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Abstract

Background: Identification of protein interaction network is a very important step for understanding the molecular
mechanisms in cancer. Several methods have been developed to integrate protein-protein interaction (PPI) data
with gene expression data for network identification. However, they often fail to model the dependency between
genes in the network, which makes many important genes, especially the upstream genes, unidentified. It is
necessary to develop a method to improve the network identification performance by incorporating the
dependency between genes.

Results: We proposed an approach for identifying protein interaction network by incorporating mutual information
(MI) into a Markov random field (MRF) based framework to model the dependency between genes. MI is widely
used in information theory to measure the uncertainty between random variables. Different from traditional
Pearson correlation test, MI is capable of capturing both linear and non-linear relationship between random
variables. Among all the existing MI estimators, we choose to use k-nearest neighbor MI (kNN-MI) estimator which
is proved to have minimum bias. The estimated MI is integrated with an MRF framework to model the gene
dependency in the context of network. The maximum a posterior (MAP) estimation is applied on the MRF-based
model to estimate the network score. In order to reduce the computational complexity of finding the optimal
network, a probabilistic searching algorithm is implemented. We further increase the robustness and reproducibility
of the results by applying a non-parametric bootstrapping method to measure the confidence level of the
identified genes. To evaluate the performance of the proposed method, we test the method on simulation data
under different conditions. The experimental results show an improved accuracy in terms of subnetwork
identification compared to existing methods. Furthermore, we applied our method onto real breast cancer patient
data; the identified protein interaction network shows a close association with the recurrence of breast cancer,
which is supported by functional annotation. We also show that the identified subnetworks can be used to predict
the recurrence status of cancer patients by survival analysis.

Conclusions: We have developed an integrated approach for protein interaction network identification, which
combines Markov random field framework and mutual information to model the gene dependency in PPI network.
Improvements in subnetwork identification have been demonstrated with simulation datasets compared to
existing methods. We then apply our method onto breast cancer patient data to identify recurrence related
subnetworks. The experiment results show that the identified genes are enriched in the pathway and functional
categories relevant to progression and recurrence of breast cancer. Finally, the survival analysis based on identified
subnetworks achieves a good result of classifying the recurrence status of cancer patients.
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Background
Biological systems in cancer involve multifunctional
modules that coordinately regulate complex behavior [1].
Many researches focus on identifying biomarkers on
high-throughput data such as DNA microarray data and
RNA sequencing data. However, the high complexity of
biological systems makes the single molecular approach
hard to fully reveal the underlying mechanism. Integra-
tive approaches with different data sources are needed to
extract deeper insights in different levels and aspects [2].
Several methods [3-6] have been developed to integrate
protein-protein interaction (PPI) data with microarray
gene expression data to identify significant protein inter-
action networks. Chuang et al. [3] proposed a protein-
network based approach to identify the biomarkers of
metastasis within gene expression profiles. The biomar-
kers identified in interconnected subnetworks have
shown high reproducibility and accuracy in the classifica-
tion of metastatic versus non-metastatic tumors. Ideker
et al. [5] introduced an approach to identify active sub-
networks, which shows consistent condition-specific
gene expression change on PPI network. The change of
gene expression is measured by significance value (p-
value) and further converted to z-score, then the network
score can be aggregated by the z-score of the genes in the
subnetwork. A simulated annealing based searching algo-
rithm is implemented to find the maximal-scoring con-
nected network. Chen et al. [6] point out that these two
methods mentioned above define the network score as
an aggregation of significance score of genes, which
usually leave the less differentially expressed biomarkers
unidentified. In order to address the concern of gene
interaction, Chen et al. proposed a bagging Markov ran-
dom field (BMRF) based method to improve the protein
interaction subnetwork identification. BMRF employs
maximum a posterior (MAP) principle to estimate the
differential score of genes or proteins and form a novel
network score that considers the pairwise gene interac-
tion in the subnetworks. Although BMRF has achieved
success in identifying biologically meaningful subnet-
works, there are still some concerns about the method.
BMRF treats the PPI connection equally by putting the
same weight on the edges of the network, which is not
true in the real case. As a cell needs to act differently in
response to different stimuli, the regulatory mechanism
should have condition specific preference. Accepting all
the connections in the PPI database may lead to errors in
MAP estimation. Furthermore, it has been proven that
there are a lot of false positives in the protein interaction
database [7]. Therefore, we need to quantify the depen-
dency between genes to reduce the negative effect of
false connections and improve the performance.
In this paper, we proposed an approach, namely

