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Abstract

Background: The Elliot wave principle commonly characterizes the impulsive and corrective wave trends for both
financial market trends and electrocardiograms. The impulsive wave trends of electrocardiograms can annotate several
wave components of heart-beats including pathological heartbeat waveforms. The stopping time inquires which ordinal
element satisfies the assumed mathematical condition within a numerical set. The proposed work constitutes several
algorithmic states in reinforcement learning from the stopping time decision, which determines the impulsive wave
trends. Each proposed algorithmic state is applicable to any relevant algorithmic state in reinforcement learning with fully
numerical explanations. Because commercial electrocardiographs still misinterpret myocardial infarctions from
extraordinary electrocardiograms, a novel algorithm needs to be developed to evaluate myocardial infarctions. Moreover,
differential diagnosis for right ventricle infarction is required to contraindicate a medication such as nitroglycerin.

Methods: The proposed work implements the stopping time theory to impulsive wave trend distribution. The searching
process of the stopping time theory is equivalent to the actions toward algorithmic states in reinforcement learing. The
state value from each algorithmic state represents the numerically deterministic annotated results from the impulsive wave
trend distribution. The shape of the impulsive waveform is evaluated from the interoperable algorithmic states via least-first-
power approximation and approximate entropy. The annotated electrocardiograms from the impulsive wave trend
distribution utilize a structure of neural networks to approximate the isoelectric baseline amplitude value of the
electrocardiograms, and detect the conditions of myocardial infarction. The annotated results from the impulsive wave trend
distribution consist of another reinforcement learning environment for the evaluation of impulsive waveform direction.

Results: The accuracy to discern myocardial infarction was found to be 99.2754% for the data from the comma-separated
value format files, and 99.3579% for those containing representative beats. The clinical dataset included 276
electrocardiograms from the comma-separated value files and 623 representative beats.
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is represented as an inverse waveform.

Reinforcement learning

Conclusions: Our study aims to support clinical interpretation on 12-channel electrocardiograms. The proposed work is
suitable for a differential diagnosis under infarction in the right ventricle to avoid contraindicated medication during
emergency. An impulsive waveform that is affected by myocardial infarction or the electrical direction of electrocardiography

Keywords: Flectrocardiogram, Myocardial infarction, Least-first-power approximation, Approximate entropy, Stopping time,

Background

The Elliot wave principle assumes the impulsive wave
trends including the local maximum value and corrective
wave trend below the local maximum value [1]. It was
originally considered to predict the financial market
trend [2]. Financial market trends and electrocardio-
grams have impulsive and corrective wave trends that
consist of oscillating waves with amplitude deviations.
The proposed impulsive wave trends discern the local
wave peaks of physiological electric signals from the
corrective wave trends.

The performance of a research work in heartbeat
detection with the wavelet transform [3] depends on
the selection of the wavelet function. The wavelet func-
tion requires a threshold definition [3] according to the
evaluated number of nearest peaks that could vary
among electrocardiograms. Another frequency domain
analysis [4] classifies the electrocardiograms into the
limited number of classifications from the least-squares
support-vector machine [5]. A neural network approach
[5] requires the limited number of pre-defined training
models under normal heart-beats, and each type of a
waveform craves its corresponding model [6]. The
proposed impulsive wave trends annotate wave compo-
nents of heartbeat within a single electrocardiogram,
under various types of normal and pathological circum-
stances without prior knowledge. An annotated electro-
cardiogram conforms to the standards approved by the
HL7 membership in response to the United States Food
and Drug Administration [7]. As taking actions in
reinforcement learning environments are able to ex-
clude prior knowledge and adaptively learn fluctuating
environments with a stochastic policy [8], the actions of
the proposed impulsive wave trends constitute numer-
ically tractable reinforcement learning environments.
An action then returns a reward value after each action
is under a given continual task, or after reaching the
final actions within an algorithmic state under a given
episodic task [9]. Numerically tractable reinforcement
learning processes are constructed with explicit conver-
gence rates in [10]. Reinforcement learning is used as
the dominant machine learning in the field of traffic
signal control [8] and video game [11].

The proposed work constitutes a novel reinforcement
learning environment in medical applications, determined
by considering the stopping time decisions with
reinforcement learning. The stopping time is defined
as the moment of a pre-specified set to be decided
on the basis of information [12]. An algorithmic
decision utilizing the stopping time optimizes reward
as an output among stopping time values [13].
Research works have been conducted by involving
stopping time on financial applications [13-16]. An-
other research work incorporated the stopping time
to schedule an advertisement on live social media
[17]. The proposed work evaluates the impulsive wave
trend for the evaluation of ST-elevation myocardial
infarction (STEMI). The stopping time processes need
to explain the operating details for improved under-
standing [13]. The stopping time does not require any
knowledge from the future, but it searches independ-
ent random variables to define a time sequence that
meets a pre-specified condition and determines
whether linearly ordered time sequences are defined
as stopping time [18].

This research proposes that the decision of stopping
time w around the impulsive waves of an electrocardio-
gram is evaluated from the downhill U-turn process as
shown in Fig. 1. When the sampled data in Fig. 1 slides
toward the right direction, the trajectory of the data be-
comes a downbhill-shaped slope and U-shaped turn. The
local minimum value in Fig. 1, for example, occurs when
the output of the downhill U-turn process is maximized,
thereby generating the stopping time. In Fig. 1, i can be
any number in black solid squares, among input data se-
quence T.

