower root mean
square is selected.

The selected EC channels are then combined with the
selected better ear channels using a gammatone synthesis

filter bank to produce a single signal, which is then ana-
lyzed by a speech intelligibility back end or listened to by
a human listener.

Model Testing and SRT Calculation

The model was tested using sentences from the

Oldenburg Sentence test corpus (OlSa; Wagener et al.,
1999c). OlSa sentences consist of five-word sentences

with a fixed grammatical structure noun-verb-numeral-
adjective-object, where each word is randomly selected

from a list of 10 words. Ten sentences were used in the
simulations such that every word of the OlSa corpus
appeared once.

The speech material was mixed with the noise at 41
different SNRs ranging from –20 dB to þ20 dB in steps

of 1 dB. For each tested SNR, 30 random sets of the
jitter random variables were used in each frequency

channel. In total, 12,300 simulations were conducted
for each tested condition in the two experiments. We
obtained SRTs via intermediate calculation of SII

values. To obtain these, the speech and noise signals
were processed separately using identical EC parameters
and random variables as for the mixed signals.

The SII values were averaged across Monte-Carlo
simulations for each of the 10 sentences used in the sim-

ulations. The SII for each of the 10 sentences leading to
the SRT of –7.8 dB (the average SRT across listeners
with normal hearing) obtained for the colocated condi-

tion was averaged across all sentences. The result served
as reference SII value. Next, the mean SII (across the 10
sentences and 30 Monte-Carlo simulations) was calcu-

lated for each of the 41 tested SNRs, and then whichever
SNR yielded an average SII closest to the reference SII
was selected for the different azimuth positions of the

noise. This SNR is taken as the estimate of the SRT50.
We should clarify that the model is binaurally blind

even though speech and noise are run separately through
for the SII calculation. The reason is that the model uses
the mixed signals to determine the EC parameters;

hence, it is binaurally blind. But the SII calculation
requires separate signals, so we used the same EC

parameters for speech and noise.

Experiment I—Modeling Speech

Intelligibility in Spatially Separated

Stationary Noise

To compare the blind estimation process of our new
BSIM2020 with the SNR optimization procedure of
BSIM2010, we simulated the speech intelligibility experi-

ments conducted by Beutelmann and Brand (2006) with
both models.

In those experiments, 10 listeners with normal hearing
(21–43 years; audiometric thresholds of 20 dB HL or

better between 250 and 8000Hz) participated. Speech
intelligibility experiments were conducted using the OlSa
sentences in noise (Wagener et al., 1999a, 1999b, 1999c).

An adaptive procedure (Equation 9, Brand & Kollmeier,
2002) was used to determine the SNR at which 50% of
the sentences were understood correctly. All measure-

ments were conducted using the Oldenburg
Measurement Applications (H€orTech gGmbH,

Hauth et al. 5



Oldenburg, Germany). SRTs were obtained in three
acoustical environments (which were denoted as
“anechoic,” “office,” and “cafeteria”) and for different
directions of the noise source, while the target speech
was always presented from an azimuth of 0� (directly in
front of a listener). The tested noise directions were –140�,
–100�, –45�, 0�, 45�, 80�, 125�, and 180� in the anechoic
and office conditions and –135�, –90�, –45�, 0�, 45�, 90�,
135�, and 180� in the cafeteria condition. In the anechoic
condition, speech and noise signals were convolved with
head-related transfer functions taken from Algazi et al.
(2001). For the office and cafeteria conditions,
Beutelmann and Brand (2006) used their own recordings
of head-related transfer functions. All stimuli were pre-
sented binaurally using HD200 headphones (Sennheiser,
Wedemark, Germany), which were free-field equalized
using an finite impulse response (FIR) filter with 801 coef-
ficients. The SRT was determined using test lists of 20
sentences. The test lists were randomly selected out of 45
lists. The noise level was set to 65dB SPL, and the speech
level was varied adaptively to find the individual SRT.