BMRF-MI, for identifying protein interaction network

by incorporating mutual information (MI) into a Markov
random field (MRF) framework to model the dependency
of genes. MI is developed in information theory to mea-
sure the uncertainty between random variables. As the
complexity of the biological system is very high, using MI
to estimate the correlation between genes can help us
reveal both linear and non-linear relationships. By incor-
porating the quantification of the dependency between
the genes, we are able to minimize the effects of false
edges in protein network and identify more accurate sub-
networks. We generate synthetic data to show that our
method has an improved performance in protein subnet-
work identification. Besides, we also apply BMRF-MI to
breast cancer patient data to demonstrate the feasibility
of the proposed method for real biological studies.
Experimental results show that the proposed method is
able to identify biologically meaningful subnetworks.
Furthermore, we use survival analysis to show that the
identified subnetworks can be used to predict the recur-
rence status of the cancer patients.

Results and discussion
Bagging Markov random field and mutual information
(BMRF-MI) based network identification
The flowchart of the proposed method is shown in
Figure 1. Given the gene expression data and PPI net-
work, we use mutual information to estimate the depen-
dency between genes to prioritize the connections in a
network. Unlike the traditional Pearson correlation test,
MI measures the uncertainty between the genes, which
can capture more complex relationships. We model the
gene dependency in a network by integrating MRF with
MI, then the network score is formed by MAP estimation.
Considering the computational complexity, we applied
simulated annealing searching algorithm to find the opti-
mal network. The search starts from several selected genes
and grows to construct a network with a maximum net-
work score. We then apply a non-parametric bootstrap-
ping to improve the robustness and reproducibility of the
method. A number of sample sets can be generated by
randomly sampling samples with a replacement. The con-
fidence level of identified genes can be measured as
the frequency of appearance on the sampled data sets. The
final network is composed of the genes with high confi-
dence level.

Simulation experiments
The simulation PPI network is an estrogen receptor
(ER) related PPI network with 376 nodes and 1,825
edges extracted from the HPRD database [6,8]. The
ground truth subnetwork is constructed by the genes in
pathways closely related to breast cancer, which has 35
genes and 89 interactions. The dependency between
genes can be constructed as a symmetric matrix, and
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the magnitude of the element indicates the strength of
dependency. The genes in the ground truth subnetwork
are set to have a higher dependency value, which means
that they have stronger mutual dependency than the
other genes. We use the Markov random field model

developed by Wei et al. [9] to simulate the differential
state of genes. Based on the differential state and gene
dependency, the gene expression data is simulated from
multivariate Gaussian distribution with 40 samples in
each phenotype (80 samples in total), which takes the

Figure 1 Flow-chart of the proposed BMRF-MI approach.
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dependency matrix as the covariance matrix. For differ-
ential genes, a random difference will be generated to
differentiate the mean level of two phenotypes. For non-
differential genes, the gene expression data comes from
the same distribution. The differential z-score is calcu-
lated by inverse cumulative standard normal distribution
of p-value estimated from Student’s t-test. The false
positive rate (FPR) of the simulation data can be con-
trolled by a weight parameter w in the MRF model
introduced by Chen et al. [6]. We simulate the data by
varying the FPR ranging from 30% to 85% to evaluate
the performance of identifying differential expressed
protein interaction networks under different levels.
We first use the area under the receiver operating char-

acteristic (ROC) curve (AUC) as a criterion to evaluate
the performance of BMRF-MI and BMRF in terms of
network identification accuracy. By applying a bootstrap-
ping strategy, BMRF-MI and BMRF will assess the confi-
dence level of the genes in the identified network. Then
different threshold of confidence level can be set to cal-
culate the sensitivity and specificity so as to obtain the
ROC curve. For each method, 5 different simulation data
are tested to address the concern of variance of the per-
formance. Figure 2 shows the AUC value of the three
methods and the detail values are shown in Table 1. It
can be seen that BMRF-MI performs better than BMRF,
especially when the FPR is high. Under high FPR condi-
tion, BMRF-MI is able to use the dependency between
the genes to correct the differential state of the genes.
Although BMRF also considers the pairwise gene depen-
dency relationship in network, the connection between
genes are not differentiated, which will make the differ-
ential state of some genes affected by unrelated genes. As