The impulsive wave shape, affected by myocardial in-
farction (MI) or the location of electrode channel, has an
inversed waveform, in comparison to a normal electro-
cardiogram. The proposed work constitutes another
algorithmic state from the approximate entropy to evalu-
ate whether the direction of the impulsive wave is
inversed. The state values from both the least-first-
power approximation state and approximate entropy
state are competitively interoperable by a numerical
comparison process to fully explain the current learning
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Fig. 1 Stopping time decision from downhill U-turn in searching of local minimum value
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processes. Another algorithmic state for the STEMI
evaluation result is also interoperable and can determine
the shape of the impulsive wave as STEMI affects the
impulsive wave. The proposed MI detection technique
measures the amplitude between the ] point and the ap-
proximated baseline point from using a neural network.

Generally, chest pain symptoms are empirically medi-
cated by nitroglycerin (NTG). NTG can be medicated by
patients themselves or 911 protocols. However, when
the II, III, and avF channels of an electrocardiogram
consecutively represent STEMI, there are possibilities of
right ventricle (RV) infarction and NTG should not be
administrated. Despite the widespread use of electrocar-
diograms, the prevalence of unrecognized MI is substan-
tial; one in four MlIs remains unrecognized [19].
Limitations in the reported results for electrocardio-
grams and the need for accurate risk assessment in
emergency departments (EDs) motivated the develop-
ment of a novel technique for electrocardiograms.

Methods

Experimental setup

MXnet allows the utilization of the central processing
unit (CPU) and graphics processing unit (GPU) to
ensure more flexibility and acceleration in data process-
ing applications. The processors utilized in the proposed
algorithm are 3900X CPU and 2080Ti GPU. The
installed version of MXnet is mxnet-cu90mkl. MXnet of-
fers an array manipulating feature, which is suitable for
the imperative programming style. The imperative pro-
gramming style is further accelerated by the automatic
parallelization feature of MXnet, similar to the symbolic
programming style. The code written in the imperative

programming style in MXnet first declares the size of
variables; then the variables are identified as the parame-
ters of MXnet libraries or functions to be scheduled for
the automatic parallelization feature.

Each electrocardiogram in the experimental dataset
consists of 12-channel extensible markup language
(XML) waveforms, and lasts for approximately 10s with
5000 sampled data. The experimental datasets, in XML
format, are converted to comma-separated values (CSV)
format by the tool from the Cardiovascular Research
Grid. An image of a representative beat is converted
from XML format electrocardiogram by a basic free
version of the XML software tool, called EcgViewer.

The CSV format file is read and imported by the
csv and NumPy module in Python. The imported data
array is then stored into the memory as NDArray
type by MXnet, via a designated processing unit, i.e.,
CPU or GPU. A normal heartbeat is completed in
approximately 1s. Because the experimental datasets
are sampled with 5000 sampled data around 10s, 300
sampled data are usually enough to represent one
QRS complex among several heart beats. The pro-
posed algorithm is set to load only one channel data
during an operation for algorithmic flexibility. The
experimental datasets include 276 clinical electrocar-
diograms in CSV format files from 23 patients and
623 clinical electrocardiograms with representative
beats from 96 patients.

Data input

The proposed algorithm compensates an oscillation
noise component whose amplitude is large enough to
hinder the QRS complex waveform. When the
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amplitude values are same or larger than the value of
the absolute average amplitude, they are filtered out.
The proposed algorithm iteratively updates a
multiplier to be multiplied by the absolute average
amplitude. The proposed algorithm stores the electro-
cardiogram amplitude values below the value, multi-
plied by the updated multiplier and the absolute
average amplitude. The multiplier 1is iteratively
updated until the number of stored amplitude values
becomes less than 3000. The data input stage adds the
absolute value of the minimum amplitude when the
minimum value is less than 0 mV. The data prepared
from the data input stage are then ready to process
the following proposed stages as shown in Fig. 2.

Impulsive wave trend evaluation

The impulsive wave trend evaluation stage of the pro-
posed algorithm decides a stopping time point » for
each discovered wave, equivalent to the array indexing
numbers. The array indexing numbers of NDArray in
MXnet are defined as discrete real numbers. The pro-
posed work addresses an impulsive wave trend distri-
bution as &(z), where 7 represents the array indexing
numbers of an input data sequence.

(2020) 20:99

Page 4 of 15

l,r<worr=w
0, otherwise

(1)

8(1) = {

The algorithmic decision obtained from the stopping
time becomes a deterministic value that represents an
actual amplitude value following the input data sequence
distribution function. The stopping time finds the deter-
ministic values of the required algorithmic decisions at
the impulsive wave trend evaluation stage, and transfers
them to the reinforcement learning environment. The
input data sequence distribution function d(7) represents
the intensities of amplitude values for each input data
sequence. 6(z) and d(r) are independent each other and
expressed as follows.

_argmax
T

&(r)d(r) (2)

An impulsive wave indicates that &(r)d(r) becomes
the largest value at the stopping time point w. The
stopping time point  exists within the array indexing
numbers 7, which ranges from zero to the maximum
number of array indexes #. Each array indexing num-
ber is set as i.
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d(Uyri) = 8(0)d(w) (3

QRS complex peak evaluation

The proposed algorithm evaluates the amount of slope
between the neighboring data only when the slope in-
creases. The maximum slope becomes equivalent to the
stopping time. The interval between the neighboring
sampled data is set to two data sequences. The input
data sequence density function d(i) represents the ampli-
tude values among array indexing numbers i.

(4)

argmax (d(i + interval)—d(i))
WQRS =

i interval

The stopping time wqgs is determined when the max-
imum slope appears between neighbored sampled data
at the QRS complex peak evaluation stage. When the
array indexing number 7 matches the stopping time
wqrs, the impulsive wave trend distribution §(wqrs) be-
comes 1, as indicated in Eq. (1). The deterministic value
of the stopping time decision is then expressed as
6(wQRS)d(wQRS)'

The volume of left ventricle at the ending systolic
stage is normally increased by 63% [20]. The P wave
represents arterial depolarization to circulate blood to
the lung. The T wave represents ventricular repolariza-
tion, immediately after ventricular depolarization [21].
The QRS complex is modulated by the sodium ion con-
centration with the conductivity of the corresponding
cells, and the T wave is modulated by the concentrations
of the calcium and potassium ions with the conductivity
of the corresponding cells [22].