Results

Figure 2 shows the predicted SIIs from our model for a
selection of four of the noise directions (–100�, 0�, 45�,
and 180� azimuth) and for the tested SNRs ranging from
–20 dB to þ20 dB. These four angles were selected
because they show the general characteristics

representative of all of the simulations. The top-right

panel shows the SII curves for colocated speech and

noise sources (i.e., S0N0). The different EC processing

strategies result in identical SII curves. This result was

expected, because there are no interaural differences for

the binaural processor to make any use of to enhance the

SNR. The same holds for the noise located at 180� azi-

muth, shown in the bottom right panel. The curves are

slightly shifted toward negative SNRs, which is an effect

of pinna cues as they slightly improve the SNR for the

S0N180 condition compared with the S0N0 condition.
In both of the left panels, the effects of the different

processing strategies for spatially separated target and

masker can be observed. The masker at –100� azimuth

provides a larger release from masking than the masker

located at 45� azimuth. At negative SNRs, the level min-

imization provides the best SII, whereas at positive

SNRs, the level maximization provides the best SII.

The SII of modulation-based blind selection between

minimization and maximization converges toward the

SII of the level minimization at negative SNRs and to

the SII of the level maximization at positive SNRs. For

SNRs close to 0 dB, the modulation-based selection pro-

vides higher SII values than the level minimization or

level maximization alone. This is probably due to the

fact that the SRMR measure selects the optimal strategy

independently in each frequency channel leading to a

synergistic effect.

Figure 2. Exemplary SII Curves for Speech (Located at 0�) in Noise (Various Locations). The SII is shown for the three tested processing
schemes in the EC mechanism, which is either a level minimization (solid green) at the output, a level maximization (dotted dashed blue
line) at the output, or a modulation-based selection of level minimization and maximization (dashed red line).
SII¼ speech intelligibility index; SNR¼ signal-to-noise ratio.
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Figure 3 shows the SRTs predicted using either the level

minimizing EC mechanism on its own or the modulation-

based blind selection of either the minimizing or maximiz-

ing EC processing strategy (results obtained with the

maximization strategy and listening only monaurally are

reported in the supplementary material). Predictions are

shown along with the data by Beutelmann and Brand

(2006). The predictions were essentially equally accurate.

Using the level minimization, very accurate predictions in

terms of the coefficient of determination R2¼ .97, the root

mean square error (RMSE) between predicted and mea-

sured SRTs (RMSE¼ 0.7 dB), and the bias (–0.02dB)

were obtained. The results obtained with modulation-

based selection are comparable to these: Predicted SRTs

were slightly higher, but the RMSE and bias, as well as the

coefficient of determination are not affected (R2¼ .985,

RMSE¼ 0.9dB, bias¼ –0.5 dB).
In summary, the analysis of this experiment shows

that our new model, using modulation-based blind selec-

tion of the optimal binaural processing strategy (either

minimizing or maximizing of the output level) and the

blind selection of the better ear, is able to describe SRTs

for spatially separated speech in noise at negative SNRs.

Experiment II—Binaural Speech

Intelligibility at Positive SNRs

To test the model at positive SNRs, we collected new

data to investigate binaural intelligibility level

differences and binaural release from masking at positive

SNRs. We used two sets of speech material: the OlSa

speech material as in Experiment I and the G€ottingen
sentence test’s material (GoeSa; Kollmeier &

Wesselkamp, 1997), which are everyday sentences.
Low-pass filtering and time compression were applied

to degrade speech intelligibility and shift SRTs to posi-

tive SNRs. In Schlueter et al. (2015), it was shown that

the SRT50 of listeners with normal hearing for OlSa

sentences can be shifted to an SNR of 3 dB if the

speech material is time compressed to 25% of its original

length. However, in this study, such extreme compres-

sion was avoided. Instead, low-pass filtering was applied
in addition to time compression. Low-pass filtering addi-

tionally lowers speech intelligibility while preserving the

usable binaural ITD cues, which is necessary for achiev-

ing binaural unmasking. The binaural configuration

used depended on the sentences. For the OlSa sentences,

binaural release from masking was induced by imposing

either an IPD of p or an ITD of 750 ls on the noise. For

the GoeSa sentences, however, pilot experiments

revealed that SRTs could not be determined reliably if
they were compressed to 50% of their original length

and low-pass filtered at 1200Hz. Thus, they were only

compressed to 66% of their original length and low-pass

filtered at 1500Hz. Moreover, only an IPD of p of the

noise was tested. The IPD condition was chosen because

it ought to give the maximal binaural release from mask-

ing, whereas the ITD condition was a more realistic sce-

nario because the stimulus can be associated to a certain
direction.