a result, BMRF-MI can achieve an increase of 0.05 to
0.14 in AUC under different conditions.
Besides BMRF, one popular method, jActiveModules

proposed in [5], is selected to compare the performance.
As jActiveModules does not prioritize genes in the sub-
network, we cannot use AUC to evaluate the perfor-
mance. Here we use F-score (calculated as 2 *
(precision * recall) / (precision + recall)) as a metric to
comprehensively assess the subnetwork identification
accuracy. Figure 3 and Table 2 show the F-score of the
three methods. It can be seen that BMRF-MI outper-
forms competing methods with an average improvement
of 0.09 in F-score under different conditions. As
described in [5], jActiveModule only identifies the sub-
network with optimal aggregated z-score of genes, thus
it will identify a lot of false positive genes in the net-
work, which leads to low F-score.

Breast cancer microarray data
We further tested our method on one estrogen receptor
(ER) related breast cancer patient dataset introduced in
Loi et al. [10] to identify subnetworks related to recur-
rence of breast cancer. The patients samples are divided
into ‘early recurrence’ group (≤ 5 years) and ‘late recur-
rence’ group (> 5 years) based on survival time. We finally

Figure 2 AUC values of BMRF-MI and BMRF on simulation data
under different conditions.

Figure 3 F-scores of BMRF-MI and competitive methods on
simulation data under different conditions.

Table 1. AUC values for subnetwork identification

FPR BMRF-MI BMRF

31% 0.9376 0.8768

38% 0.9255 0.8734

44% 0.9252 0.8496

51% 0.8871 0.8082

85% 0.7430 0.6015
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got 19 samples in ‘early recurrence’ group and 28 samples
in ‘late recurrence’ group. The PPI network data is
obtained from HPRD database [8], which contains about
9000 genes and 35000 interactions. We further extracted
an ER focused PPI network with 2545 genes and 15094
connections by finding the subnetwork within two jumps
from ER. The 199 seed genes are selected from the ER
focused network with node degree larger than 10. For the
differential score of the genes, we perform Student’s t-test
on the 2545 genes between two groups of samples to cal-
culate the p-value and convert the p-value to z-score by
inverse cumulative standard normal distribution. The gene
dependency is estimated by R package ‘parmigene’[11],
which implements the kNN-MI estimator mentioned in
Kraskov et al. [12]. For the bootstrapping process, the con-
fidence level threshold is set to 0.3 to find significant genes
in network.
Among the 199 identified subnetwork, we select 33 sig-

nificant subnetworks with size larger than 10 and score
larger than 2.576 (corresponding to p-value 0.005). Then
we applied affinity propagation clustering (APC) [13] on
the significant subnetworks (see Methods for detail) to
merge related networks. We use the default setting of
APC and get 5 subnetworks (Net1-5), which are shown in
Figure 4. The color of the node shows the log2 fold change
of the gene; the red genes express higher in ‘early recur-
rence’ group and the green genes express higher in ‘late
recurrence’ group. To study the function of these net-
works, we applied DAVID functional annotation tool [14]
to analyze the genes. The identified networks are signifi-
cantly enriched in breast cancer related pathways includ-
ing Cell cycle (supported by Net1, 2 and 3), TGF-Beta
signaling pathway (supported by Net1), ErbB signaling
pathway (supported by Net2, 4 and 5), Insulin signaling
pathway (supported by Net4) and MAPK signaling path-
way (supported by Net4). The details of the functional
annotation results are shown in Table 3. Beside the lists of
genes, we also show the dependency between genes by the
thickness of edges in the network. For example, in Net1,
we see that the cyclin-dependent kinases (CDK) genes are
strongly connected with the minichromosome mainte-
nance (MCM) genes. Johnson et al. [15] show that the
CDK inhibitors will lead to increased MCM complex asso-
ciation with DNA and MCM is closely with DNA damage
[16], which is related to breast cancer recurrence. In

addition, Net2 shows strong connection between BAD
and YWHAQ, which is associated with cell death and vali-
dated by [17]. Moreover, the genes in common pathway
tend to have strong mutual dependency. For example, it
can be seen from Net2 that the cell cycle genes including
YWHAG, YWHAQ, YWHAH, CDKN1B and ABL1 are
closely connected.
In order to show the significance of the subnetworks