A heartbeat cycle including arterial depolarization,
ventricular depolarization, and ventricular repolarization
is assumed to take 1s. A subset of 300 sampled data
with a sampling rate of 500 Hz achieves the algorithmic
stability to include one or less peaks of the QRS complex
within the predefined length of the data subset.

Each algorithmic state value follows the policy 7 with
the action value, which is defined with the reward value,
algorithmic state value after getting the reward value
and algorithmic state transition probability with its coef-
ficient y [23, 24]. The proposed algorithm represents an
action value Q(s, 2) and an algorithmic state value v ' (s),
as expressed below, where R represents a reward value
generated at the current algorithmic state s with the next
state s’ after taking an action, and policy 7(a, s). Each re-
ward value evaluates each action value. Such continual
exploration consists of probability distribution between
actions [25]. The policy needs to determine the opti-
mized action from any taken actions [9]. The policy 7(a,
s) determines the quantity of the optimized action value.

(2020) 20:99
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Q(s,a) = {Rs +yV (s,)}P(s/|s, a) (5)
v (s) = (a,5)[Q (s, a)-af log(r(a,s))}] (6)

The actions of each algorithmic state return a reward
value R; with the next state value and transition prob-
ability. The optimized action value Q' (s,a) is deter-
mined by the maximum action value. The optimized
state value is modified by the soft Markov decision
process by subtracting the logarithm of the policy [26,
27]. The proposed algorithm updates the state value as
v ' (s) as expressed in Eq. (6).

The maximum slope appears with the stopping time
®ors- The QRS complex peak evaluation stage searches
every algorithmic state whose transition probability P(s |
s, a) is 1. The coefficient y is set as follows.

o 0, T = wQRs
Y= { -1, otherwise @)

When the array indexing number matches the stopping
time, the action value Q(s,a) shows the amplitude value
with the maximum slope between neighboring data.
Simultaneously, the action value Q(s,4) becomes opti-
mized as Q' (s,a). The updated state value v’ (s) treats
the policy (g, s) as 1 and the coefficient a as 0, and repre-
sents the maximum slope at the stopping time wgs.

The updated state values then become the reward
values for the upcoming algorithmic states. The next
state value v(s’) is then defined as the difference between
the reward values and the 600 amplitude values around
the sampled data that represent the reward values. The
action value Q(s, a) is then evaluated by setting the coef-
ficient y and transition probability to 1 to preserve the
numerical values of the calculation between the reward
values and the next state values.

The policy takes the softmax function. K ranges from
1 to the number of optimized action values. The coeffi-
cient a ranges from 0.5 to 100.5, with an increment of 1.
From the 101 values of coefficient a, an appropriate
value is determined when the updated state value v’ (s)
initially exceeds the action value Q(s, a). When the up-
dated state values v’ (s) for any values of coefficient a
remains below the action value Q(s, a), the coefficient a
is determined to be 0 to maximize the updated state
value, as shown in Eq. (6).

Q/(S: ﬂ)k/a
54 = o), /. dea

e

(8)

The final outcome of the QRS complex peak evalu-
ation stage represents the amplitude value of the QRS
complex peak. Outputs from a learning process that are
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learned from the previously learned data converge simi-
larly for various types of data as the learning process
iterates [28, 29]. The proposed algorithm operates the
QRS complex peak evaluation stage twice to reduce any
possible chance of a localized maximum value.

Minimum amplitude value evaluation around R wave

The actions of the minimum amplitude value evaluation
stage searches 50 amplitude values before and after the
peaks of R wave are searched. The searching range
around the R wave is equivalent to the array indexing
numbers T for the stopping time. A data subset compris-
ing 300 sampled data with a sampling rate of 500 Hz
was assumed to achieve the algorithmic stability to in-
clude one or less peaks of the QRS complex. The stop-
ping time at the minimum amplitude value evaluation
stage is expressed as @, amps it represents the array
indexing number that indexes the minimum amplitude
value around the R wave.

argmin
T

© min.amp = 6(T)d(‘[) (9)

The impulsive wave trend distribution &(z) and input
data sequence distribution function d(zr) consist of their
multiplied form §(r)d(r) to represent the deterministic
value of the stopping time decision. The next state value
v(s') is set as the difference value between the determin-
istic value of the stopping time decision §(wyin. amp.)d(w-
min. amp.) and the amplitude values of the QRS complex
peaks. The action values remain the same by keeping the
coefficient y and the transition probability constant to
represent the actual amplitude values.

Downbhill U-turn point after R wave

The data sequence of the electrocardiogram data that rep-
resents the ending moment of ventricular depolarization
has the shape of the trajectory of a downhill moving object
a U-shaped turn. A normal waveform of the R wave de-
creases after the peak of the R wave during ventricular
depolarization, and then increases again for ventricular re-
polarization. The proposed downhill U-turn point stage
evaluates the ending moment of ventricular depolarization
by searching 50 sampled data as expressed below.

_ argmax leio {Zjiod(“’@*s +i)-d(0qrs +i+24 + j)]

Ohillliturn i
(10)

The deterministic value of the downhill U-turn point
is defined at the stopping point g7 by multiplying
the impulsive wave trend distribution §() and the input
data sequence distribution function d(). The reward
values R, for the downhill U-turn point evaluation stage
are set as the optimized action values at the QRS
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complex peak evaluation stage. The next state values are
defined as d(wpimrm) — Rs + 24 with the coefficient y
and the transition probability as 1. At the stopping time,
the optimized action values are generated.

