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Probing of multiple magnetic 
responses in magnetic inductors 
using atomic force microscopy
Seongjae Park1,*, Hosung Seo1,*, Daehee Seol1, Young-Hwan Yoon2, Mi Yang Kim2 & 
Yunseok Kim1

Even though nanoscale analysis of magnetic properties is of significant interest, probing methods are 
relatively less developed compared to the significance of the technique, which has multiple potential 
applications. Here, we demonstrate an approach for probing various magnetic properties associated 
with eddy current, coil current and magnetic domains in magnetic inductors using multidimensional 
magnetic force microscopy (MMFM). The MMFM images provide combined magnetic responses from 
the three different origins, however, each contribution to the MMFM response can be differentiated 
through analysis based on the bias dependence of the response. In particular, the bias dependent 
MMFM images show locally different eddy current behavior with values dependent on the type of 
materials that comprise the MI. This approach for probing magnetic responses can be further extended 
to the analysis of local physical features.

Magnetic materials have been broadly explored for multiple applications including in inductors, transformers, 
electric motors and generators1–3. Furthermore, multiferroic materials, which possess more than one ferroic order 
parameter, e.g. magnetic properties, are of great interest due to their interesting physical properties and potential 
applications4–6. Many of these applications are underpinned by the existence of eddy current. The eddy current 
is a circular electrical current induced within conductors by changes in the magnetic field due to Faraday’s law 
of induction and the direction of the eddy current is opposite that of the coil current which generates a dynamic 
magnetic field7. Accordingly, since the eddy current reduces the magnitude of the original magnetic field, the 
eddy current can be a source of energy loss in magnetic applications1–3. Hence, investigating the magnetic energy 
loss is a key first step towards significant performance improvement. Thus, to fully understand the magnetic 
behavior in these practical applications, it is necessary to explore the fundamental magnetic behavior of var-
ious magnetic properties at the nanoscale as well as to understand the operational mechanisms in real device 
structures.

Previously suggested atomic force microscope (AFM) based approaches, such as eddy current microscopy 
(ECM)8–10 and magnetic force microscopy (MFM)11,12, only provide information on individual magnetic proper-
ties such as eddy current and magnetic domains for ECM and MFM, respectively. Furthermore, there was a recent 
report on piezomagnetic force microscopy, which provides magnetostrictive strain induced by a coil current13. 
However, these approaches are limited for simultaneously exploring multiple types of magnetic properties at the 
nanoscale.

If multiple types of material properties can be simultaneously monitored through analysis of the cantilever 
dynamics, sufficient information may be obtained to fully understand the fundamental magnetic behavior of the 
materials as well as the operational mechanisms of real device structures12,14–16.

Here, we demonstrate probing of the multiple magnetic responses associated with eddy current, coil current 
and magnetic domains in model magnetic inductor (MI) samples using multidimensional magnetic force micros-
copy (MMFM). We have chosen commercially available real devices, i.e. MIs, as model systems because they are 
ideal for showing the feasibility of MMFM as their basic material properties are well known. Furthermore, since 
eddy current loss is of major importance in MI samples, the probing of the multiple magnetic responses is signif-
icant for further practical improvement of these real devices.
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Results and Discussion
Figure 1 shows a schematic diagram of a MMFM setup for exploring the magnetic response associated with the 
eddy current, coil current and magnetic domains. According to Ampère’s circuital law, a dynamic magnetic field 
can be generated by applying ac voltage to the coil as it induces current flow (see Supplementary Figure S2). At 
the same time, the dynamic magnetic field generates circular current, i.e. eddy current, within the MI due to peri-
odic changes in the magnetic field9. Accordingly, the eddy current, with a direction opposite that of the current 
flow through the coil, induces an additional magnetic field according to Lenz’s law. On the other hand, since soft 
magnetic particles are included in the MIs, the magnetic domains can contribute to the magnetic response as 
well. It is worth noting that the interaction between the static magnetic domain and the magnetized tip is typically 
measured by detecting changes in the amplitude or phase of the oscillation of the cantilever. This indicates that 
the static magnetic domains can contribute to the dynamic magnetic response. Hence, the dynamic magnetic 
response can be basically induced by three different origins, i.e. the static magnetic domain and the dynamic 
magnetic fields induced by the coil and eddy currents.

