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Introduction

Type 2 diabetes is the most common form of diabetes mellitus, constituting ~95% of the diabetic
population. It is characterized by elevated levels of plasma glucose which is caused by the combination
of insulin resistance and relative insulin deficiency. In recent years, genome-wide association studies
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(GWAS) and candidate gene studies have identified a large number of Single Nucleotide
(SNPs) that were associated with T2DM (Kommoju and Reddy, 2011). The genes inv
glucose homeostasis, insulin pathway and pancreatic development pathways are c
excellent candidates in the etiology of T2DM. Therefore, to test the pattern of genetic
T2DM in the population of Hyderabad, we focused on the most studied and widely rep
of the 9 prominent genes that are known to play important roles in the pathophys
Given the multifactorial nature of the complex genetic diseases such as T2DM, wherein
of genes each with a small effect contribute to the development of the disease, identific
tible genes has always been a major challenge. In addition to the individual contribu
and environmental factors, the gene–gene and gene–environment interactions also pl
in the etiology of complex genetic diseases. Therefore, it is important to know the com
of genes on the manifestation of the disease of interest. A few studies showed evidenc
epistasis among genes and supported the hypothesis that the genes with no significa
may turn out to be significant in concert with other genes (Cordell, 2010; Culverhou
There is also evidence for a significant role of Gene–Environment interactions in the e
(Kommoju and Reddy, 2011; Franks, 2012). However, most of the replication studies h
on a single locus strategy where the association was examined with reference to indivi

Despite the vast genetic heterogeneity and high prevalence of T2DM in India, very fewval
these genes have been carried out (Chauhan et al., 2010; Chidambaram et al., 2010; Kom
2011). Hyderabad has been considered as the ‘Diabetic capital of India’ (Mohan et al., 2007)
ulation has not been explored for the nature of genetic predisposition to T2DM. It is therefo
screen this population as well as others from this linguistic region for the susceptible gen
see if we can validate the patterns of genetic association observed in other populations. Wi
we have initiated this project and already published results based on individual genes in s
(Uma Jyothi et al., 2013a,b, 2014). In the present paper, we focus on the results ofmultivariat
and attempt to assess the possible interactions among the genes aswell as between genes an
factors in order to understand the synergetic nature of the effect of genetic and environmenta
developing T2DM.

Material and methods

Study design
For this genetic study of diabetes with case-control design, we collected a total sample of 1379 subjects,
e T2DM patients
ssociation (ADA,
plasma glucose
, with no family
ls by conducting
rements such as
sequently Body
rmation such as
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bovementioned
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binary variables
758 T2DM patients and 621 normal controls from Hyderabad, India, during 2010–2011. Th
were recruited from J.P. Endocrine Center, Hyderabad, as per the American Diabetes A
2010) criteria (with a diagnostic value of fasting plasma glucose ≥126 mg/dl or 2-h
≥200 mg/dl or random plasma glucose ≥200 mg/dl). Healthy individuals aged ≥40 yrs
history of T2DM and with a random plasma glucose ≤140 mg/dl were recruited as contro
free diabetic camps in different organizations in Hyderabad. The anthropometric measu
height, weight, waist and hip circumferences were measured for all the subjects and con
mass index (BMI) and the waist to hip ratio (WHR) were calculated. The background info
age, gender (male/female), lifestyle patterns like food habits (vegetarian or non-vegeta
smoking, alcohol consumption, physical activity andmigration pattern (native or migrant) w
along with other details as described elsewhere (Uma Jyothi et al., 2013a,b, 2014). The a
variables were used as covariates in the interaction analysis. Among these covariates o
were quantitative variables while junk food, smoking, alcohol, migration pattern were
(yes/no) and physical activity was categorized as low, medium and high.