The second algorithmic state takes an action that
searches 150 sampled data before and after the tempor-
arily lower point, which represents the lower value be-
tween v ' (s) at the minimum amplitude (stage 3.2) and
v’ (s) at the current first state of downhill U-turn point
(stage 3.3). The reward R, is set to be the same as the
amplitude of temporarily lower point, and the next state
value v(s’) is set as the currently searching amplitude.
The coefficient value y and the transition probability of
the action values are set to 1. The third algorithmic state
incorporates the state values from QRS complex peak
evaluation (stage 3.1) and both the first and second
states of the downhill U-turn point (stage 3.3). The ac-
tion value of the third algorithmic state is then evaluated
as expressed below.

Y QRS.peak =¥ temp.Low

0 (w3rd)d(w3rd) +
XQRS.peak —Xtemp.Low
YQRS.downhill =Y temp.Low

Q(S7a)3m’ =

8(w3rd)d(w3rd) +
XQRS.downhill—Xtemp.Low

(11)

The optimized action value for Q(s,a)s,; represents
the highest slope, and determines the QRS complex
peak. Fig. 3 summarizes how the stages satisfy the S
point of the QRS complex appears at stopping time ,y,;,,.
®» equivalent to W1z

Downhill U-turn at J point

The downhill U-turn at the ] point stage searches sam-
pled data within an algorithmic searching range, with 1.5
times the average interval between the QRS complex
peak and the minimum amplitude value after the R
wave. The | point appears after the R wave, and repre-
sents the transition point between the R and T waves of
an electrocardiogram. The reward value for the downhill
U-turn at the J point stage is set as the minimum ampli-
tude value after the R wave.

The next state value at the downhill U-turn at the |
point stage represents the difference between the reward
value and the deterministic value of the stopping time
decision, expressed in Eq. (12). The algorithmic search-
ing ranges are expressed as i and j.

Wnilllturn] =

argmaxizzzge [Z;Z‘fed(w ming + 1) =A(@ min g + 1+ range + ])]
(12)

The stopping time is added by the half of the algorith-
mic searching range as the downhill U-turn process
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considers two algorithmic searching ranges, expressed as
i and j. The ST-segment deviation is evaluated 0.04s
after the J point [30]. Because the time period required
for the evaluation of the ST-segment deviation is rela-
tively shorter than the time period of the QRS complex,
its range was established between 0.06 and 0.08s [31].
Because the downhill U-turn at the J point stage adds a
half of the algorithmic searching range, the ] point de-
fined in the proposed stage locates around the time
period range required for the ST-segment deviation
evaluation. The stopping time optimizes the action value
by adding the next state value. The optimized action
value is increased from the reward value. The non-
optimized value remains the same as the reward value
because the impulsive wave trend distribution (g
turny) 18 set to 0.

Downhill U-turn around T wave

The T wave appears after the ] point due to ventricular
repolarization, the impulsive wave trend of the T wave is
evaluated by the proposed downbhill U-turn process. The
actions for the downhill U-turn point around the T wave
stage includes searching the sampled data with the algo-
rithmic searching range, as expressed below.

range = mean (300 + WQrs—® min.R) -50

(13)

The reward values at the downhill U-turn point
around the T wave stage are set as the amplitude values
of the J point. The next state values are set as the differ-
ences between the reward value and the deterministic
value of the stopping time decision. The stopping time
index 7 is the subset of the algorithmic searching range.

argmax
O Tmax =

A(@ninvturmy + T) (14)
The stopping time optimizes the action value, as
expressed in Eq. (14). Because the action value needs to
represent the actual amplitude value, the coefficient y
and the transition probability value are set to 1. The up-
dated state value follows the optimized action value.

The downhill U-turn point around the T wave stage
then enters into the next algorithmic state, and searches
the sampled data again with its algorithmic searching
range, which is 1.5 times the average interval between
the QRS complex peak and the minimum amplitude
value after the R wave. The algorithmic searching range
is limited within the range of 25 and 100 for algorithmic
stability to be processed under various electrocardio-
grams. The downhill U-turn point around the T wave
stage follows the downhill U-turn process as introduced
in the previous stages. The stopping time is newly de-
fined as below.

OhilluturnT =

argmaxizzzge {Z;Tfed (@ninuturny + §) =4 (@pitiizury + i + Range + ]')]
(15)

The stopping time is added a half of the algorithmic
searching range as the downhill U-turn process and con-
siders two algorithmic searching ranges, expressed as i
and j. The stopping time defines the second algorithmic
state of the downhill U-turn point around the T wave
stage. The reward value is set as the amplitude value
when ®p;m,, appears. The next state value is set as
the difference between the deterministic value of the
stopping time decision of the downhill U-turn point
around the T wave and the reward value. When the
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stopping time iyt represents the impulsive wave
trend distribution §() as 0, the action value also becomes
0. Because the second algorithmic state, at the downhill
U-turn point around the T wave stage, needs to repre-
sent the actual amplitude value, the coefficient y and
transition probability are set to 1. The updated state
value then follows the optimized action value.