Listeners

A total of 13 listeners with normal hearing (6 male, 9

female, 19–28 years, mean age: 23 years) participated in

the experiment. They had no previous experience with

sentence test procedures, and audiometric thresholds did

not exceed 20 dB HL.

Stimuli

The speech materials from the Oldenburg sentence

test and the Goettingen sentence test in noise were

used. The OlSa sentences have a fixed syntactical struc-

ture (e.g., “Peter sieht vier nasse Tassen.”—“Peter sees

four wet cups.”), whereas the GoeSa sentences consist of

fixed meaningful sentences with a variable syntactical

structure and a variable length. These provide more
semantical context information and can therefore be

considered to be more similar to the sentences used in

everyday conversation (e.g., “Ein kleiner Junge war der

Sieger.”—“A little boy was the winner.” or “Jetzt wird

das Fundament gelegt.”—“Now the foundation is

laid.”). They were manipulated in three ways: (a)

Figure 3. Data (Black Dots) and Predictions Obtained for the
Anechoic Situation Using the Level Minimization as EC Processing
Criterion (Green Diamonds) and Using the Modulation-Based
Selection of Level Minimization and Level Maximization (Red
Diamonds). Error bars of the obtained data indicate the interin-
dividual standard deviation; error bars of the predictions show the
standard deviation across sentences.
SNR¼ signal-to-noise ratio; SRT¼ speech recognition threshold.
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unprocessed, that is, standard OlSa or GoeSa measure-
ments, (b) time compression to 66% of their original
length and low-pass filtering with a cut-off frequency
of 1500Hz termed “LP 1500Hz, TC 0.66,” and (c)
time compression to 50% and low-pass filtering to
1200Hz termed “LP 1200Hz, TC 0.5,” which was only
applied to the OlSa sentences.

Both time compression and low-pass filtering were
performed using the PRAAT software (Boersma & van
Heuven, 2001; Boersma & Weenink, 2018). In PRAAT,
the low-pass filters are realized as a one-tailed Hann
window with adjustable cut-off frequency (–6 dB) and
filter slope (the width between pass and stop band) of
100Hz, meaning that full attenuation was achieved
within 100Hz. Time compression was done using the
pitch-synchronous overlap add algorithm (Moulines &
Charpentier, 1990), which allows for time compression
without change in pitch. This method was evaluated in
Schlueter et al. (2015) and was shown to be a valid
method to increase SRTs based on time compressing
the speech material.

SRTs were determined as the SNR for 80% speech
intelligibility and found by changing the level of the
speech adaptively and by using 0.8 as the target value
(Equation 9, Brand & Kollmeier, 2002). Five sentence
lists with 20 sentences each were provided for training,

and then the main binaural conditions with IPD of p or

ITD of 750 ls (see earlier) were run.

Results

Figure 4 shows the SRT results obtained for OlSa

sentences in the three tested conditions: unprocessed

(left panel), time compression to 66% of the original

length and low-pass filtering at 1500Hz (LP 1500Hz,

TC 0.66; middle panel), and time compression to 50%

of the original length and low-pass filtering at 1200Hz

(LP 1200Hz, TC 0.50; right panel). The median

SRT80 was found to be at –5.2 dB SNR in the S0N0

condition for the unprocessed OlSa sentences. By

applying time compression and low-pass filtering to

the OlSa sentences, the median SRTs in the S0N0 condi-

tion were shifted to –0.4 dB SNR for the “LP 1500Hz,

TC 0.66” condition and þ4.6 dB SNR for the “LP

1200Hz, TC 0.50” condition. In the S0Np condition,

the median SRT was found to be 6 dB below the SRT

in the N0S0 condition, which was independent of the

manipulation applied to the stimuli. In the S0N750 con-

dition, the median SRT was always 1 dB higher (worse)