identified from Loi et al. data, we train the netSVM [18]
classifier to classify breast cancer patients from our in-
house data into ‘early recurrence’ (≤ 5 years) group and
‘late recurrence’ (> 5 years) group. Our in-house data set
consists of 81 samples which can be divided into 35 ‘early
recurrence’ samples and 46 ‘late recurrence’ samples.
netSVM is a network based classifier specially designed
for cancer prediction by integrating gene expression data
and protein interaction data. For each subnetwork, we
use 5-fold cross-validation to train netSVM classifier on
Loi et al. data and independently test on our in-house
data. The prediction results are further analyzed by
Kaplan-Meier survival analysis. Due to the heterogeneity
of cancer samples, it is very hard to validate all identified
subnetworks on other datasets. Among all the five sub-
networks, Net2 and Net4 are significant in differentiating
the survival curve of two groups with log-rank test
p-value of 0.0002 and 0.0009, which is shown in Figure 5.

Conclusion
In this paper, we have proposed a new method by incor-
porating mutual information into a Markov random
field based framework to tackle the problem of protein
interaction subnetwork identification. The proposed
method is tested by simulation data with different
experimental conditions. We have observed significant
improvements in terms of the accuracy of subnetwork
identification. To validate the efficacy of the method in
real biomedical applications, a breast cancer patient
dataset is used for the identification of protein interac-
tion networks related to recurrence of breast cancer.
The identified subnetworks are significantly enriched in
pathways related to the progression and recurrence of
breast cancer. We further validate the significance of the
subnetworks on other dataset by predicting the recur-
rence status of patients.

Methods
Gene dependency estimation
Inferring the gene expression dependency is very impor-
tant to network identification due to the complex regu-
latory mechanisms existed in biological system. In this
paper, we use mutual information as a measure of the
dependence of gene expression. Mutual information is
widely applied in information theory to detect the rela-
tionship between random variables; and it is capable to

Table 2. F-scores for subnetwork identification

FPR BMRF-MI BMRF jActiveModule

31% 0.7424 0.6674 0.3862

38% 0.7388 0.6649 0.3627

44% 0.6763 0.6079 0.3558

51% 0.6048 0.4371 0.3324

85% 0.3010 0.2145 0.1965
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Figure 4 Identified subnetworks and functional annotations: (A) Net1: Cell Cycle: 4.40e-12, TGF-Beta signaling pathway: 7e-5; (B) Net2: Cell
Cycle: 2.90e-7, ErbB signaling pathway: 5.10e-5; (C) Net3: Cell Cycle: 5.70e-6; (D) Net4: ErbB signaling pathway: 2.00e-9, Insulin signaling pathway:
1.90e-5, MAPK signaling pathway: 8.40e-5; and (E) Net5: ErbB signaling pathway: 9.70e-7.
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capture both linear and non-linear relationship. The
mutual information between two gene expression × and
Y is defined as:

I (X, Y) =
∫ ∫

p
(
x, y

)
log

p
(
x, y

)
pX (x) pY

(
y
)dxdy (1)

where pX(x) =
∫

p(x, y)dy and pY (y) =
∫

p(x, y)dx are

the marginal distributions of × and Y respectively. As
the analytical expression of p(x, y), pX(x) and pY(y) are
intractable, discretization is one intuitive solution which
is usually applied to gene expression data to approxi-
mate the distributions. After partitioning both × and Y
into a finite number of bins, all the probabilities can be
calculated by counting the number of points falling into
corresponding bins. Then Equation (1) can be approxi-
mated as:

Ibin (X, Y) =
∑

(x,y)∈bin

p
(
x, y

)
log

p
(
x, y

)
pX (x) pY

(
y
) . (2)

However, this method depends on the way of discre-
tizing bins, which will lead to errors of estimation. To

achieve a better estimation of mutual information, Kras-
kov et al. [12] proposed a k-nearest neighbor MI (kNN-
MI) estimator. The kNN-MI estimator utilizes the dis-
tance between the point and its kth nearest neighbor to
estimate the mutual information:

IkNN (X, Y) = ψ (k) − 1
k
− < ψ (nx) + ψ

(
ny

)
> +ψ (N) , (3)

where ψ (x) = �(x)−1 d�(x)
dx

is the digamma function,

< f (x) >=
1
N

E[f (x)(i)] averages f(x) all over i and realiza-

tions, and N is the number of realizations or samples.
Assume ∈X(i) and ∈Y(i) are the distance from point i with
coordinate (xi,yi) to its k-th nearest neighbor in subspace ×
and Y respectively, nx and ny are the number of points in

the set {(xj, yj)|||xj − xi|| ≤ ∈x(i)
2

and ||yj − yi|| ≤ ∈y(i)

2
}.

