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Editorial on the Research Topic

Silicon-Based Nanomaterials: Synthesis, Optimization and Applications

Silicon (Si), the second most abundant element on earth crust, is rapidly gaining attention in life
sciences (e.g., in vivo disease diagnosis and photothermal therapy), as well as the field of energy
storage and conversion [such as lithium-ion batteries (LIBs) and solar cells] due to the
biocompatibility, good luminescence, and the high energy density (Xu et al., 2018). As is well
known, LIBs with Si anodes deliver a theoretically high specific capacity of ~4,200 mAh g−1, which is
significantly larger than that of commercial graphite anodes (372 mAh g−1). However, the large
volume changes of Si during charge/discharge process and the complex preparing strategies severely
hinder the practical applications (Sun et al., 2022).

The existing methods for synthesizing functional Si nanomaterials can usually be divided into two
categories, that is “top-down” and “bottom-up” methods. The former strategy usually includes high
temperature thermal reduction (e.g., carbon and magnesium thermal reduction), and
electrochemical or chemical etching (Yuda et al., 2021). Magnesium thermal reduction is based
on the interaction between the magnesium vapor and the SiO2 precursor to afford Si through gas-
solid reaction. In general, the replica of Si with the same morphology as SiO2 precursors can be
obtained by controlling the reaction temperature, flowing gas rate and some other reaction
parameters (Sun et al., 2017). As illustrated in Figure 1, some representative works related to
the magnesium thermal reduction method are presented. Figures 1A,B show the conventional
magnesium thermal reduction method to afford Si replicas from SiO2 precursors (Chen et al., 2012;
Zhang et al., 2014). However, the direct magnesium thermal reduction of SiO2/C nanocomposite is
extremely easy to form byproducts, such as Mg2Si and SiC. Ahn et al. proposed a formation
mechanism of Si and SiC by magnesiothermic reduction of SiO2/C, as shown in Figure 1C. SiC is
formed at the interface between SiO2 and carbon when silicon intermediates, mainly in situ-formed
Mg2Si, encounter carbon through diffusion. Otherwise, Si is formed, which is supported by an ex-situ
reaction between Mg2Si and carbon nanosphere that results in SiC (Ahn et al., 2016).

Electrochemical and chemical etching (HF/H2O2 or HF/metal-assisted system) generally start from bulk
Si to realize the morphology controllable of Si via the regulation of reaction parameters, such as the applied
current density, the HF concentration, and the reaction time (Huo et al., 2020). In general, these methods
have been widely used in photovoltaic industry, however, the environmental issue of strong acid and base
system should be taken into account. On the other hand. the “bottom-up” methods generally include
chemical vapor deposition (CVD), the classical vapor-liquid-solid (VLS) growth, the reduction of high valent
Si (Sun et al., 2019). The preparation of Si by CVD methods generally uses volatile silicon sources such as
SiH4 and SiCl4 as the feed stock and the targeted Si is produced by the decomposition of Si precursors under
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high temperature conditions. Concurrently, Si nanomaterials with
various sizes can be obtained by adjusting the types of precursors,
the reaction temperature, and the flowing carrier gas rate. Additionally,
one-dimensional (1D) Si nanowires can be obtained by vapor-liquid-
solid (VLS) growth, that is, the solid solution derived from Si
precursors are formed on the surface of metal catalysts. When Si is
saturated in the solid solution, 1D Si nanowires with specific shapes are
produced in a particular direction (Puglisi et al., 2019).Moreover, zero-
dimensional (0D) Si quantumdots can generally be reduced fromhigh
valent Si compounds, and the reducing agents can bemetallic Na, K or
sodium naphthalene solution, LiAlH4 (Na et al., 2019).

It is worth considering that the current existing synthetic
methods of Si nanomaterials have considerable disadvantages
of high energy consumption, low yield, harsh reaction
conditions and difficult to scale production. As is known to
all, the “bottom-up” wet chemical synthesis of nanomaterials
has the merits of simple operation, easy amplification and the
controllable morphology. However, different from the
preparation of metals or metal oxides, Si precursors that
can ionize in solvents are very scarce. Although the Zintl
phase compounds of Si, such as Na4Si4 and K4Si4, can
dissociate from Si4

4- ion clusters in liquid ammonia at
−70°C, such harsh conditions are restrictive to realize the

scaled-up applications (Schiegerl et al., 2018). Therefore, it
is one of the most important directions to explore new Si
precursors that are suitable for wet chemistry under mild
conditions. In this topic collection, advances of synthesis
methods for porous Si and Si nanocrystals are summarized,
meanwhile, some biomass derived Si nanomaterials are
reported. In addition, the various applications of functional
Si-based nanomaterials, such as energy storage,
photoluminescent, catalysis, are also included.

We hope it will be helpful for readers to further understand the
preparation and application of advanced silicon nanomaterials.
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FIGURE 1 | Representative works for the production of Si nanomaterials with magnesium thermal reduction (A) (Zhang et al., 2014); (B) (Chen et al., 2012) and (C)
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