Population

Hyderabad is a conglomeration of people from different parts of the state and the mother tongue of the
most of its population is Telugu, one of the four Dravidian languages. Besides considerable size of the native
Muslim population in Hyderabad, there has been recent influx of a large number of people from other regions
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of India, due to rapid industrialization that provided enormous scope for employment and
sake of relative homogeneity of the sample, we recruited only native Telugu speaking sub
and controls representing similar ethnic and linguistic backgrounds. It would be also pertin
despite the subdivision of Telugu population into a number of traditionally endogamous
castes, Reddy et al. (2005) observed genetic differentiation among the populations of Andh
very low and insignificant, the Markov chain Monte Carlo analysis of population structure w
model based clusteringmethod for grouping individuals into populations (Falush et al., 2003
2000) did not reveal any unique population clusters and therefore suggest high degree of ge
ity of the population of Andhra Pradesh. Given that the patients of the clinics as well as t
different organizations from where the controls were drawn constitute similar ethni
backgrounds, we could ensure broad matching for ethnicity of the cases and controls.

Blood collection, DNA extraction and ethics statement

About 3–5 ml of blood was collected in K3-EDTA coated vacutainers after obtaining a w

consent from the subjects. Genomic DNA was isolated from the blood samples using Phenol–chloroform
method (Sambrook et al., 1989). Indian Statistical Institute Review Committee for Protection of Research

ed in the present
Risks to Humans specifically approved this study.

Selection of genes/SNPs and genotyping

Apanel of 15 SNPs fromnine prominent T2DMgenes of different pathwayswere consider

study i.e TCF7L2 (rs7903146, rs11196205, rs12255372), IGF2BP2 (rs4402960, rs1470579), SLC30A8
(rs13266634), CDKAL1 (rs7754480, rs7756992), CDKN2A/B (rs10811661), HHEX (rs1111875, rs7923837),

th the candidate
ed among Indian
a et al., 2008; Ng
rent populations,
pingwas carried
n (TCGA), Delhi.
ccording to the
ne of our earlier
or all the 9 SNPs
= 487).

icalc’ package of
IRS-1 (rs1801278), CAPN10 (rs3792267, rs5030952) and PPARG (rs1801282). Considering bo
gene studies andGWAS till the year 2010, we prioritized SNPs thatweremostwidely replicat
(Chauhan et al., 2010; Chidambaramet al., 2010) aswell as non-Indian populations (Horikaw
et al., 2008). Despite the large number of SNPs thatwere found associatedwith T2DM in diffe
due to resource constraintwehad to restrict our choice of genotyping to 15 SNPs only. Genoty
out on the Sequenom MassArray platform (Seq. Inc.) at The Center for Genomic Applicatio
DNA samples were quantified and fresh aliquots were prepared to perform the assay a
manufacturer's protocol (Gabriel et al., 2009). The QC procedure was already outlined in o
publications (Uma Jyothi et al., 2013a). The samples with complete genotype information f
from nine genes only were included for the interaction analysis (cases = 657 and controls

Statistical analysis

The multivariate logistic regression analyses of alleles and genotypes were done using ‘Ep

R program (version3.2). The pair-wise analysis of gene–gene interactions, involving parametric approach,
was carried out using PLINK software (version1.07) and gene–environment interactions using R program.

0.9). For under-
) ROC (Receiver
erent risk allele
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Excel 2007 and
The non-parametric approach of gene–gene interactions was done using GMDR (version
standing the cumulative effect of each risk allele category (based on number of risk alleles
operator curve) was plotted using SPSS (version 18.0) and for the relative effect of diff
combinations, within each of the risk allele categories, Z test for 2-sample proportions wa
testing the significance of the differences between cases and controls using Microsoft
MINITAB (version 16.0).



Results and discussion

The detailed description of the clinical profile of subjects was presented in an earlier paper (Uma Jyothi
et al., 2013a). The results based on individual SNP analysis were published earlier (Uma Jyothi et al.,
2013a,b, 2014) and for the sake of convenience we present these results in a supplementary table (S1); out
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of the 15 only 6 SNPs, two each from TCF7L2 (rs7903146, rs12255372) and CDKAL1(rs7754
and one each from CAPN10(rs3792267) and IRS-1(rs1801278) genes, showed significant
T2DM and this significance was retained even after Bonferroni correction for multiple testin
gression analysis revealed odds ratios to range between 1.35 and 1.89, suggesting risk con
these SNPs towards T2DM in the population of Hyderabad.