than the median SRT in the NpS0 condition. However, in

both of the binaural conditions, the variation across

Figure 4. Boxplots (Median: 25%–75% Confidence Interval [Box], 9%–91% Confidence Interval [Whisker] in Black, and Outliers in Red)
of the SRT80 Obtained for 13 Listeners With Normal Hearing Using the OlSa. Unprocessed denotes the original stimuli, LP denotes the
cut-off frequency of the low-pass filter, and TC denotes the applied time compression. N0S0 denotes the diotic (same signal at both ears)
presentation of speech and noise, NpS0 denotes that the noise was interaurally phase inverted, and N750S0 denotes that the noise was
interaurally delayed by 750 ls. Predictions obtained with the three EC outputs are shown, where blue squares show the predicted SRT for
the level maximization, green circles are the predicted SRTs using the level minimization, and red diamonds denote the results obtained by
combining level minimization and maximization based on modulation analysis. Black diamonds correspond to the diotic, that is, N0S0,
model outcome.
OlSa¼Oldenburg Sentence test corpus; EC¼ equalization cancellation; SNR¼ signal-to-noise ratio; SRT¼ speech recognition threshold.
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listeners was increased for the time-compressed and low-

pass filtered stimuli.
Figure 4 also shows the predictions from the

BSIM2020 model using the three processing strategies:

level minimization only, level maximization only, and

modulation-based selection between level minimization

and maximization. In the “unprocessed” condition, both

the level minimization and the modulation-based strate-

gies resulted in the same predicted SRT, which slightly

overestimated the mean binaural release from masking

and coincided with the best SRT obtained by the human

listeners, which was found to be at –12 dB SNR. The

level-maximization strategy was not adequate to

describe the results obtained in the listening experiment

because the predicted SRT was even higher than in the
N0S0 condition.

In the “LP1500 Hz, TC 0.66” condition, the SRT80

was found to be at –0.4 dB SNR for the S0N0 condition.

In the binaural conditions, the SRTs were 5–6 dB lower.

The predicted SRT using the level-minimization strategy

resulted in a predicted SRT which coincided with the

upper quartile of the obtained data. However, the stan-

dard deviation was very large in the S0Np condition.

The predicted SRT using the level-maximization strategy

was worse than in the diotic condition. The predicted

SRT obtained using the output of the modulation-

based selection strategy was again in the range of the

best human listener.
In the “LP1200, Hz TC 0.5” condition, the diotic

SRT was found to be at þ4.6 dB SNR. The SRTs in

both of the binaural conditions were found to be at

1.5 dB SNR for the S0N750 condition and 0.26 dB for

the S0Np condition. In the binaural conditions, the

level-minimization strategy failed to predict the obtained

SRTs. The predicted SRT using the level-maximization

strategy was obtained at the upper end of the figure,

while the modulation-based selection resulted in pre-

dicted SRTs close to the median. The model perfor-

mance was evaluated by calculating the RMSE
between the predicted and measured SRT. For the

modulation-based selection strategy, it was 2.5 dB.
For statistical evaluation, first the Kolmogorov–

Smirnov test (a¼ .05) was conducted to test if the data

was normally distributed. It revealed that a normal dis-

tribution can only be assumed for the results obtained in

the S0N0 condition (LP¼ 1500Hz, TC¼ 0.66) and NpS0
condition (LP¼ 1200Hz, TC¼ 0.5). Therefore, a

Wilcoxon signed-rank test (a¼ .01) was conducted for

the evaluation of the SRT differences across conditions.

A statistically significant effect of inverting the phase of

the noise on SRTs was found for all conditions—

p(Unprocessed)¼ 2.4� 10–4, p(LP1.500Hz)¼ 4.8� 10–4,

p(LP1200Hz)¼ 4.8� 10–4. The same was shown for

the S0N750 condition—p(Unprocessed)¼ 2.4� 10–4,

p(LP1.500Hz)¼ 2.4� 10–4—but not for the LP1.200Hz con-

dition—p (LP1.200Hz)¼ 0.0105.
Figure 5 shows the corresponding binaural intelligi-

bility differences (BILDs), which are the differences in

SRTs between the S0N0 conditions and S0Np conditions.