Sales et al. [11] compare kNN-MI estimator with several
other mutual information estimators such as KDEMI [19],
the Miller-Madow [20] and the Schurmann-Grassberger
estimators [21] and show that the kNN-MI estimator has
the minimum bias. In this paper, we use the ‘parmigene’
[11], a well-developed R package, to estimate the mutual
information between all pair of genes. The mutual infor-
mation can be represented as a symmetric matrix W,
where w(i, j) is the estimated mutual information between
the ith and the jth gene.

Markov random field (MRF) based network score
In order to incorporate the gene dependency in the model,
the network score is defined based on MRF framework.
Given a subnetwork M with m genes, we can define a

Table 3. P-values of the enriched pathways of identified
subnetworks from functional annotation

Identified Pathway Net1 Net2 Net3 Net4 Net5

Cell Cycle 4.40e-12 2.90e-7 5.70e-6 - -

TGF-Beta signaling 7.00e-5 - - - -

ErbB signaling - 5.10e-5 - 2.00e-9 9.70e-7

Insulin signaling - - - 1.90e-5 -

MAPK signaling - - - 8.40e-5 -

Figure 5 Kaplan-Meier curve of independent test on in-house data: (A) Net2: log-rank test p-value 0.0002; and (B) Net4: log-rank test p-
value 0.0009.
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multivariate random variable f =
[
f1, . . . fm

]T as the discri-
minative score of the m genes between two phenotypes. In
the context of PPI network, we assume that the discrimi-
native score forms a Markov random field. For a given
gene i in the subnetwork, let Ni represents the number of
genes connected with gene i. By the virtue of Markov
property, we can assume that the discriminative score of
gene i depends on the discriminative scores of its Ni

neighbor genes:

P(fi—fS−{i}) = P(fi—fNi ), P(f) ≥ 0, (4)

where S is the set of all the genes in the PPI network.
We can then use Gibbs distribution to specify the joint
probability of f:

P
(
f
)

=
1
K

e
−

1
T

U(f)
, (5)

where K is a normalization constant to guarantee the
total probability as 1, T is a temperature parameter that
controls the sharpness of the distribution and U( f ) is the
prior energy function over 1-vertex and 2-vertex cliques of
the subnetwork. The 1-vertex clique C1 is defined as the
whole gene set and 2-vertex clique C2 is defined as the set
of neighbor genes on C1. U( f ) proposed by Chen et al.[6]
can be represented by the sum of clique potential Vc(f):

U(f) = Vc1(f) + Vc2(f) = − 1
m

∑
i∈C1

fi +
λ

k

∑
i,j∈C2

(
fi√
di

− fj√
dj

)2

, (6)

where m is the number of genes, k is the number of
edges, l is a trade-off parameter and di is the node
degree of gene i. The first term in the equation esti-
mates discriminative level of the network and the sec-
ond term accounts for the smoothness of the
discriminative score. As seen from Equation (6), smaller
U(f) will lead to a more probable network configuration,
thus identifying a network with genes that have high
and consistent discriminative score is our goal. How-
ever, there are some concerns needed to be addressed.
In the first term, the average of discriminative score
tends to decrease the variance of f when the number of
genes increases, which makes the network score not
comparable over different sizes of networks. In order to
make the variance comparable, we modified the first

term by changing the coefficient
1
m

to
1√
m
. The second

term utilizes the MRF framework to smooth the discri-
minative scores of the genes in a network; however, this
term treats each connection equally. Here we incorpo-
rate the gene dependency estimated from kNN-MI:

U
(
f
)

= Vc1

(
f
)

+ Vc2

(
f
)