The Linkage Disequilibrium (LD) plot of SNPs on the same gene, showed strong LDwith D
(0.80–1.00) (Uma Jyothi et al., 2013a,b, 2014). However, LDwas not apparent with reference
on the same chromosome between TCF7L2 & HHEX, IRS-1 & CAPN10, IGF2BP2 & PPARG, sug
pendent nature of these genes. The genes on different chromosomes were obviously not
the observed LD pattern, we considered only 9 of the 15 SNPs, one SNP that is most signifi
with T2DM, from each of the nine genes (TCF7L2 (rs7903146), IGF2BP2 (rs147
(rs13266634), CDKAL1 (rs7756992), CDKN2A/B (rs10811661), HHEX (rs1111875), IRS

Table 1
Multivariate logistic regression analysis of alleles and genotypes of T2DM cases and controls with and without usi

SNP Allele Adjusted for covariates Genotype Adjusted for c

† ‡
OR 95%C.I. p-Value OR 95%C.I. p-Value

Gene±

TCFL2 rs7903146 T 2.02 1.61–2.52 b0.001 CT 1.99 1.49–2.64 b 0.001⁎

TT 3.58 2.09–6.13 b0.001
IGF2BP2 rs1470579 C 1.31 1.07–1.61 0.009 CA 1.27 0.91–1.76 0.161

CC 1.22 0.83–1.78 0.312
SLC30A8 rs13266634 C 1.19 0.94–1.51 0.156 CT 1.09 0.56–2.11 0.799

CC 1.1 0.57–2.10 0.777
CDKAL1 rs7756992 G 1.3 1.03–1.64 0.025 AG 1.3 0.98–1.73 0.068

GG 1.97 1.09–3.56 0.025
CDKN2A/B rs10811661 T 1.2 0.91–1.59 0.188 CT 0.64 0.21–1.97 0.433

TT 0.95 0.31–2.87 0.927
HHEX rs1111875 G 0.79 0.65–0.98 0.028 AG 1.11 0.81–1.51 0.516

GG 0.88 0.59–1.30 0.52
IRS-1 rs1801278 A 1.21 0.74–1.99 0.45 AA 1.46 0.12–18.01 0.77

GA 1.45 0.85–2.47 0.175
CAPN10 rs3792267 A 1.81 0.89–1.56 0.242 AA 1.58 0.66–3.77 0.307

GA 1.27 0.92–1.74 0.147
PPARG rs1801282 C 1.14 0.84–1.54 0.413 GC 0.7 0.50–0.99 0.046

GG 1.22 0.41–3.59 0.721

Covariates
Age 0.99 0.98–1.00 0.069 0.99 0.97–1.01 0.217
Gender 0.74 0.58–0.94 0.012 0.7 0.50–0.99 0.045
Migration 0.45 0.37–0.55 b0.001 0.44 0.33–0.58 b0.001
V/NV 0.67 0.52–0.85 0.001 0.68 0.48–0.97 0.035
Junk food 1.41 1.14–1.75 0.002 1.36 0.99–1.86 0.055
Alcohol 1.1 0.86–1.40 0.44 1.13 0.8–1.66 0.497
Smoking 0.68 0.51–0.90 0.007 0.65 0.43–0.99 0.046
Physical activity 1.19 1.06–1.33 0.003 1.18 1.0–1.4 0.048
BMI 1.16 1.13–1.19 b0.001 1.16 1.12–1.2 b0.001

± Gene name— Abbreviation: Transcription factor 7 like 2— TCF7L2, insulin growth factor2mRNA binding protein 2— IGF2BP2, solute
carrier (Zinc transporter) 30 member 8 — SLC30A8, CDK5 regulatory subunit associated protein 1 — like 1 — CDKAL1, Cyclin-dependent
kinase inhibitor 2A/B— CDKN2A/B, Hematopoietically expressed homeo box gene—HHEX, Insulin receptor substrate1—IRS1, Calcium ac-
tivated cysteine protease — CAPN10, Peroxisome proliferator activated receptor gamma—PPARG.

‡ 5% and 10% significance was considered.
† Odds ratio calculated with respect to risk allele.
⁎ Significant p values bolded.