In general, the median BILD was comparable across

manipulations at about 2–7 dB. However, the variance

across listeners was increased for the conditions with

time compression and low-pass filtering. A Wilcoxon

signed-rank test found no statistical difference between

the BILDs obtained for the unprocessed stimuli and the

time compressed and low-pass filtered stimuli

[p(LP1.500Hz)¼ 0.68, p(LP1.200Hz)¼ 0.58].
Figure 6 shows the BILDs for the S0N750 condition.

Again, these were not significantly different for the low-

pass filtered and time-compressed conditions compared

with the unprocessed condition [p(LP1.500Hz)¼ 0.41,

p(LP1.200Hz)¼ 0.24)].
Figure 7 shows the results obtained with the GoeSa

sentences. Compared with the SRTs obtained with

the OlSa sentences, SRTs with the GoeSa sentences

were shifted to even more positive SNRs. The standard

deviation was also larger. For the unprocessed GoeSa

sentences, the median SRT in the S0N0 condition was

found to be at –4.6 dB SNR. The median SRT in the

S0Np conditions was found to be at –7.7 dB SNR,

which was significantly lower (Wilcoxon signed-rank:

p value¼ 2.44� 10–4). This corresponded to a median

BILD (median of the difference) of 2.6 dB. For the

time-compressed and low-pass filtered condition, the

median SRTs were found to be at 9.9 dB SNR (S0N0)

Figure 5. Boxplots (Median [Horizontal Line], 25%–75%
Confidence Interval [Box], 9%–91% Confidence Interval
[Whisker], and Outliers [Red Crosses]) of BILDs Obtained for 13
Listeners With Normal Hearing Using OlSa Sentences. The noise
had an IPD of p. Unprocessed denotes the unmanipulated OlSa
sentences, and LP and TC denote the low-pass filter and time
compression applied to the OlSa material.
BILD¼ binaural intelligibility difference.
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and 7.4 dB SNR (S0Np). A median BILD of 3.3 dB
was obtained. However, the reduced SRT in the
S0Npcondition was not statistically different to the
SRT in the S0N0 condition due to the large variability
of SRTs across listeners (Wilcoxon signed-rank: p
value¼ .17).

The BSIM2020 model predicted a binaural release
from masking for both unprocessed and processed
GoeSa sentences, respectively. The predicted SRTs
using the level maximization and the modulation-based
selection were close to the median SRT in the binaural
condition. However, due to the very large variability
across listeners, a direct comparison between measured
and predicted SRTs was problematic.

In summary, Experiment II showed that binaural
release from masking can be found at negative and pos-
itive SNRs. Therefore, it is also necessary to consider
positive SNRs in models of binaural speech intelligibil-
ity. The SRTs predicted with the modulation-based
selection strategy of our BSIM 2020 model showed
good agreement with the measured SRTs at positive
and negative SNRs.

Discussion

Blind Modeling of Binaural Processing

This study introduces a new blind model of binaural
speech intelligibility, termed BSIM2020, which requires
only mixed signals as input. Below 1500Hz, the binaural
unmasking is performed in two parallel paths, which
either minimize or maximize the level at the output of
the EC process. The interferer is attenuated at negative
SNRs using destructive interferences, and the target is
enhanced at positive SNRs using constructive interfer-
ences. Above 1500Hz, the monaural left ear channel and
the monaural right ear channel are considered. The deci-
sion as to which of the two EC paths is used below
1500Hz and which of the two ear channels is used
above 1500Hz for further processing is done indepen-
dently for each auditory frequency channel based on a
modulation analysis based on the SRMR measure
(Santos et al., 2014), which selects whichever EC path
and ear channel provides most speech-like modulations.
This processing has the advantage that no separate
speech and noise signals are required.

The concept of minimizing and maximizing the level
at the EC output is different to binaural speech intelli-
gibility models from the literature, where the back
end (speech intelligibility metric) is typically used to
optimize the EC parameters in a top-down process
(Andersen et al., 2016; Beutelmann et al., 2010). In
such a top-down process, the EC parameters are adjust-
ed to maximize the speech intelligibility metric.
Compared with the models proposed by Cosentino

Figure 6. Boxplots (Median [Horizontal Line], 25%–75%
Confidence Interval [Box], 9%–91% Confidence Interval
[Whisker], and Outliers [Red Crosses]) of BILDs Obtained for 13
Listeners With Normal Hearing Using OlSa Sentences. The noise
had an ITD of 750 ls. Unprocessed denotes the unmanipulated
OlSa sentences, and LP and TC denote the low-pass filter and time
compression applied to the OlSa material.
BILD¼ binaural intelligibility differences; ITD¼ interaural time
difference.

