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Introduction
Coronavirus disease 2019 (COVID-19), first reported at the end of 
2019 in Wuhan, China, rapidly spread around the globe and was 
declared a pandemic by the WHO in March 2020 [1]. As of October 

2020, more than 30 000 000 cases and 950 000 deaths were re-
ported worldwide. COVID-19 is caused by the severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 shows 
close relation to SARS-CoV, the underlying viral cause of the 2002 
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Abstr act

Coronavirus disease 2019 (COVID-19), caused by an infection 
with the novel coronavirus SARS-CoV-2, has resulted in a glob-
al pandemic and poses an emergency to public health systems 
worldwide. COVID-19 is highly infectious and is characterized 
by an acute respiratory illness that varies from mild flu-like 
symptoms to the life-threatening acute respiratory distress 
syndrome (ARDS). As such, there is an urgent need for the de-
velopment of new therapeutic strategies, which combat the 
high mortality in severely ill COVID-19 patients. Glucocorti-
coids are a frontline treatment for a diverse range of inflamma-
tory diseases. Due to their immunosuppressive functions, the 
use of glucocorticoids in the treatment of COVID-19 patients 
was initially regarded with caution. However, recent studies 
concluded that the initiation of systemic glucocorticoids in 
patients suffering from severe and critical COVID-19 is associ-
ated with lower mortality. Herein we review the anti-inflam-
matory effects of glucocorticoids and discuss emerging issues 
in their clinical use in the context of COVID-19.
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SARS epidemic, as well as to MERS-CoV, which causes sporadic out-
breaks centered in the Middle East [2]. COVID-19 patients develop 
an acute respiratory illness, which may cause mild fevers and 
coughs but may also lead to acute respiratory distress syndrome 
(ARDS), hypoxic respiratory failure, and ultimately death [3]. Im-
munologically, critical cases of COVID-19 are signified by an exces-
sive inflammatory response, manifested by strong leukocyte influx 
into the lungs and increased plasma levels of inflammatory mark-
ers [4]. Additionally, coagulopathies and increased risk of blood 
clot formation have been reported as significant contributors of 
COVID-19 related mortality [5]. The excessive inflammatory re-
sponse observed in severe and critical COVID-19 patients raised 
the possibility of the use of anti-inflammatory drugs to combat the 
excessive and damaging immune response. While medical profes-
sionals were apprehensive about the use of immunosuppressants 
to treat an infectious disease in the early stages of the pandemic, 
over time, evidence accrued that glucocorticoids lead to improved 
patient outcomes [6].

Glucocorticoids and the glucocorticoid receptor (GR)
Glucocorticoids are stress hormones synthesized in the adrenal cor-
tex under the control of the hypothalamic-pituitary-adrenal (HPA) 
axis [7, 8]. Under normal conditions glucocorticoids are released in 
a circadian and ultradian rhythm [7, 8]. Stress stimuli activate the 
HPA axis: in particular pro-inflammatory cytokines, such as IL-6, 
TNF, and IL-1β, act on the hypothalamus triggering HPA axis acti-
vation and leading to adrenal glucocorticoid production [7–9]. In 
turn, circulating glucocorticoids exert strong immunomodulatory 
effects and constrain inflammation, while also limiting their own 
production through a negative feedback on the HPA axis [7, 8, 10]. 
Following their release into the bloodstream glucocorticoid tissue 
availability and function are determined by several regulatory 
mechanisms. Corticosteroid-binding globulin (CBG) binds and 
keeps approximately 90 % of cortisol in an inactive state. Neutro-
phil elastase cleaves CBG, thereby releasing bioactive glucocorti-
coids at sites of inflammation [7, 8]. Moreover, 11β-hydroxysteroid 
dehydrogenases 1 and 2 (11β-HSD1, 11β-HSD2) regulate the in-
terconversion of bioactive cortisol to inactive cortisone in target tis-
sues [7]. Inflammatory signals can regulate the expression of 11β-
HSD1 and 2, which determines local glucocorticoid activity [8].