CAPN10 (rs3792267) and PPARG (rs1801282)). Therefore, in the subsequent sections we refer genes as
synonymous to the respective SNPs. We structured the analysis into four stages and presented results
accordingly:

1) Multivariate logistic regression analysis of alleles and genotypes.
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2) Gene–gene interaction analysis: Parametric and non-parametric approaches.
3) Gene–environment interaction analysis.
4) Cumulative effect of the risk alleles.

Multivariate logistic regression of T2DM on alleles and genotypes

The results of multivariate logistic regression analysis of the alleles with covariates (Tab
nificant association of the variant alleles— T of TCF7L2 (p b 0.001) and G of CDKAL1 (p= 0.
which is in congruence with the results of individual SNP analysis. However, the two SN
CAPN10 genes that were significantly associated in the univariate context failed to show sig
tion in themultivariate context. Instead, the C allele of IGF2BP2 and G allele of HHEX that we
in the univariate analysis turned out to be significant in the multivariate context (p = 0.00
spectively). While the IGF2BP2 showed risk conferring role, the HHEX showed a protect
T2DM. This supports the notion that some genetic variants, which are not independently
the phenotype, may show association in concert with other variants and provide evidence
fects (Cordell, 2010; Culverhouse et al., 2002). Except age and alcohol, all the other covar
to be significant at 5% level in their association with the phenotype (Table 1). The SNPs of
CDKAL1 and HHEX genes remained significant even after adjusting for the abovementioned
gesting that the confounding nature of the covariates is not such so as to qualitatively chan
genetic association.

The results of genotype-wise multivariate logistic regression analysis (Table 1) suggests
(p b 0.001) for the heterozygous (CT) and the homozygous (TT) genotypes of the TCF7L2
the heterozygous (AG) carriers and homozygous (GG) genotypes of CDKAL1 (p ≤ 0.006) wer
The genotypes of these two genes showed a risk conferring nature towards T2DM, which i
the individual gene analysis. Interestingly, the heterozygous carrier (GA) of IRS-1 and CA
showed a significant association at 5 and 10% (p value=0.03 and 0.086), respectively, confer
the development of T2DM,which is again consistentwith the individual SNP analysis (result
values not presented).When the logistic regression analysis was repeated using covariates, a
ciation of gender, migration pattern, smoking and BMIwas foundwith T2DM.However, after
covariates, besides TCF7L2 and CDKAL1 only the heterozygote genotype (GC) of PPARG turned
while the heterozygote (GA) of IRS-1 and CAPN10 did not show significant association. This i
onstration of the confounding nature of the effects of covariates with that of the genetic facto
the form of genotypes, on the manifestation of this complex phenotype.

Overall, of the nine genes considered for our study TCF7L2 and CDKAL1 emerged as promin
significant association with T2DM in the population of Hyderabad, both in the univariate
analyses. On the other hand, while IGF2BP2,HHEX and PPARG that were not independently a
out to be significant in the multivariate context. IRS-1 and CAPN10 that were associated indi
show association in themultivariate analysis, both these situations conforming probably to t
of epistasis (Cordell, 2010; Culverhouse et al., 2002);where as in the first case, the geneswith
effect, turn out to be significant in the presence of other genes, in case of the latter the poten
effects of IRS-1 and CAPN10were probably masked by other genes.

Gene–gene interactions

We used both parametric and non-parametric statistical approaches to study the nature
teractions. The logistic regression analysis is considered to be the standard parametric appro
gene–gene interactions in the presence of main effects. While the non parametric approach
was designed specifically to improve the power to detect epistasis in the absence of detect
(www.epistasis.org). The parametric approach was implemented through pair-wise lo

http://www.epistasis.org


analysis of the nine genes with the help of PLINK software and the results are presented in Table 2. Of the 33
pairs computed, only CAPN10–CDKAL1 and CAPN10–TCF7L2 showed significant interaction (p ≤ 0.038) in
their association with T2DM, albeit CAPN10 confers protection against T2DM in contrast to its risk conferring
role in the univariate context, which may highlight the epistatic role that CAPN10 gene might play in the eti-
ology of T2DM in this particular population. Although these genes are related through the insulin secretion
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pathway, the intricatemechanism involved in the epistatic role of CAPN10 gene needs to be
one can throw light on how this interactionwith CAPN10 results in changed direction of their