Figure 7. Boxplots (Median [Horizontal Line], 25%–75%
Confidence Interval [Box], 9%–91% Confidence Interval
[Whisker], and Outliers [Red Crosses]) of SRT80 Obtained for 13
Listeners With Normal Hearing Using the GoeSa. Unprocessed
denotes the original stimuli, LP denotes the cut-off frequency of
the low-pass filter, and TC denotes the applied time compression.
Predictions obtained with the three EC outputs are shown, where
blue squares show the predicted SRT for the level maximization,
green circles are the predicted SRTs using the level minimization,
and red diamonds denote the results obtained by combining level
minimization and maximization based on modulation analysis.
GoeSa¼G€ottingen sentence test’s material; EC¼ equalization
cancellation; SNR¼ signal-to-noise ratio; SRT¼ speech recogni-
tion threshold.
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et al. (2014), Tang et al. (2018), and Geravanchizadeh

and Fallah (2015), our model has the advantage that it

does not make assumptions about the SNR, the location

of a target speaker or interfering noise source, or the

number of interfering noise sources. Moreover, the

model is designed in such a way that it can be combined
with arbitrary speech intelligibility back ends, because it

produces a binaurally processed mono signal. Therefore,

it can also be used as simple binaural beamformer

for signal enhancement. Geravanchizadeh and Fallah

(2015) proposed a binaural speech intelligibility model

with a blind EC processing stage. However, positive

SNRs where explicitly excluded, because they assumed

100% speech intelligibility at positive SNRs and, conse-

quently, that binaural processing is only relevant at neg-

ative SNRs.
The concept presented here can be regarded as a

bottom-up process, where the binaurally processed sig-

nals are fed to a modulation-based selection stage, which

serves as a simple “gate” that passes the channel with the

best representation of speech to the back end. Moreover,

the relatively simple binaural processing presented here

does not require any assumption on the localization of

the target and/or interfering source. Binaural unmasking
is not necessarily based on localization, as it works best

for stimuli which are interaurally phase inverted (e.g.,

Levitt & Rabiner, 1967) and, consequently, have

frequency-dependent ITDs which are ambiguous with

respect to location or lateralization. Nevertheless, binau-

ral unmasking and binaural sound source localization

are certainly related, for example, with respect to

object formation and stream segregation (e.g.,

Bronkhorst, 2000). The inclusion of localization cues

into the present model will be subject of future studies.
In our study, we evaluated the blind binaural process-

ing using the SII to be able to compare it with an earlier

model, BSIM2010 (Beutelmann et al., 2010), which used

an SNR optimization for its EC processing, that is, a

level-minimization strategy at negative SNRs.

Nevertheless, the novel binaural processing stage can

be combined with arbitrary speech intelligibility back
ends, which may be either based on mixed signals (e.g.,

Andersen et al., 2017; Sch€adler et al., 2016; Spille et al.,

2018) or on separate speech and noise signals as input

(e.g., ANSI S3.5-1997, 1997; Steeneken & Houtgast,

1980; Taal et al., 2011). The latter can be achieved

(like it is done in this study) by additionally processing

speech and noise in isolation but using blindly estimated

binaural parameters and processing strategies.
The results of Experiment I demonstrate that the

level-minimization strategy of the EC output is sufficient

to describe the data obtained in the binaural listening

experiment by Beutelmann and Brand (2006). The pre-

dictions of the blind selection in the BSIM2020 model

were comparable to predictions obtained with the earlier
BSIM2010 model.