= − 1√
m

∑
i∈C1

fi +
λ

k

∑
i,j∈C2

(
fi√
di

− fj√
dj

)2

w(i, j), (7)

where w(i, j) is the mutual information between ith
gene and jth gene and the node degree di can be calcu-

lated as
∑

{j|(i,j)∈C2}
w(i, j). The weights added in the second

term of Equation (7) can guarantee the smoothness of
the discriminative scores over genes with strong
dependency.
Due to the large noise existed in the expression data, f

cannot be directly estimated. In order to lessen the
effect of noise and address the concern of gene depen-
dency, MAP estimation method is applied on the
observed score to estimate f. Suppose the observed dis-
criminative scores arez = [z1, . . . , zm]T. Here the z-score
zi can be calculated from corresponding p-value pi by
the inverse Gaussian cumulative density function. In this
method, p-value is calculated by Student’s t-test between
two phenotypes. To account for the noise in the gene
expression data, we assume that

z = f + e, e ∼ N (0, I) , (8)

where e is Gaussian noise and I is the identity matrix.
Given the z-score, we can estimate the discriminative
score f̂ by MAP estimation. Based on Bayes’s rule and
Gibbs distribution, the estimation can be expressed as:

f̂ = arg min
f

(U(f) + U(z|f)), (9)

where U(f) is specified in Equation (7). U(z|f) is the
likelihood potential, which can be derived from the dis-
tribution of e as:

U
(
z|f) =

γ

m

m∑
i=1

(
zi − fi

)2, (10)

where m is the number of genes in a network and g is
a trade-off parameter. With the estimator f̂ , the network
score can be defined as:

Score (M) =
1√
m

m∑
i=1

f̂i − λ

k

∑
i,j∈C2

(
f̂i√
di

− f̂j√
dj

)2

w(i, j) − γ

m

m∑
i=1

(
zi − f̂i

)2
. (11)

Equation (11) provides a good measurement of net-
work score with consistent mean and variance on net-
works with different sizes under the assumption that f
has zero mean; however, the assumption usually violates
in the real application. Here we estimate the background
distribution of network score with different sizes by ran-
dom sampling subnetworks from the whole PPI net-
work. The network score can be normalized by:

Scorenorm (M) =
Score (M) − μ (M)

σ (M)
, (12)

where μ(M) and s(M) are the mean and standard
deviation estimated from the null distribution of the
networks with the same size of M.
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Simulated annealing searching
Given the network score definition, finding the optimal
network with the highest network score is an NP hard
problem. Instead of using exhausted searching approach, a
probabilistic approach for global optimization, simulated
annealing, is applied here. To reduce the computational
complexity, we start the simulated annealing searching
from ‘seed’ genes, which are pre-selected from the PPI net-
work. Several constraints are made to further increase the
network searching efficiency: (i) the searching space is
restricted to a local 2-jump network from ‘seed’ node and
(ii) the searching will be terminated when no significant
improvement is observed.

Confidence level measurement
Due to the large noise of data and heterogeneity of samples,
the reproducibility of subnetwork identification is usually
low. Furthermore, the number of samples is usually limited
in biological experiment due to cost and quality issue, which
will introduce bias to the results. In order to get more robust
results, we applied a non-parametric bootstrapping strategy
to measure the confidence level of the genes in the identified
network. For each bootstrap, we generate a data set by ran-
domly sampling the samples from the gene expression data
with replacement. Applying BMRF-MI on the generated
data sets, we can measure the confidence level of genes as
the frequency of appearance. We are more confident about
the genes with high frequency; then a threshold can be set
to generate the final network.

Clustering networks by affinity propagation clustering
(APC)
The identified subnetworks from BMRF-MI are merged
by affinity propagation clustering (APC) [13] to generate
more comprehensive biologically meaningful network.
APC clusters the data points by passing the messages
which include ‘responsibility’ and ‘availability’ between
them. The ‘responsibility’ and ‘availability’ together indi-
cate how appropriate to choose the points to be the
‘exemplar’ of the cluster. The similarity between two
networks is defined as:

S(i, j) = 2 × # of genes in both Net i and Net j
# of genes in Net i + # of genes in Net j

.(13)

S(i, j) has a value between 0 and 1 and higher value indi-
cates higher similarity between the two networks. The
number of exemplars or clusters can be automatically
determined without pre-configuration, which is different
from traditional clustering methods such as k-means
clustering.
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