Glucocorticoids are lipophilic molecules diffusing through the 
cell membrane and binding to the cytosolic glucocorticoid recep-
tor (GR), which is abundantly expressed in most cell types [7]. The 
GR contains an N-terminal domain, which interacts with co-factors 
and transcription factors, a zinc-finger motif-containing DNA-bind-
ing domain and a ligand-binding domain [7, 11]. The GR is subject-
ed to post-translational modifications, including phosphorylation, 
acetylation, ubiquitylation, and sumoylation at multiple sites, 
which regulate its compartmentalization, function and degrada-
tion [11]. While GRα is the ligand-binding GR isoform, its splice iso-
form GRβ does not bind glucocorticoids and exerts dominant-neg-
ative effects on GRα. In its inactive state GR forms complexes with 
heat-shock proteins, chaperones, and immunophilins. Upon liga-
tion the receptor undergoes conformational changes, partially dis-
assembles from its interactors, translocates to the nucleus, and 
controls gene transcription as a monomer or dimer [7]. Upon its 
translocation to the nucleus, GR can directly bind to glucocorticoid 

response elements (GRE) to induce or inhibit gene expression [7]. 
High glucocorticoid doses favor binding of GR homodimers rather 
than monomers on palindromic GRE [12]. In addition, GR can teth-
er transcription factors through protein-protein interactions with-
out the requirement of DNA binding [13]. Through the latter mech-
anism GR can block the function of transcription factors mediating 
inflammatory responses, such as nuclear factor-κB (NF-κB) and ac-
tivator protein 1 (AP-1) [8]. However, transrepression can also be 
mediated by competition for binding to the DNA or for co-factors 
[7]. Moreover, GR directly interacts with NF-κB, hindering its trans-
location to the nucleus and induces the expression of the NF-κB in-
hibitor glucocorticoid-induced leucine zipper protein (GILZ) 
[14, 15].

Additionally to the GR-mediated genomic effects, glucocorti-
coids may also exert non-genomic effects, leading to rapid biolog-
ical events [7, 16]. This mechanism of action has been shown to 
contribute to the effects of glucocorticoids on T-cell receptor (TCR) 
signaling, neutrophil degranulation, macrophage inflammatory 
activation, mast cell-mediated histamine release and ion channel 
function in bronchial epithelial cells [16–18].

Anti-inflammatory effects of glucocorticoids
Glucocorticoids regulate inflammation through pleiotropic mech-
anisms [8, 19]. Their effects on immune responses depend on the 
cell type, disease, dose and timing of application, that is, whether 
application precedes or follows exposure to the inflammatory stim-
ulus [20–22]. While exposure to low doses of glucocorticoids prior 
to a noxious stimulus can promote the inflammatory response, glu-
cocorticoids in high doses applied after the inflammatory stimulus 
act in an anti-inflammatory fashion [8, 19–22]. In the absence of 
inflammation, glucocorticoids promote the expression of pattern 
recognition receptors (PRR), such as Toll-like receptor (TLR), there-
by maintaining the cells sensitivity to noxious stimuli, such as path-
ogen- and damage-associated molecular patterns (PAMP, DAMP) 
[8, 19]. In the context of an acute inflammatory response glucocor-
ticoids taper inflammation through several mechanisms. Glucocor-
ticoids inhibit PRR signaling by tethering NF-κB and AP-1 and in-
duce the expression of negative regulators of TLR signaling, such 
as dual-specificity protein phosphatase 1 (DUSP1) and IL-1 Recep-
tor-Associated Kinase M (IRAK-M) [8, 23]. In macrophages gluco-
corticoids down-regulate the expression of pro-inflammatory cy-
tokines, such as IL-1β, IL-6, IL-12, IL-17, TNF, and granulocyte–mac-
rophage colony-stimulating factor (GMCSF), and inducible nitric 
oxide synthase (iNOS) and inhibit cyclooxygenase 2 in a GILZ-de-
pendent manner, thereby attenuating release of prostaglandins 
[8, 22, 24–27]. Moreover, in endothelial cells they inhibit the ex-
pression of adhesion molecules, like E-selectin, intercellular adhe-
sion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 
(VCAM1). In immune cells they down-regulate the expression of 
integrins, such as lymphocyte function-associated antigen 1 (LFA1) 
and very late antigen 4 (VLA4), thereby attenuating leukocyte re-
cruitment [8, 28, 29]. Glucocorticoids also shift macrophages to-
wards an anti-inflammatory state, which secretes more IL-10 and 
transforming growth factor-β (TGFβ), and promote efferocytosis and 
cell debris clearance due to increased expression of scavenger mol-
ecules (CD163, CD206 and tyrosine-protein kinase MER (MERTK)), 
thereby favoring resolution of inflammation [8, 19, 22, 30–35]. The 
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reaction to antigens is regulated by glucocorticoids at both, the 
level of antigen presentation and T cell activation. Glucocorticoids 
inhibit maturation, promote apoptosis and attenuate antigen pres-
entation in dendritic cells [8, 36, 37]. Glucocorticoids also regulate 
thymopoiesis through induction of lymphocyte apoptosis and at-
tenuate T cell receptor signaling [38, 39]. Moreover, glucocorticoids 
increase regulatory T cell (Tregs) frequency through GILZ and  
TGFβ-dependent induction of Forkhead box P3 (FoxP3), a transcrip-
tion factor determining Treg differentiation [40].