The bias and RMSE were only slightly increased,
which was caused by an interaction between the modu-
lation analysis of the EC processed output and the bin-
aural processing inaccuracies used in the Monte-Carlo
simulation. To explain, the binaural processing inaccu-
racies limit the SNR improvement of the EC process to
mirror human performance. In some cases, where the
random variables for the jitter are drawn from the tails
of the normal distribution, the difference in the SRMR
measure between maximized and minimized EC output
is very small, because both paths are dominated by the
noise. If this is the case, the selection of the theoretically
better EC channel is uncertain. If the binaural processing
inaccuracies are disabled, the modulation-based selec-
tion of either the minimized or maximized output
works more robustly. However, as we assume that proc-
essing errors in lower binaural processing stages also
affect all following processing stages including the
assumed selection of the best channel, only results
using binaural processing inaccuracies are presented in
this study.

In further work, we also attempted to use SRMR as
back end for directly predicting SRT based on the mixed
speech and noise signals. However, this approach failed,
because the increase of the SRMR with increasing SNR
was too shallow at negative SNRs to derive SRTs for
50% speech intelligibility. Figure 8 shows the SRMR
output for speech in noise based on the signal at the
output of the blind binaural processing stage, where
the noise is either located at 0� or 125� in the horizontal
plane. The SRMR is able to select the better EC proc-
essing path and the better ear. However, the binaural
benefit is overestimated as the difference in SRMR
between 0� and 125� is too large. Consequently, no
SRT criterion can be chosen that holds for both condi-
tions, because both curves do not cross. Cosentino et al.
(2014) did not run into this problem, because they used
the SRMR only to determine the better ear by applying
it to the left and right ear signal. The higher SRMR
value of both ears was then converted to a dB value
using a fitting function, which was derived in their
study, assuming that listening with the better ear produ-
ces a benefit in the range from 0 to 6 dB. We do not use
their mapping function of SRMR to SNR improvement,
because our model produces a binaurally processed
mono signal.

Binaural Release From Masking at Positive SNRs

In Experiment II, binaural speech intelligibility and bin-
aural unmasking was investigated at positive SNRs.
To this end, time compression and low-pass filtering
of the stimuli was used to increase the SRT80. For the
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OlSa sentences, the release from masking did not differ

significantly across all tested scenarios, demonstrating

that the binaural auditory system produces release

from masking even at positive SNRs. The BSIM2020

model is able to predict this by using the modulation-

based blind selection of level minimization or level max-

imization at frequencies below 1500Hz and selecting the

better ear above 1500Hz. In the “LP 1500Hz, TC 0.66”