During the operation of MMFM, since the dynamic magnetic fields generated by coil and eddy currents can 
vibrate the cantilever at the frequency of the ac voltage applied through the coil17, we apply ac voltage to the coil 
at the vicinity of its resonance frequency. At the same time, the same frequency, which is synchronized with the 
ac voltage applied to the coil, is applied to the piezo dither to mechanically vibrate the cantilever (see details for 
the use of the piezo dither in Supplementary Figure S4). We note that operating near the resonance frequency can 
maximize the response and reduce the relative noise level18. In our approach, the total force, Ftotal, acting on the 
cantilever is written as Ftotal =  Felectrostatic +  Fsample +  Fcoil +  Feddy +  Fpiezo where Felectrostatic, Fsample, Fcoil, Feddy, and Fpiezo 
are forces induced by the electrostatic component, magnetic domains in the sample, the dynamic magnetic field 
induced by the coil current, the dynamic magnetic field induced by the eddy current, and that resulting from the 
piezo dither, respectively. There can be an electrostatic component acting between the tip and the sample as ac 
voltage is applied in the MMFM setup19. However, since the two ac voltages are applied separately to the coil and 
to the piezo dither, it is not a typical vertical component and is expected to be relatively small. Furthermore, since 
the physical distance between the tip and coil is fairly large (Supplementary Figure S1), the effect is expected to be 
relatively small as well. It is worth noting that capacitive coupling, which is a common problem in Kelvin probe 
force microscopy20, is also expected to be fairly small for the same reason in spite of the fact that the frequencies 
of the ac voltage and the vibration of the tip are the same. Indeed, there is no significant change in the electrostatic 
response from increasing the ac voltage (see details in Supplementary Figure S7). Thus, the electrostatic contribu-
tion, Felectrostatic, can be negligible. Under several assumptions, each magnetic force acting on the cantilever in the 
z direction, which contains Fsample, Fcoil, and Feddy can be written as follows
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where Mtip and B are the tip magnetization and the magnetic field associated with each component, respectively 
(see details in Supplementary information). The interaction between the total magnetic force and the magnetized 
tip induces the MMFM response, and it can be measured by detecting changes in the first harmonic oscillation 
amplitude of the cantilever using a lock-in amplifier. However, it is not possible to distinguish each contribution 
to the total magnetic response solely from a single MMFM image because the MMFM response is derived from 
the total change in the cantilever oscillation caused by the three different factors.

In order to distinguish the contribution of each component to the MMFM response, we monitored the 
MMFM response as a function of ac voltage based on two aspects: 1) the magnetic force exerted on the cantilever 

Figure 1. Schematic diagram of MMFM set-up. 
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related to the static magnetic domain is independent of the ac voltage as it is an inherent property of the sample 
and 2) the force associated with the magnetic fields generated by the coil and eddy currents shows linear and 
nonlinear relationships with the ac voltage, respectively. It was previously reported that the magnetic force result-
ing from the eddy current is proportional to the square of the coil current21,22. Consequently, it is expected that 
the MMFM response exhibits nonlinear behavior when there is sufficient contribution from the eddy current as 
shown in Fig. 2(a). In addition to the contribution of the eddy current, there can be nonlinear dependence stem-
ming from hysteresis behavior by the soft magnetic particles in response to the external magnetic field generated 
by the applied ac voltage. However, since the magnetic field induced by the applied Vac is much smaller than the 
coercivity of typical soft magnetic particles in MI, these nonlinear portions can be negligibly small23. Thus, we can 
consider that Feddy dominantly contributes to the nonlinearity of the MMFM response. Accordingly, Fsample, Fcoil, 
and Feddy can contribute to the MMFM response with offset, linear, and nonlinear contributions, respectively. It is 
worth noting that the MMFM response as a function of ac voltage is dependent on the experimental conditions 
such as the directions of the coil current and the magnetization in the tip. For instance, if the directions of the coil 
current and the magnetization in the tip are rightward and downward, respectively, the MMFM response follows 
the red solid line in Fig. 2(a) and the corresponding MMFM response in a frequency domain can be obtained 
as shown in Fig. 2(b). Then, the opposite of the MMFM response, represented as a blue solid line in Fig. 2(a), 
is obtained by changing the direction of the coil current. On the other hand, the MMFM response at 0 Vac is 
constant regardless of the direction of the coil current as shown in Fig. 2(a) because the contribution is solely 
from static magnetic domains. Thus, it is expected that the MMFM response at 0 Vac should be identical to the 
conventional MFM response.