Multidimensionality reduction (MDR) analysis
MDR is a non-parametric approach with no hypothesis concerning the value of any stat

and it does not also assume a particular genetic model (Cho et al., 2004; Hahn et al., 2003
Ritchie, 2006). It overcomes the problems of a traditional parametric approach where wi
number of interactions, the contingency cells may be left with very few data leading to sp
principle, it reduces the multidimensional genotype predictor into a single dimension and
of interactions even in small sample sizes. Generalized Multidimensional Reduction (GM
based onMDRwhich permits adjustment for covariates in the gene–gene interactions, by in
ing the score statistic for each of the covariates and computes the statistical significance of

Table 2
Pair-wise gene–gene interaction analysis using logistic regression.

Gene–gene SNP–SNP OR
IRS1–CAPN10† rs1801278–rs3792267 0.8191 0.6768
IRS1–PPARG rs1801278–rs1801282 0.8852 0.7425
IRS1–IGF2BP2 rs1801278–rs1470579 0.6701 0.2194
IRS1–CDKAL1 rs1801278–rs7756992 0.7329 0.3829
IRS1–SLC30A8 rs1801278–rs13266634 0.4999 0.1207
IRS1–CDKN2A/B rs1801278–rs10811661 1.676 0.2796
IRS1–HHEX rs1801278–rs1111875 1.691 0.1382
IRS1–TCF7L2 rs1801278–rs7903146 0.6869 0.2722
CAPN10–PPARG rs3792267–rs1801282 1.053 0.8523
CAPN10–IGF2BP2 rs3792267–rs1470579 0.9752 0.879
CAPN10–CDKAL1 rs3792267–rs7756992 0.6568 0.037⁎

CAPN10–SLC30A8 rs3792267–rs13266634 0.8354 0.3714
CAPN10–CDKN2A/B rs3792267–rs10811661 0.705 0.1837
CAPN10–HHEX rs3792267–rs1111875 0.8798 0.4466
CAPN10–TCF7L2 rs3792267–rs7903146 0.6702 0.038
PPARG–IGF2BP2 rs1801282–rs1470579 1.27 0.212
PPARG–CDKAL1 rs1801282–rs7756992 1.017 0.936
PPARG–SLC30A8 rs1801282–rs13266634 1.006 0.9785
PPARG–CDKN2A/B rs1801282–rs10811661 1.051 0.8517
PPARG–HHEX rs1801282–rs1111875 1.262 0.2174
PPARG–TCF7L2 rs1801282–rs7903146 0.9236 0.7022
IGF2BP2–CDKAL1 rs1470579–rs7756992 0.8414 0.2244
IGF2BP2–SLC30A8 rs1470579–rs13266634 0.8659 0.315
IGF2BP2–CDKN2A/B rs1470579–rs10811661 1.177 0.3708
IGF2BP2–HHEX rs1470579–rs1111875 1.081 0.5149
IGF2BP2–TCF7L2 rs1470579–rs7903146 0.9879 0.9337
CDKAL1–SLC30A8 rs7756992–rs13266634 1.171 0.3507
CDKAL1–CDKN2A/B rs7756992–rs10811661 1.005 0.9796
CDKAL1–HHEX rs7756992–rs1111875 1.148 0.3382
CDKAL1–TCF7L2 rs7756992–rs7903146 1.023 0.8892
SLC30A8–CDKN2A/B rs13266634–rs10811661 0.8075 0.3433
SLC30A8–HHEX rs13266634–rs1111875 0.9575 0.7633
SLC30A8–TCF7L2 rs13266634–rs7903146 0.8404 0.3244
CDKN2A/B-HHEX rs10811661–rs1111875 1.114 0.5285
CDKN2A/B-TCF7L2 rs10811661–rs7903146 0.9969 0.988
HHEX–TCF7L2 rs1111875–rs7903146 1.016 0.9072

† Results presented according to the ascending order of chromosomal location.
⁎ Significant p values bolded— 5% and 10% significance was considered.



et al., 2011; Lou et al., 2007). A 10 fold cross-validationwith two, three and fourway interactionswere used to
detect gene–gene interactions using GMDR. Based on the testing balance accuracy and minimal prediction
error, the best models were selected. A minimum cutoff value of 0.55 was considered for the testing balance
accuracy.