Least-first-power approximation for T wave direction
evaluation

The algorithmic searching direction from the ] point to
the T wave peak is determined by the downhill U-turn
process that was evaluated in the second algorithmic
state at the downhill U-turn point around the T wave
stage. ST depression has a waveform that is shaped as
the inversed waveform of the T wave. ST depression oc-
curs from clinical conditions including MI, and repre-
sents an inversed shape of the T wave waveform due to
ventricular repolarization abnormalities [32]. Because
electrocardiography has several channels for measuring
the electrical signal data, the channel located at the op-
posite direction of the main electric current, at the avR
channel, shows an inversed waveform. The value of the
final updated states, at the downhill U-turn point around
the T wave stage, represents the direction of the T wave.

zrst
§ : ‘ Tmux_qwl 7qw - d(whillUturn]) +ﬁhillUturnT
irst * *
Tmax™ " w; 7rw,- - d(whillllturn/)_ﬁhillUturnT

(16)

The stopping time g1z, allocates each value with
index i. The average value between ¢;, and r;, has corre-
sponding standard deviation, B, as shown in
Fig. 4 and Eq. (16). The average value between ¢, and
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*

r,, is expressed as pw, and it is equivalent to d(wpir
irst
wrny)- When \wf -r

T is equal to or smaller than |

ﬁf;:;;x—l’d , the least-ﬁrst—power approximation for
ot (33]. When Bpiutssurnt has a

Tmax
negative value, the direction from the ] point to the T
wave peak is upward as a part of a normal T wave wave-

"
out of p,, becomes r;,

irst

form, and |w7,,,,~q;, | tends to become larger than |
t e .
wgf; ax o |. When Brisrmr has a positive value, the dir-

ection from the ] point to the T wave peak is downward

. 1
as a part of an inversed T wave waveform, and |w’;r:mx

q,,| tends to become smaller than |d;:i;x ol

Baseline approximation
The baseline for the data of an electrocardiogram be-
tween the periods of arterial depolarization and ven-
tricular depolarization is utilized as the input vector
for the neural network for baseline approximation.
The normal atrial depolarization of the heart represents a
lower amplitude than that of the QRS complex. The low
amplitude values that represent the normal atrial
depolarization and ventricular depolarization are vulnerable
to noise components. The noise components between atrial
depolarization and ventricular depolarization imperil the
normal amplitude between them. The noise components
impede the prior optimal sampling data intervals [34].
Neural networks generalize and classify input objects
into several categories for pattern recognition, signal fil-
tering, or data approximation [1]. Neural networks take
data as inputs and process mathematical structures to
estimate possible solutions [35]. A neural network ad-
justs weight values by multiplying the weight and input
values to derive the desirable neuron outputs.

DT max

whilIUturn]

@hilluturnT

| BhilIUturnT =

Fig. 4 Downhill U-turn process result value at stopping time of downhill U-turn point around T wave

range

Z [d(whilIUturnT) - d(‘"hilluturnT £ Range +])] E

= OpilluturnT )
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Downhill U-turn point before R wave

The downhill U-turn point before the R wave stage
utilizes the algorithmic searching range at the downhill
U-turn point around the T wave stage (stage 3.5), which
is 1.5 times the average interval between the QRS com-
plex peak and the minimum amplitude value after the R
wave. The reward value is set as the amplitude of the
QRS complex peak. The stopping time is evaluated as
shown below following the general downhill U-turn
process.

Opilltiturn-R =

range | range
argTax Z Z d(wQRs_i)_d(wQRS—i—mnge—j)
i=0 [ j=0
(17)

The next state value denotes the difference between
the reward value and the deterministic value of stopping
time. The coefficient of the next state is — 1. The stop-
ping time optimizes the action value that represents the
updated state value of the downhill U-turn point before
the R wave stage.

Baseline representative point

The baseline representative point offers a part of criteria
for MI detection. The downhill U-turn point before the
R wave stage utilizes the algorithmic searching range,
which is the average interval between the QRS complex
peak and the minimum amplitude value after the R
wave. The reward value is set as the deterministic value
of the stopping time decision at the downhill U-turn
point before the R wave stage, equivalent to §()d() with
the stopping time w70 - - The stopping time for the
baseline representative point stage follows the general
downhill U-turn process.

WhaselineRP =

argmaxi’y " [Z;Zfed (nintturn-r—1)—-d (whiuumfze—i—mnge—j)]
(18)

The next state value is set as the difference between
the reward value and the deterministic value of the stop-
ping time. The coefficient of the next state is - 1; it rep-
resents the action value as the amplitude value of an
electrocardiogram. The optimized action values from the
stopping time become the updated state values.

Weight adjustment

Because the baseline before the R wave tends to wander
around the neighboring data, the representative value of
the baseline needs to be evaluated to detect an impulsive
wave trend under the condition of STEMI. The weight
adjustment stage utilizes the same algorithmic searching
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range with the baseline representative point stage. The
weight adjustment stage assumes that the baseline inter-
val starts from each baseline representative point, and
ends at the location that is left-shifted as much as the al-
gorithmic searching range. The last amplitude value at
the baseline interval allocates its weight values, ranging
from 0.1 to 2.1. The increment number for the weight
values is set to 0.1. The last amplitude value at the base-
line interval d(r;) follows the input data sequence
distribution function; it is multiplied with the weight
value w.

W'd(Tlast)
O.l-d(‘l‘las;) + l‘d(Tlast)

baseline,, = (19)

Each baseline value with its own weight value becomes
an input of the sigmoid function to arrange each base-
line value as a positive value. A loss function evaluates
the squared difference between the amplitude value of
the baseline representative point and the output of the
sigmoid function. The weight value that demonstrates a
smaller gradient value for the loss function is adjusted
while iterating the allocated weight values. The adjusted
weight values compensate amplitude variations located
around the baseline representative point.

ST-segment deviation evaluation

The ST-segment elevation occurs when the amplitude
difference between the ] point and the baseline represen-
tative point exceeds 0.25 mV for the V, and V3 electro-
cardiogram channels in males younger than 40 years
[36], 0.20 mV for V, and V3 electrocardiogram channels
in males older than 40 years, 0.15 mV for V, and V; elec-
trocardiogram channels in females, and 0.1 mV for other
channels [31, 36, 37].