Prior to investigating the MMFM response and each contributing factor, we obtained the topography and 
conventional MFM amplitude images of the polished surface of the MI. The soft magnetic particles and resin 
interspersed between the particles are clearly distinguished through the topography as presented in Fig. 3(a). 
One of the large soft magnetic particles was enlarged over the area corresponding to the blue square in Fig. 3(a). 
Figure 3(b,c) illustrate the topography and MFM amplitude images obtained in that position, respectively. 
Consequently, the stripe pattern of magnetic domains within the soft magnetic particle is apparently visible 
through the MFM amplitude image as shown in Fig. 3(c). This indicates that the magnetic domains exist and are 
potentially able to contribute to the MMFM response as discussed previously.

Further, we verified the influence of the experimental conditions on the MMFM response prior to the analysis 
of each contribution to the MMFM response. The MMFM responses with the magnetized tips, which are in the 
opposite direction, are obtained in a similar region as can be seen in the two topography images in Fig. 4(a,d). 
Both the MMFM amplitude images with 0 Vac in Fig. 4(b,e) show similarities in the stripe pattern. However, the 
contrast of the magnetic domains is inverted in accordance with the direction of magnetization in the tip (see red 
circles in Fig. 4(b,e)). This indicates that there is a difference in interaction between the magnetic force resulting 

Figure 2. (a) MMFM response as a function of ac voltage and (b) corresponding change in the MMFM 
response near the resonance frequency in a frequency domain. (c) A configuration of the MI for the application 
of ac voltage to the coil: the direction of coil current is arbitrarily defined as leftward (left-side) and rightward 
(right-side), respectively. We note that the MMFM response as a function of ac voltage in Fig. 2(a) depends on 
the experimental conditions, e.g. the direction of the coil current and the magnetization in the tip.
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from the static magnetic field and the tip with respect to the direction of magnetization in the tip. When ac volt-
age is applied to the coil, the change in the MMFM response is clearly observed by comparing the MMFM ampli-
tude images at 0 Vac shown in Fig. 4(b,e) to those at 2.5 Vac shown in Fig. 4(c,f). As mentioned above, it is verified 
that the tendency of the MMFM response, which either increases or decreases with the application of ac voltage, 
changes according to the direction of magnetization in the tip while the direction of the coil current is fixed as 
leftward. Moreover, the change in the MMFM response under a different coil current direction can be explained 
in the same manner (see Supplementary Figure S5).

Despite the inversion of contrast in the magnetic domains, the difference in the MMFM amplitude between 
the two domains, which are represented as bright and dark regions in red and yellow circles in Fig. 4, is nearly 
constant at approximately 0.02 V under all experimental conditions with the same magnetic tip. These results 
indicate that the magnetic forces resulting from the static magnetic domains and the coil and eddy currents 

Figure 3. (a) Topography image of the polished surface in the MI over an area of 50 μ m ×  50 μ m. (b) Topography 
and (c) MFM amplitude images are obtained over an area of 5 μ m ×  5 μ m, corresponding to the blue square in 
Fig. 3(a). Blue and white scale bars are 10 μ m and 1 μ m, respectively.

Figure 4. (a,d) Topography and corresponding (b,c,e,f) MMFM amplitude images with (b,c) downward and 
(e,f) upward magnetized tips during the application of (b,e) 0 and (e,f) 2.5 Vac to the coil. Blue and red arrows 
represent downward and upward directions of magnetization in the tip, respectively. Red and yellows circles 
indicate the same locations on the MI. Note that the direction of the coil current is leftward for both cases as 
represented by the black arrows. Scale bar is 0.5 μ m.
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independently contribute to the MMFM response and that each contribution affects the MMFM response regard-
less of the experimental conditions. Thus, differentiating each contribution under any experimental condition is 
valid and feasible.