The GMDR results (Table 3) showed significant interactions of two, three and four loci combinations —
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Table 3
Summary table of best gene–gene interaction models using GMDR with and without adjusting for covariates.

Combination Unadjusted for covariates Adjusted for covariates

Bal.Acc.CV
training

Bal.Acc.CV
testing

CVC
consistency

Sign test
(p)

Bal.Acc.CV
training

Bal.Acc.CV
testing

CVC
consistency

Sign test
(p)

TCF7L2 0.5936 0.5952 10/10 10 (0.0010) 0.5972 0.5979 10/10 10 (0.0010)
TCF7L2,IRS-1 0.5994 0.5947 9/10 10 (0.0107) 0.5992 0.5938 10/10 10 (0.0010)
TCF7L2,CDKAL1,HHEX 0.6065 0.5792 10/10 10 (0.0010) 0.6108 0.5941 10/10 10 (0.0010)
TCF7L2,IGF2BP2,
CDKAL1,HHEX

0.6349 0.5450 7/10 9 (0.0107) 0.6352 0.5677 10/10 9 (0.0107)
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TCF7L2–IRS-1, TCF7L2–CDKAL1–HHEX, TCF7L2–IGF2BP2–CDKAL1–HHEX — with p values ≤
fold cross-validation consistency (CVC) and the observed results remained qualitatively sim
ed for covariates. Interestingly, IGF2BP2 and HHEX genes, which were not individually signifi
to be significant in the three and four loci combination. The significant combinations of gene
non-parametric approach of gene–gene interactions (TCF7L2–IRS-1,TCF7L2–CDKAL1–HHEX, T
CDKAL1–HHEX), except in the four loci combination with IGF2BP2 and HHEX, constituted o
and CDKAL1whichwere significant in the univariate analysis aswell. Thismay be partly due t
vision for inclusion of higher order interactions (N4 way interactions) in the MDR analysis b
tively smaller sample that we have for such an analysis. However, it is pertinent to note th
non-parametric approach are consistent with that of the parametric approach of gene–gen
in both the analyses, combinations involving TCF7L2 and CDKAL1were significant.

Gene–environment interactions

Parametric approach using R program
Using the same set of environmental factors that were considered as covariates in themu

regression, gene–environment interaction analysis was carried out under the assumption o
and the results were furnished in Table S2. Among these environmental factors, only migra
smoking, alcohol and BMI were found interacting significantly with different genes (Table
p ≤ 0.10 in most of those interactions (TCF7L2 ∗ BMI, CDKAL1 ∗ ALCOHOL, CAPN10 ∗ SM
CDKAL1 ∗ MIGRATION (p = 0.044). The odds ratio suggests a protective nature of the CDKA
interaction, whereas CDKAL1 ∗ ALCOHOL and CAPN10 ∗ SMOKING confer susceptibility to T2
fourfold increase in the odds for risk of developing T2DM was observed due to inter
CAPN10 ∗ SMOKING (Table 4), given that females are non-smokers and confidence interva
importance of the effect of this interaction on T2DM cannot be overemphasized.

Cumulative effect of risk alleles

With the assumption that the larger the number of risk alleles in an individual, the grea
risk of developing T2DM, we have categorized subjects based on the number of risk alleles
from among the nine genes. However, because of the low frequency, the extreme risk all
and 8 & 9, were merged with the adjacent categories, 1–2 and 7–9, respectively. Fig. 1 s
distribution of T2DM patients and controls according to the number of risk alleles carried b
of relatively greater proportion of T2DM cases than controls was observed with increasin
alleles, especially after 4, which appears to have themodal frequency in the distribution.We
out logistic regression analysis to test the association between risk score and T2DM. The odd
confidence interval was computed for each of these categories, by taking 1–2 risk allele c



reference. All the risk allele categories were found to be highly significantly associated (p ≤ 0.009) with
T2DM, excepting the three risk allele categories. An increasing trend of odds with increasing number of risk
alleles was also apparent and the individuals carrying 7 or more risk alleles showed 2.64 fold increased risk
for developing T2DMas compared to individuals carrying 1–2 risk alleles (Fig. 2). Despite the limited number
of SNPs considered in this study, the pattern of increasing risk for T2DMwith increasing number of risk alleles