The basic free version of the XML software tool,
utilized in the proposed work, which depicts a represen-
tative beat from an XML file, offers an amplitude value
reading feature between two points of an electrocardio-
gram. The proposed MI algorithm is tuned by the V,
channel dataset in an XML file format, which shows that
the amplitude difference value between the ] point and
the baseline representative point is around 0.15 mV. The
same V, channel dataset in a CSV file format represents
the maximum amplitude difference between the ] points
and baseline representative points as 28, which is equiva-
lent to 0.15mV. Considering that most amplitude
difference values between the ] point and baseline repre-
sentative point is 26 in the CSV file format, the 0.10 mV
value in the XML file corresponds to 17 in the CSV file
format.

Every dataset in the proposed MI evaluation algorithm
follows the experimental subject that shows the ampli-
tude difference value between the ] point and the
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baseline representative point as 0.15mV in XML and
CSV file formats. Then, the amplitude parameter with
the value of 17 in the CSV file format corresponds to
0.10 mV.

All other proposed algorithm stages evaluate their own
input dataset without additional global parameters, and
each algorithm stage is connected by the proposed
reinforcement learning architecture. Among the 276
clinical electrocardiograms in CSV format files from 23
patients, electrocardiograms from every channel for the
23 patients were evaluated. Among the 623 clinical elec-
trocardiograms with representative beats from 96 pa-
tients, the electrocardiograms exhibited visually certain
ST-segment elevation and visually uncertain ST-segment
to decide ST-segment elevation are included to be exe-
cuted by the proposed algorithm. Because clinicians cur-
rently determine the condition of MI visually by
following the anterior MI criteria, a clinical decision de-
pends on the background knowledge or skill. The visu-
ally certain or uncertain electrocardiograms at the
channels that ranges from V; to Vi and the electrocar-
diograms of their neighbored channels constitute the ex-
perimental dataset in as XML file format, considering
the purposes of clinical diagnosis. The channel and gen-
der information for each electrocardiogram are consid-
ered for the evaluation of ST-segment deviation. When
the number of heart beats in the CSV format file that
represent the STEMI exceeds 39.9999% of the total
number of heart-beats in the same file, the electrocar-
diogram is considered to be under the condition of ML

Impulsive waveform direction evaluation

As the precedent onset of MI tends to inverse wave-
forms, such clinical electrocardiograms need to be iden-
tified. The impulsive waveform direction evaluation
stage generates reward values by searching the slope
values after the R wave peak; and then the slope values
are searched, following the minimum amplitude value
after the R wave, with an algorithmic searching range of
two times of the average interval between the R wave
peak and the minimum amplitude value after the R
wave. The slope values are considered as absolute values
after the R wave owing to a decreasing trend.

slope ,,,, + avg(-1-siope)
2

reward Tdir. — (20)

The next state value of the impulsive waveform direc-
tion evaluation stage is evaluated from the approximate
entropy. The approximate entropy is obtained by the
logarithmic values of the counted numbers, when each
datum is smaller than a threshold value for each data
subset [38]. The threshold value for the approximate en-
tropy is determined by the absolute maximum between
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the two sets of slope values at the impulsive waveform
direction evaluation stage. When the numbers of the
slope values that are below the threshold value are
counted, the logarithmic value for the counted number
is evaluated. The logarithmic value for the counted num-
ber is then divided by the half of the algorithmic search-
ing range at the impulsive waveform direction evaluation
stage to evaluate the average value of the logarithmic
value for the counted number, equivalent to the next
state value of the impulsive waveform direction evalu-
ation stage.

The impulsive waveform direction evaluation stage
searches the coefficient y from 0 to 2.5 with an incre-
ment number of 0.5. The transition probability is set to
1. The two action values, generated after the R wave and
the minimum amplitude value after the R wave, with the
same y value become the parameters of the softmax
function in Eq. (21) to search the appropriate y value as
shown below.

) )

The appropriate y value determines the optimized ac-
tion value. The minimum value of the result of the
multiplied softmax function guarantees that the action
value bypasses an abruptly large action value due to the
presence of a relatively large slope at the QRS complex
or noise component.

The policy becomes the output of the softmax func-
tion between the optimized action values of each reward
value. The evaluation of the policy follows Eq. (8). The
coefficient a to be multiplied with the logarithmic func-
tion of the policy is searched from 0.5 to 100.5 with an
increment number of 1. When the optimized action
value appears upon the applied a values, the coefficient
a is selected. Meanwhile, the updated state value is set
as an absolute value.

The second state value incorporates the third algorith-
mic states, as marked in the red square in Fig. 5, which
has two reward values. Whenever any larger interval
length appears at the prior or posterior position of the T
wave, a corresponding reward value becomes the num-
ber that is incremented by one. The coefficient y is set
to 10 to balance the numerical amount between the re-
ward values and the next state values. The policy applies
the softmax function between the two action values, and
considers the minimum policy value to be 0.0001 to
avoid a deterministic condition such as a probability
value of 0. The probabilistic policy optimizes the action
values as the optimally updated state values with the co-
efficient value of a as 1.

The reward value of the second algorithmic state in
Fig. 5 is added to the next state value of the second

(21)
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algorithmic state, which is equivalent to the updated
state value at the incorporated third state, as marked in
the red square in Fig. 5. The coefficient y and transition
probability are set to 1 to evaluate the final updated state
value at the impulsive waveform direction evaluation
stage.

The proposed work then intentionally inverses each
experimental electrocardiogram, following the amplitude
axis, and repeats the QRS complex peak evaluation stage
and impulsive waveform direction evaluation stage. The
proposed work compares each final updated state value
from the non-inversed and inversed electrocardiograms,
and selects a higher updated state value to evaluate the
direction of the impulsive waveform.