Overall, therapeutic glucocorticoids exert potent anti-inflam-
matory effects across both the innate and adaptive immune sys-
tem. Due to these wide-ranging anti-inflammatory effects gluco-
corticoids are a mainstay of immunosuppressive therapies. Syn-
thetic glucocorticoid compounds, such as dexamethasone and 
prednisolone, show increased potency compared to cortisol owing 
to longer half-life in plasma, improved parenteral absorption and 
reduced binding to CBG. However, due to their wide-ranging re-
ceptor expression and the large-scale GR-mediated transcriptional 
changes – overall approximately 20 % of the genome is responsive 
to GR – glucocorticoids are not only potent immunosuppressants, 
but also exert broad off-target effects [7, 41, 42].

Adverse effects of glucocorticoids
Adverse effects related to glucocorticoid treatment are common 
and numerous, and depend on the dose and duration of therapy 
[7, 42, 43]. A number of glucocorticoid side effects are a result of 
glucocorticoid-mediated inhibition of glucose uptake and other 
metabolic alterations of basic cellular metabolism, which typically 
occur in most cells and tissues [42, 43]. Common side effects in-
clude weight gain and the development of diabetes mellitus, sar-
copenia, and osteoporosis. Also, an increase in the incidence of hy-
pertension, atherosclerosis, cardiovascular disease, and thrombo-
embolism may be observed. Additionally, therapeutic doses of 
glucocorticoids raise susceptibility to infections and can cause im-
paired wound healing, psychiatric disturbances, and suppression 
of the HPA axis with the risk of secondary adrenal insufficiency 
[42, 44].

COVID-19 immunopathogenesis and glucocorticoids
Following priming of the viral spike (S) protein through the serine 
protease TMPRSS2 [45], SARS-CoV-2 gains access to respiratory 
epithelial cells through the hosts angiotensin-converting enzyme 
2 (ACE2) protein [4]. Upon cellular entry, the viral RNA genome is 
released into the host cell and new virions are produced [46]. The 
viral capture of the host cell is followed by the initiation of an innate 
immune response, which features inflammatory cytokine and 
chemokine production, coupled to neutrophil and monocyte infil-
tration of the respiratory tract and lungs. This inflammatory re-
sponse is typically associated with increased capillary leakage and 
alveolar cell destruction, damaging respiratory function. Systemic 
inflammation is reflected by increased plasma concentrations of 
inflammatory cytokines, such as IL-1β, IL-6, IL-8, IL-10, IL-17, IP10, 
and TNF, in COVID-19 patients, whereas levels of type I and III in-
terferons remain low [47–49]. Increased circulating neutrophil 
numbers correlate with poor prognosis in COVID-19 and strong 
neutrophil infiltration of pulmonary capillaries was reported in 
postmortem lung tissues [47, 50]. The complement system is ac-