08; Cauchi et al.,

Table 4
Significant Gene–Environment interactions along with main effects

Gene ^Main effects SNP ∗ environment OR Lower95ci Upper95ci p value†

TCF7L2 MG 0.512 0.36 0.728 0.0002
VNV 0.604 0.391 0.932 0.023
BMI 1.126 1.081 1.174 b0.001

TCF7L2 ∗ BMI 1.054 0.998 1.112 0.057
IGF2BP2 MG 0.347 0.221 0.546 b0.001

VNV 0.585 0.334 1.025 0.061
Smoking 0.559 0.284 1.101 0.093
BMI 1.114 1.058 1.173 b0.001

IGF2BP2 ∗ BMI 0.036 0.023 1.595 0.111
SLC30A8 BMI 1.15 1.056 1.251 0.001
CDKAL1 MG 0.577 0.409 0.814 0.002

VNV 0.534 0.348 0.82 0.004
BMI 1.14 1.094 1.188 b0.001

CDKAL1 ∗ MG 0.632 0.404 0.987 0.044
CDKAL1 ∗ ALCOHOL 1.701 0.952 3.04 0.073

CDKN2A/B MG 0.399 0.15 1.065 0.067
VNV 0.321 0.098 1.05 0.06

HHEX MG 0.42 0.276 0.639 b0.001
BMI 1.151 1.095 1.21 b0.001

IRS-1 MG 0.429 0.326 0.565 b0.001
VNV 0.699 0.495 0.986 0.041
BMI 1.15 1.11 1.18 b0.0001

CAPN10 MG 0.445 0.326 0.607 b0.001
Smoking 0.601 0.377 0.956 0.031
BMI 1.147 1.106 1.19 b0.001

CAPN10 ∗ smoking 4.954 0.928 26.442 0.061
PPARG BMI 1.177 1.045 1.325 0.007

† 5% and 10% significance was considered.
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was apparent and a similar pattern was also observed in other populations (Lango et al., 20
2008; Hu et al., 2009; Chauhan et al., 2010; Rees et al., 2011; Wu et al., 2008).
Fig. 1. Distribution of risk alleles of T2DM cases and controls.



Since these results were in conformity to our hypothesis, we attempted tomeasure the discriminative power
of the risk allele scores using ROC (receiver operating curve). The ROC plot was constructed using the predict-
ed probabilities obtained through logistic regression of the risk score and the phenotype category (Fig. 3). The
results yielded AUC (area under curve) of 0.557 (95% CI: 0.533–0.581; p = b0.0001). The observed AUC, de-
spite beinghighly significant, has limited power to confer these genetic variants as predictors of risk for T2DM.

these variants as
abad.

Fig. 2. Line plot showing the values of odds ratios and 95% confidence intervals (CI) from logistic regression analysis of the number of risk
alleles among the T2DM cases and controls.

17K. Uma Jyothi, B.M. Reddy / Meta Gene 5 (2015) 9–20
Further studies in relatively larger samples are required before one can establish the status of
predictive/susceptible towards T2DM in general and particularly in the population of Hyder
Fig. 3. Discriminant analysis using receiver operator curve (ROC) based on the risk allele categories among T2DM cases and controls.



Given that the ROC results showed potential for prediction, we havemade an exploratory attempt to gauge
which combinations of genes in each of the risk allele categories contribute significant risk to T2DM.We found
170 combinations (results not presented) of which 32 were found to be most frequently observed among the
different risk allele categories in both cases and controls (Table S3). Applying Z test, we observed that out of
these 32, only 8 combinations i.e (SLC30A8), (SLC30A8, CDKN2A/B), (IGF2BP2, SLC30A8, PPARG), (CDKN2A/

N2A/B, PPARG),
quency between
ns, SLC30A8 gene
as not identified
pistatic nature of
differences in fre-
e carried out one
(Table 5). The re-
F2BP2, SLC30A8,
be significantly
M. On the other
CF7L2, SLC30A8,
ting risk towards
ferent significant
owing protective
the latter, there-
e the presence of
ce of TCF7L2 and
t the TCF7L2 and
osing individuals
–gene and gene–
study for individ-
ctions accurately
there would be a
e heuristic trends
the precise mag-
sample andmore
ct of these genes

ironment in the
Among the nine

Table 5
Two-sampled proportion Z test for T2DM cases and controls for the eight significant combinations. Blue color indicates— protective; red
color indicates susceptible to T2DM based on their frequencies among cases and controls.