In order to explore the dependence of the MMFM response on the applied ac voltage according to each con-
tribution, the MMFM responses with various ac voltages, ranging from 0 to 2.5 Vac, were measured at the same 
position presented in Fig. 5(a). The obtained MMFM amplitude images show a gradual decrease in the entire 
MMFM response according to the increase in the applied ac voltage. We note that the experimental conditions 
are arbitrarily fixed to demonstrate a decrease in the MMFM response with respect to the applied ac voltage as 
represented by the red solid line in Fig. 2(a). To clearly visualize this progressive decrease in the entire MMFM 
response, each MMFM amplitude image is represented in the histogram shown in Fig. 5(c). The image clearly 
shows that the histogram moves towards the left as the applied ac voltage increases. In addition, it seems that the 
spacing between the peaks of adjacent histograms is constant over the range of the ac voltage. Indeed, the MMFM 
amplitudes at the peaks in the histograms with respect to 0 to 2.5 Vac are approximately 2.71, 2.61, 2.51, 2.42, 2.33 
and 2.24 V, respectively. Since the differences between those values are around 0.10 V at relatively lower Vac and 
decreases as Vac becomes larger, a linear and nonlinear relationship between the MMFM response and ac voltage, 

Figure 5. (a) MMFM amplitude images as a function of ac voltage to the coil and corresponding (b) topography 
image of the polished surface in the MI over an area of 3.5 μ m ×  3.5 μ m and (c) histograms of the MMFM 
response in Fig. (a). Note that the directions of the coil current and magnetization in the tip are rightward and 
downward, respectively. Scale bar is 0.5 μ m.
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indicating the contribution from the coil and eddy currents, is roughly observed through the histogram as well. 
However, such analysis based on histograms does not provide sufficient information such as the contribution 
from the eddy current and relative contributions from each origin to the entire MMFM response.

As mentioned above, since the magnetic forces exerted on the tip associated with the coil and eddy cur-
rents are linearly and nonlinearly related with Vac, respectively, we further investigated the details of the MMFM 
response by fitting with a nonlinear equation. The amplitudes of the MMFM responses in Fig. 5(a) at each pixel 
were fitted with the following nonlinear equation:

= + + ( )R aV bV c 4m ac ac
2

where Rm, Vac, a, b and c represent the MMFM response, amplitude of Vac, quadratic, linear and offset coeffi-
cients, respectively. Then, the spatial maps of the quadratic, linear and offset coefficients are extracted as shown 
in Fig. 6(a–c). In this case, each coefficient stands for the contributions of the eddy and coil currents and those of 
the static magnetic domains to the MMFM response, respectively.

In the spatial map of the quadratic coefficient in Fig. 6(a), the resin between the particles shows a lower quad-
ratic coefficient than the soft magnetic particles (see the black arrow in Fig. 6(a)). While eddy current is induced 
within the conductors, it is nearly zero within the resin. This indicates that the eddy current is indeed generated 
and properly measured by the suggested MMFM technique. However, there might be a very small nonlinear 
response in the resin, which is expected to be generated by the soft magnetic particles underneath the resin. 
Interestingly, the stripe patterns of the magnetic domains are also clearly distinguished in the spatial maps of the 
quadratic and linear coefficients as shown in Fig. 6(a,b). This can be explained by the fact that the contributions 
of the eddy and coil currents to the MMFM response might be different depending on the pre-existing magnetic 
domains. The spatial map of the offset coefficient as illustrated in Fig. 6(c) shows the static magnetic domains, 
which is also represented by the MMFM response with 0 Vac in Fig. 5(a) (see Supplementary Figure S6).