tivated during ARDS and activation of C3 exacerbates disease in 
SARS-CoV-associated ARDS [51, 52]. Thus, the complement sys-
tem may drive part of the inflammatory response and thrombosis 
to COVID-19 [51, 53–55]. Observational studies suggest that, ele-
vated levels of C-reactive protein (CRP) and lactate dehydrogenase 
are predictors of COVID-19 severity [4, 47]; similar correlations 
have been established for elevated neutrophil/lymphocyte ratio, 
low platelet count and increased numbers of CD14 + CD16 +  mono-
cytes and Th17 cells [4, 56, 57].

Due to the rapidly developing nature of the COVID-19 pandem-
ic studies examining the molecular effects of glucocorticoids in pa-
tients suffering from severe disease are few and far between. Based 
on the known and extensive immunosuppressive effects of gluco-
corticoids outlined above, corticosteroid treatment likely attenu-
ates the COVID-19 induced inflammatory response – particularly 
in severely affected patients. Indeed, administration of glucocor-
ticoids was reported to reduce CRP and IL-6 plasma levels in COVID-
19 patients, without affecting virus clearance [58, 59]. Future stud-
ies identifying glucocorticoid target cells and anti-inflammatory 
mechanisms in the context of COVID-19 are critical in order enable 
the development of targeted therapies in the future.

The clinical use of glucocorticoids in acute 
respiratory distress syndrome (ARDS) and COVID-19
ARDS is primarily signified by hypoxic respiratory failure. In gener-
al, ARDS is associated with increased vascular permeability and pul-
monary edema as well as increased systemic inflammation, fre-
quently leading to multi-organ failure and death. Thus, ARDS-re-
lated mortality is as high as 50 % [60].

Treatment of ARDS is primarily focused on a combination of low 
tidal volume mechanical ventilation and prone positioning [61, 62]. 
Even though inflammation likely plays a key role in the pathogen-
esis of ARDS, anti-inflammatory therapeutic strategies using glu-
cocorticoids have yielded mixed results. For example, two me-
ta-analysis examining the subject of glucocorticoid use in ARDS a 
decade ago reached opposite conclusions ranging from advising 
against their use to recommending steroid treatment in ARDS 
[63, 64]. These inconsistent conclusions arose from original re-
search studies, which included small numbers of patients, and var-
ied in their definition of ARDS, type of steroid used, as well as tim-
ing and dosing strategies. In order to address this issue efforts have 
been made to clarify the effectiveness of glucocorticoids in ARDS 
through large-scale multi-centered randomized controlled trials. 
The recent Dexa-ARDS trial found that patients receiving high-dose 
dexamethasone had a lower all-cause mortality than patients re-
ceiving standard care (21 % vs. 36 % respectively) [64]. A meta-anal-
ysis, which included the Dexa-ARDS trial, as well as others, also fa-
vored the use of glucocorticoids in ARDS, although some reserva-
tions remained regarding the reliability of the findings [65]. 
Additionally, a recent meta-analysis attempted to dissect the issues 
of timing and dosing of glucocorticoid use in ARDS and came to 
the conclusion that early initiation of glucocorticoid therapy and 
use of a low to medium dose were associated with lower mortality 
[66]. Overall, the issue of glucocorticoid use in ARDS is still not en-
tirely resolved, however, recent evidence has tipped the balance in 
favor of glucocorticoid treatment with a recommendation for early 
commencement of steroids at a low to medium dose. Of note, the 
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large-scale LUNG SAFE study of 2377 patients with ARDS found an 
overall rate of glucocorticoid use of  < 20 % [60].