The algorithmic states from the least-first-power ap-
proximation stage and impulsive direction waveform
stage are interoperable. When the results of the evalu-
ated waveform direction between the least-first-power
approximation stage and the impulsive direction wave-
form stage conflict each other, the ratio between the two
stages selects a more numerically deterministic impul-
sive waveform direction for evaluation, as expressed
below.

| state Valuenon—inverxed wave_State Valueinversed wave ‘

ratio = x 100

larger state value at numerator

(22)

The algorithmic state of the ST-segment deviation
evaluation stage is also interoperable to the final algo-
rithmic states at the impulsive waveform evaluation
stage, because STEMI generates another impulsive wave
from the S point to the peak of T wave in an increasing
slope. When the ratio of STEMI beats out of the total
heart-beats exceeds 20.0%, the impulsive waveform dir-
ection is considered to be the non-inversed waveform.

Results

Our study revealed that the accuracy of the novel hybrid
algorithm in interpreting MI was better than that of pre-
vious electrocardiograms. When the ratio of heart beats
in the CSV file format exceeds 39.9999%, the electrocar-
diogram is under the condition of MI. The representa-
tive beat is obtained in a picture file format from the
XML, where the STEMI ratio is either 0 or 1. The MI
and the results for impulsive wave shape evaluation from
both the CSV files and representative beats are pre-
sented in Table 1.

The interoperability among the least-first-power ap-
proximation stage, impulsive wave trend evaluation
stage, and ST-segment deviation evaluation stage selects
the stage that shows a larger ratio to determine the im-
pulsive wave shape. An additional table file shows the
numerical decision of the interoperability between the
algorithmic stages in more detail (see Additional file 1).

The MI evaluation results for nine electrocardiograms,
among 18 electrocardiograms, from the electrocardio-
graph at the Yonsei University Gangnam Severance Hos-
pital indicate the same MI evaluation result as that
obtained in the proposed work. For the other nine elec-
trocardiograms, the electrocardiograph at the Yonsei
University Gangnam Severance Hospital generated
wrong results from the evaluation of MI. However, the
proposed work discerns that the other nine patients are
under ML The operation time for each CSV format file
takes approximately 3.5min with CPU usage limit
around 60% and GPU usage limit around 90% due to an
air-cooled thermal solution in a small form factor com-
puter. The operation time for the representative beat
data takes approximately 12s. The proposed work also
evaluates MI on the Physionet MIT-BIH ST change
database repository [39, 40]. Representative beats are se-
lected as the first heartbeat of each dataset. The accuracy
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Input method Accuracy Sensitivity Specificity
STEMI evaluation CSV file 99.2754% 98.2456% 99.5434%
Representative beat 99.3579% 99.0099% 99.6875%
Impulsive wave shape evaluation sV file 97.4638% 94.5455% 98.1900%
Representative beat 97.7528% 96.7213% 98.0040%

for MI evaluation and impulsive wave shape evaluation
was found to be 97.8261% each. Other research works
are listed in Table 2.

The feature extraction of MI in hybrid firefly [41] is
similar to how a firefly in each swarm senses the bright-
est light, depending on the coefficient values for distant
observation conditions. Hybrid firefly [41] utilizes the se-
lected 44 datasets of the Physionet MIT-BIH [40]
Physikalisch-Technische Bundesanstalt database. Hidden
Markov [42] classifies MI by allocating each algorithmic
state that hires a likelihood function at each heartbeat
waveform of clinical data from the hospital acknowl-
edged in [42]. The least-squares support-vector machine
(LS-SVM) [43] classifier utilizes a radial basis function
from wavelet decomposition only at lead II that repre-
sents a clearer waveform than the other channels. LS-
SVM [43] utilized lead II datasets that include patients
diagnosed with MI and healthy people only, excluding
other clinical datasets from the Physionet MIT-BIH [40]
Physikalisch-Technische Bundesanstalt database. Multi-
layer perceptron neural networks (MLP-NN) [44]
utilizes a software program offered by an electrocardio-
graph for annotated waveforms, a clinical survey, and a
genetic algorithm for network training. The experimen-
tal results for [44] show that the evaluation accuracy for
patients with mention of MI in clinical records is 96%,
while that for patients without any mention of MI in the
clinical records is 84.5%.

Discussion

The experimental dataset in the proposed work includes
clinical electrocardiograms. The shape of the impulsive
waveform, as a non-inversed or inversed format, de-
pends on the larger amplitude variations between the
QRS complex and T wave. The evaluation of impulsive
wave shape can be further developed by discerning the

Table 2 Myocardial infarction evaluation results

Model Accuracy Sensitivity Specificity
Hybrid firefly [41] 99.3% 99.97% 98.7%
Hidden Markov [42] 82.50% 85.71% 79.82%
LS-SVM [43] 99.31% 99.62% 98.12%
MLP-NN [44] 96% - -
Proposed evaluation 99.36% 99.01% 99.69%

QRS complex and T wave separately. Although an elec-
trocardiograph reduces the electrical noise components,
including human errors, such as body movements due
to muscle contractions, the muscle contractions generate
noticeable changes in the electric signal. The proposed
work is effective for the evaluation of STEMI and impul-
sive wave shape under noise components, such as elec-
tric signals affected by muscle contractions. Figure 6
represents some examples of electrocardiograms with
shivering or muscle rigidity in the experimental dataset.

When the channels at II, I, and avF of an electro-
cardiogram consecutively represent the STEMI, RV
infarction should be considered. RV infarction, as a
differential diagnosis, is implemented by reversely
located electrocardiograph electrodes. When STEMI
occurs at the reversed electrode locations from the
original locations at V,, V5 and Vg, MI occurs at RV.
The proposed method is also effective for reversely
located electrocardiograph electrodes. NTG is contra-
indicated in the setting of an inferior MI with right
ventricular involvement because, in this specific situ-
ation, the heart is dependent on the preload with
blood expansion as a clinical implementation. The re-
ciprocal changes observed at other channels, instead
of the channels with MI, implicate the STEMI
condition.