Figure 6(d) depicts a spatial map of the ratio of the quadratic and linear coefficients, which is meaningful as 
it shows the overall and relative relationship between the coil and eddy currents. The ratio in the vicinity of the 
resin is nearly zero (see the black arrow in Fig. 6(d)), whereas the absolute value of the ratio obtained within the 
soft magnetic particles is relatively larger. Since the eddy current is primarily induced inside the soft magnetic 

Figure 6. Spatial maps of fitting parameters of the nonlinear equation for the MMFM amplitude images:  
(a) quadratic, (b) linear, (c) offset coefficients and (d) ratio of quadratic and linear coefficients. (e) Dots and 
solid line represent averaged data points and fit, respectively. Scale bar is 0.5 μ m.
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particles, these results can be readily understood. We note that the ratio is negative over the whole area because 
the direction of the eddy current is opposite that of the coil current.

Finally, a nonlinear relationship, Rm =  0.010Vac
2 − 0.210Vac +  2.711, was obtained by fitting the averaged 

MMFM responses over the entire measured area shown in Fig. 6(e). Since the quadratic coefficient of 0.010 is 
relatively small compared with others, it is expected that eddy current is barely generated within the commercial 
MI sample. Nonetheless, we are still able to understand the different behaviors of the static magnetic domains, the 
eddy and coil currents, and also to estimate the relative contributions from each origin to the MMFM response. 
We also note that, since the eddy current has a quadratic shape, it can likely be obtained through second harmonic 
measurements24,25.

Conclusion
In summary, we have developed a MMFM technique that allows probing of the multiple magnetic properties 
associated with eddy current, coil current and magnetic domains. By using the MMFM, we were able to observe 
local features of magnetic and eddy current responses in the MI. The MMFM images at 0 Vac show a spatial 
distribution of the static magnetic domains similar to the images of the conventional MFM. The bias depend-
ent MMFM measurements show larger nonlinear responses, i.e. eddy current contribution, inside the soft mag-
netic particles. Furthermore, analysis of the local magnetic response reveals a clear correlation between the eddy 
current and pre-existing magnetic domains. This newly proposed method would be very useful for analyzing 
simultaneous responses from multiple types of magnetic properties such as magnetic and eddy currents and 
could provide clues about the origin of the loss mechanism in MIs. We further note that the proposed approach 
for probing magnetic responses including the eddy current can be further extended to analysis of local defects 
in other material systems because the eddy current is conventionally used to detect local defects in steel or other 
conducting materials26. Hence, this approach can be a suitable tool for probing local magnetic responses as well 
as local physical features.

Methods
Materials. A commercial MI manufactured by Samsung Electro-Mechanics was chosen as a model sys-
tem. The MI is a thin film type inductor with an inductance of 1 μ H and dimensions of 2.08 ×  1.7 ×  0.98 mm3 
(width ×  depth ×  height). The MI was composed of soft magnetic particles, resin, and a Cu coil (127 μ m thick) 
located in the middle. The soft magnetic particles were composed of amorphous Fe-Cr-Si-B-C compounds with 
two kinds of powder particles (coarse and fine particles). The coarse and fine particle sizes were 10 ~ 20 and 
1.5 ~ 3.5 μ m, respectively. The space between the circular magnetic particles was filled with resin. The upper side 
of the MI was polished for analysis of the magnetic response on the sample surface. The detailed microstructure 
can be found in supplementary materials (see Supplementary Figure S1).

Measurements. Ambient AFM studies were performed with a commercial AFM system (NX-10, Park 
Systems) additionally equipped with a lock in amplifier (SR830, Stanford Research Systems). The MMFM meas-
urements were carried out with a magnetized magnetic tip (Multi75M-G, BudgetSensors). To acquire MFM and 
MMFM images, the magnetized tip was vibrated at the vicinity of the resonant frequency, 75 kHz, with a lift mode 
(tip-sample distance: 50 nm). During the operation of MMFM, the frequency of the ac voltage applied to the coil 
is synchronized with that of the piezo dither using a lock-in amplifier. The sensitivity and calibration coefficients 
(from VPSPD in the MMFM image to actual magnetic strength) of the MMFM in this work were roughly estimated 
as 0.122 μ N/Oe and 1.971 Oe/VPSPD, respectively. 1.971 Oe/VPSPD indicates that 1 V in the MMFM image corre-
sponds to 1.971 Oe (see Supplementary Figure S3 for more details).
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