With the beginning of the COVID-19 pandemic, medical profes-
sionals were at a loss as to whether glucocorticoids could have a 
role in treating severely affected patients, particularly in those suf-
fering from hypoxic respiratory failure and ARDS. In the absence of 
studies examining the effects of glucocorticoids in COVID-19 pa-
tients specifically, doctors were apprehensive to utilize a potent 
immunosuppressive agent to treat an infectious disease. Evidence 
originating from the SARS und MERS outbreaks showed a delayed 
virus clearance in patients receiving glucocorticoids potentially in-
dicating an impaired host response to the viral infection [67]. More-
over, the use of steroids in the treatment of influenza has been stud-
ied to some degree, and while the evidence is far from conclusive, 
the general consensus does not recommend the use of glucocor-
ticoids in patients suffering from influenza infections [68]. Adding 
to the concern was an increased risk of bacterial superinfection, 
which typically is associated with the use of medium to high dose 
glucocorticoids [69, 70].

Following encouraging case reports and small observational 
studies using glucocorticoids in severely affected COVID-19 pa-
tients, multiple large-scale RCTs were initiated, most notably the 
RECOVERY trial in the United Kingdom [71]. As part of this study 
2104 intrahospital COVID-19 patients received 6 mg of dexameth-
asone for 10 days (or until discharge from hospital, if sooner), while 
4321 patients received standard care [72]. Overall the mortality 
rate after 28 days was significantly lower in the Dexamethasone 
group (22.9 vs. 25.7 %). Interestingly, subgroup analysis revealed 
that patients requiring mechanical ventilation benefited the most 
from the pharmacological intervention with glucocorticoids. In this 
group of patients, the mortality after 28 days was reduced by more 
than 12.1 percentage points in the dexamethasone group (29.3 vs. 
41.4 %). Dexamethasone also conferred a survival benefit in pa-
tients requiring oxygen – without the need for invasive mechanical 
ventilation – however, the effect remained small (28-day mortali-
ty: 23.3 % vs. 26.2 %). In patients who did not require ventilation 
support or oxygen Dexamethasone showed no significant effect. 
Following the publication of the RECOVERY data as a preliminary 
report, treatment guidelines were updated to recommend the use 
of glucocorticoids in severely affected COVID-19 patients. This also 
led to an arrest of patient recruitment for other ongoing trials ex-
amining the effects of glucocorticoids for the treatment of (severe) 
COVID-19.

The Rapid Evidence Appraisal for COVID-19 Therapies (REACT) 
Working Group of the WHO performed a meta-analysis of all avail-
able data regarding the use of glucocorticoids in COVID-19 [6]. The 
analysis included the RECOVERY trial as well as 6 other trials – some 
of which had to be abrogated before reaching their recruitment 
goal due to the publication of the RECOVERY data. The meta-anal-
ysis concluded that initiation of systemic glucocorticoids was asso-
ciated with lower 28-day all-cause mortality in critically ill patients 
with COVID-19. Consequently, based on these and other studies, 
the WHO issued two recommendations regarding the treatment 
of COVID-19: First, systemic glucocorticoid therapy should be ini-
tiated in patients with severe and critical COVID-19, whereby ther-
apy is defined as 6 mg daily of dexamethasone orally or intrave-
nously or 50 mg of hydrocortisone intravenously every 8 hours for 

7 to 10 days. Secondly, the use of glucocorticoids in non-severe 
COVID-19 is not advised (for definition of critical, severe and 
non-critical COVID-19, see ▶Table 1).