Strength

The novelty of our study is that we developed a novel
type of electrocardiogram wave interpretation that en-
ables the detection of acute myocardial infarction (AMI)
more accurately by reducing the analytical noise ob-
served in previous electrocardiograms. The development
of electrocardiograms is an important issue because it is
the first step in detecting AMI before performing any
heart specific biomarker test such as cardiac troponins
[45]. Electrocardiograms with cardiac troponins has been
practice standard for the diagnosis of AMI, early rule-
out and risk stratification in patients presenting acute
coronary syndrome [46]. There are on-going research
works that aim to improve the detection of MI using
cardiac troponin assays [47]. However, laboratories often
may not be able to report within 2 h. Therefore, improv-
ing the diagnostic accuracy of electrocardiograms would
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Fig. 6 Noise component examples of correctly evaluated STEMI and impulsive wave shape

be a much faster way to detect AMI as demonstrated in
previous studies focused on troponin assays.

Our study is clinically important regarding four
reasons, i.e., urgency and high mortality rate of MI, ED
circumstances, helping physicians in detecting MI, and
prevention of clinically wrong practices. First, we discuss
the urgency and high mortality rate of MI. A recent
study reported that the five-year mortality rate of MI or
myocardial injury is approximately 70%, with a major
adverse cardiovascular event rate of 30% [48]. AMI with
STEMI is the top priority, which should be urgently re-
ferred for thrombolysis or revascularization in real clin-
ical practice. The primary goal in the evaluation of acute
chest pain is the prompt identification of AMI. Second,
considering the circumstances of the ED, physicians may
be falsely reassured if MI is not detected in busy and
overcrowded EDs. Physicians might the overlook electro-
cardiograms in busy circumstances. Crowded EDs
should develop systems to quickly identify and prioritize
patients with MI. Unrecognized MI is associated with
mortality. Thus, risk stratification and early diagnosis is
necessary [19]. Third, our result would help physicians
in better detecting MI. Fourth, the improved detection
of MI would prevent the false administration of NTG to
contraindicated patients with inferior MI [45].

Limitation

The reported high accuracy can cause an over-fitting
problem when a programmed algorithmic state keeps
searching for data even if the state has already achieved
its goal. Most clinical electrocardiograms require all pro-
cesses in the proposed algorithmic state to be of high ac-
curacy, which is more important than the over-fitting
regarding risk and benefit. High accuracy is more im-
portant for detecting MI due to the high mortality rate
associated with, ED circumstances where physicians
could miss the detection of MI, and long waiting time
for laboratory results. Our study incorporated the Elliot
wave principle, which is used in technical analysis; this
principle is a proposed theory in financial fields and can
be controversial because it can cause fault localization

problems in machine learning. Therefore, further pro-
spective trials are necessary to clarify the clinical roles of
the sensitive detection of MI considering the Elliot wave
principle.

Conclusions

Our study revealed that the accuracy of the novel hybrid
algorithm, proposed in this algorithm, for interpreting
MI was better than that of previous electrocardiogram.
Each action value and algorithmic state value offers a
numerically tractable reinforcement learning environ-
ment. Any algorithmic state can be fused with another
algorithmic state if the final algorithmic state value con-
verges explicitly.

The interoperable algorithmic states in reinforcement
learning numerically determine the most suitable algo-
rithmic state for clinical electrocardiograms, whereas
typical machine learning techniques tend to select the
learning algorithms for training and classification, which
reflect the characteristics of the selected algorithms.

Although the conceptualized waveforms of electrocar-
diograms consider the waveforms between the P and
QRS complex with a flat line, clinical electrocardiograms
incorporates baseline wandering. Baseline wandering can
be usually treated by a filter to reduce it; however, the
proposed work determines the baseline representative
point from a neural network that considers all targeted
data between the P and QRS complex. The baseline rep-
resentative point and the ] point practically represent
the actual amplitude, which is critical for ST-segment
elevation evaluation.

The stopping time determines the impulsive wave
trend distribution when an algorithmic decision appears
at the impulsive wave trend evaluation stage. The
proposed stopping time decision from the downhill U-
turn process is widely used for algorithmic states in
reinforcement learning such as the impulsive wave trend
evaluation stage and baseline approximation stage. Be-
cause clinical electrocardiograms incorporates complex
oscillations, the proposed downhill U-turn point stage
offers versatile applications for complex oscillations at
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each waveform throughout the P wave, QRS complex
and T wave. The proposed downhill U-turn point stage
evaluates the cumulative slope variations within a partial
waveform. Because the clinical electrocardiograms in-
corporate complex pathological waveforms, there are
frequent chances of convergence to the local maximum
or minimum. The cumulative slope variations are robust
to locally maximum or minimum slopes, which would
cause a fitting problem when processed by a gradient
descent or ascent method.

As a clinically important issue, there are some cases of
clinical mistakes in the ED, wherein NTG is adminis-
tered to patients with highly suspected RV infarction. In
such cases, the patient’s blood pressure suddenly drops
and causes the patient to enter a shock state, which may
result in death. Therefore, the proposed work offers as-
sistance in electrocardiogram interpretation that may be
helpful in clinical decisions, and prevent inaccurate clin-
ical treatment, such as the administration of contraindi-
cated oral medication to patients with RV infarction.
Furthermore, sensitive detection of STEMI may increase
the survival rate of patients with AMI.

The results of our hybrid algorithm demonstrate the
highest diagnostic accuracy. Furthermore, it can be used
as a more accurate screening and diagnostic tool for
identifying patients with MI who require urgent
treatment.
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