condition, the standard deviation of the predicted SRT

using level minimization was very large. In the “LP

1200Hz, TC 0.5” condition, the level-minimization

strategy failed to predict an SRT, because the target is

cancelled from the mixed signals at positive SNRs. This

was caused by the flattening and nonmonotonic charac-

ter of the SII curves at 0 dB SNR, which was also

observed in the SII curves based on the level minimiza-

tion obtained for Experiment I (see Figure 2). However,

the effect was larger in Experiment II, because there was

no better ear in the NpS0 stimulus. Moreover, the low-

pass filtering enhanced the effect of the EC processing

on the obtained SII value, because only the low-

frequency region was considered, where binaural

processing (and EC processing) can be assumed to take

place. This can also be seen in Figure 9, where the SII

curves obtained for the low-pass filtered stimuli (cut-off

frequency 1200Hz) are shown. The SII based on the

output of the level minimization is a nonmonotonic

function, causing the large variance in the predicted

SRTs with LP¼ 1500Hz and TC¼ 0.66. The blindly

selected output shows the synergistic effects of combin-

ing level maximization and level minimization for SNRs

close to 0 dB, providing a better agreement between

measured and predicted data. However, the RMSE

between predictions using the blind binaural processing

stage and measured SRTs is in the range of 2–5 dB for

the OlSa sentences.
The results obtained with the GoeSa sentences were

not as clear as for the OlSa sentences. For the GoeSa

sentences, binaural release from masking was only

observed for the unprocessed condition. In the time-

compressed and low-pass filtered condition, the large

standard deviation across listeners made it impossible

to draw conclusions about the binaural release from

masking. Moreover, by applying low-pass filtering to

1500Hz and time compression to 0.66 of the original

length, SRTs were increased by 15 dB for the open-set

GoeSa sentences but only by 5 dB for the closed-set OlSa

sentences. This finding is in line with observations made

by Rennies et al. (2014) and Warzybok et al. (2016),

where the combined effect of reverberation and SNR

on speech intelligibility (and listening effort) was inves-

tigated using OlSa sentences (Rennies et al., 2014) and

GoeSa sentences (Warzybok et al., 2016): GoeSa senten-

ces were more affected by additional reverberation than

OlSa sentences, meaning that the intelligibility for a cer-

tain combination of noise and reverberation is higher for

OlSa sentences than for GoeSa sentences. This might

indicate that the GoeSa sentences in general are more

affected by manipulations (like time compression and

low-pass filtering) than OlSa sentences. This might be

caused by the special structure of OlSa sentences which

Figure 8. SRMR of Output of EC Stage as a Function of SNR for
Speech in Noise. The noise was either located at 0� in the hori-
zontal plane (red line) or at 125� in the horizontal plane (blue line).
SNR¼ signal-to-noise ratio; SRMR¼ speech-to-reverberation
modulation ratio.

Figure 9. SII Curves Obtained for Low-Pass Filtered and Time-
Compressed OlSa Sentences. The green curves denotes the SII
obtained for the output of the level minimization, blue curves the
output of the level maximization, and red the output of the non-
intrusively selected output. The black-dotted line indicates the SII
criterion for SRT80.
SII¼ speech intelligibility index; EC¼ equalization cancellation;
SNR¼ signal-to-noise ratio.
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consist of 5 words drawn from a pool of 50 words and

have a fixed grammatical structure, which makes it

easier for the listeners to generate an expectation.

Future Work

While Experiment II showed that it is difficult to quan-

tify binaural unmasking at positive SNRs by measuring

SRTs with listeners with normal hearing, listening effort

has been shown to be affected by the SNR even at 100%

speech intelligibility. In Rennies and Kidd (2018), a bin-

aural benefit was observed in measurements of listening

effort, where a spatial separation of the target source

from the interfering source resulted in reduced listening

effort, similar to the binaural unmasking observed for

SRTs presented in the current study. In principle, the

BSIM2020 model could be applied to predict binaural

listening effort in its current version. This requires the

modeling of speech in noise at positive SNRs, which is

possible with the BSIM2020 model using a readjustment

of the reference SII value to fit the SNR range where

listening effort changes but speech intelligibility is

already saturated. Instead of converting SII values to

SRTs, a conversion of SII values to the different cate-

gorical effort scaling values as measured, for example, by

the method of (Krueger et al., 2017a) would be needed.

Note that even when 100% speech intelligibility has been

achieved, listening effort can still be further reduced by

increasing the SNR which is related to a further increase

of the SII with increasing SNR above the SRT (Krueger

et al., 2017b).

Conclusions

This study presents a new binaural speech intelligibility

model termed BSIM2020 which predicts SRTs for arbi-

trary SNRs. The model combines blind EC processing

below 1500Hz with blind better-ear listening above

1500Hz. The optimal EC processing strategy (either

minimization or maximization of the EC output level)

and the better ear are selected based on the SRMR mea-

sure which maximizes speech-like modulations. This

selection is performed independently in each auditory

frequency channel. The output of the blind binaural

processing stage is a single (mono) signal which can be

used in combination with arbitrary back ends for speech

intelligibility prediction.
We found that the model gave RMSEs from experi-

mental data of less than 1 dB (Experiment I) or 2.5 dB

(Experiment II). In that second experiment, the increase

may have been due to the large variance in the observed

data, especially for SRTs at positive SNRs. Blind-level

minimization of the output of the EC process is suffi-

cient to describe results of listening experiments at

negative SNRs, which is usually the case in SRT50 meas-

urements with listeners with normal hearing.
Our experimental results demonstrated that binaural

release from masking also occurred at positive SNRs.

We did this using time-compressed and low-pass filtered

OlSa sentences. These two manipulations preserved the

binaural cues and can be regarded as simple simulations

of reduced cognitive processing speed and high-

frequency hearing loss.

Author’s Note

The BSIM2020 is freely available at http://medi.uni-oldenburg.

de/BSIM_2020/
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