Glucocorticoids, COVID-19 and metabolic 
comorbidities
Diabetes mellitus is associated with an increased risk of infection 
and infection-related death [73, 74]. Accordingly, diabetic patients 
were at an increased risk of severe or lethal infection for both SARS 
as well as MERS during the respective outbreaks [75, 76]. When the 
Sars-Cov-2 spread around the world it quickly emerged that in the 
country of origin, China, diabetes was associated with increased 
mortality due to COVID-19 [77] – a finding later confirmed else-
where [78]. Amongst patients suffering from diabetes mellitus, 
COVID-19 related mortality was not only associated with the pres-
ence of cardiovascular complications but also with glycemic con-
trol and BMI [79, 80]. An elevated BMI as well as obesity are also as-
sociated with severe outcomes of COVID-19 such ICU admission 
and mechanical ventilation in non-diabetic patients, thus indicat-
ing their role as an independent risk factors for COVID-19 related 
mortality [81, 82]. The association between good glycemic control 
and survival of COVID-19 amongst diabetics highlights the impor-
tance of adequate control of blood sugar levels during Sars-CoV-2 
infection. As a modifiable risk factor, this association has already 
led to expert recommendations for the management of diabetes 
in patients with COVID-19 [83]. The reasons for increased mortal-
ity from COVID-19 in diabetic patients and the potential contribu-
tion of blood sugar levels to infection outcomes remain largely ob-
scure. Multiple potential molecular mechanisms have been de-
scribed and include a diabetes associated (i) increase in Coronavirus 

▶Table 1	 Mutually exclusive categories of illness severity.

Critical COVID-19 Defined by the criteria for acute respiratory 
distress syndrome (ARDS), sepsis, septic 
shock or other conditions that would 
normally require the provision of 
life-sustaining therapies, such as 
mechanical ventilation (invasive or 
non-invasive) or vasopressor therapy.

Severe COVID-19 Defined by any of:  
oxygen saturation  < 90 % on room air. 
Respiratory rate  > 30 breaths per minute in 
adults and children  >  5 years old;  ≥ 60 in 
children less than 2 months;  ≥ 50 in 
children 2–11 months; and  ≥ 40 in children 
1–5 years old.  
Signs of severe respiratory distress (i. e., 
accessory muscle use, inability to complete 
full sentences; and in children, very severe 
chest wall indrawing, grunting, central 
cyanosis, or presence of any other general 
danger signs). 

Non-severe COVID-19 Defined as absence of any signs of severe 
or critical COVID-19. 

Reference: Corticosteroids for COVID-19, WHO, 2. September 2020.
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load, (ii) dysregulated immune response, (iii) alveolar dysfunction, 
(iv) epithelial dysfunction and (v) coagulopathy [84]. However, the 
relative importance of these molecular phenomena needs to be in-
vestigated further and clinically validated. Interestingly, to our cur-
rent knowledge, no study investigated the efficiency of glucocor-
ticoid treatment in diabetic COVID-19 patients specifically. While 
the overall benefit of glucocorticoid therapy in severe and critical 
COVID-19 infections has been established, the efficiency of gluco-
corticoids in diabetics is currently less clear. Thus far – to the best 
of our knowledge – no subgroup analysis has examined the effect 
of glucocorticoids in diabetic patients suffering from COVID-19. 
This question is of particular relevance as exposure to supraphysi-
ological levels of glucocorticoids frequently leads to worse glyce-
mic control [85, 86]. Additionally, it is well established that medi-
um to high doses of therapeutic glucocorticoids cause hypertension 
[87, 88], weight gain [89] as well as an increase in cardiovascular 
events [90, 91], all of which are associated with worse outcomes in 
COVID-19. Whether the adverse effects of therapeutic glucocorti-
coids are of concern during short exposure of 7–10 days (as recom-
mended for COVID-19 treatment) remains to be evaluated.

Conclusion
Recent large-scale clinical trials support the use of glucocorticoids in 
the treatment of both ARDS as well as severe and critical COVID-19 
infections. The use of glucocorticoids in high-risk COVID-19 pa-
tients suffering from diabetes mellitus and additional co-morbidi-
ties such as obesity, hypertension, and cardiovascular disease should 
be evaluated in further clinical trials. Furthermore, COVID-19 pa-
tients treated with glucocorticoids should undergo close immuno-
logical characterization in order to enable identification of molec-
ular pathways for the development of targeted therapies.
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