Number 
risk 
alleles

Gene combination Z test *p value 
(one–tailed) 

1 SLC30A8 –1.6 0.078
2 SLC30A8,CDKN2A/B –2.06 0.020
3 IGF2BP2,SLC30A8,PPARG –2.43 0.008
3 CDKN2A,HHEX,PPARG –3.17 0.001
4 SLC30A8,CDKN2A/B,HHEX,PPARG –2.43 0.008
5 TCF7L2,IGF2BP2,SLC30A8,CDKN2A/B,PPARG 2.85 0.002
6 TCF7L2,SLC30A8,CDKAL1,CDKN2A/B,HHEX,PPARG 2.03 0.021
6 TCF7L2,CDKAL1,CDKN2A/B,HHEX,CAPN10,PPARG 1.85 0.065

*5% and 10% significance was considered.
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B, HHEX, PPARG), (SLC30A8, CDKN2A/B, HHEX, PPARG), (TCF7L2, IGF2BP2, SLC30A8, CDK
(TCF7L2, SLC30A8, CDKAL1, CDKN2A/B, HHEX, PPARG) showed significant differences in fre
T2DM cases and controls. Significant to note is that among the six of these eight combinatio
was present, emerging as a prominent gene in concertwith other genes. Given that this genew
to be associated either in the univariate ormultivariate analysis, it may reiterate the possible e
interactions among the genes in the diabetic pathways. To reaffirmqualitatively the observed
quencies of each of the 8 significant combinations among T2DMpatients and controls, we hav
tailed, 2 sample proportion Z test i.e (cases N controls;cases b controls) wherever applicable
sults show that the following 1–4 risk alleles categories — SLC30A8; SLC30A8, CDKN2A/B; IG
PPARG; CDKN2A/B, HHEX, PPARG; SLC30A8, CDKN2A/B, HHEX, PPARG — were found to
more frequent in controls, which may suggest a protective role towards developing T2D
hand, 5–6 risk allele combinations (TCF7L2, IGF2BP2, SLC30A8, CDKN2A/B, PPARG), (T
CDKAL1, CDKN2A/B, HHEX, PPARG)were significantlymore frequent among the cases, sugges
T2DM. Although SLC30A8, IGF2BP2, CDKN2A/B, HHEX and PPARG genes were common in dif
combinations, amarkedly qualitative difference between 1–4 and 5–6 risk allele categories sh
and susceptible roles, respectively,was evident by the presence of TCF7L2 andCDKAL1 genes in
by confirming their role as susceptible genetic variants of T2DM. This may suggest that despit
SLC30A8, IGF2BP2, CDKN2A/B, HHEX and PPARG genes in all the categories, it was the presen
CDKAL1 genes which could lead individuals to be predisposed to T2DM. This suggests tha
CDKAL1 genes, which are involved in the beta cell function,might play a crucial role in predisp
to T2DM in this population. Overall, our findings provide support to the possible role of gene
environment interactions in themanifestation of T2DM. Although the post-hoc power of the
ual SNPswas estimated to be above 90% (Uma Jyothi et al., 2013a,b), the power to detect intera
would be probably low and Bonferroni correction for multiple testing was not applied, hence
chance for false positive. Therefore, our results should be considered as tentative and provid
rather than establishing the nature of gene–gene and gene–environment interactions and/or
nitude of the cumulative effect of the genes considered. Further studies with relatively larger
stringent conditions are warranted to gauge the precise magnitude of the cumulative effe
which might help developing predictive markers for T2DM in the population of Hyderabad.

Conclusions

Our study fills the lacunae in understanding the complex interplay of genes and env
etiology of T2DM in the population of Hyderabad, which has not been explored hitherto.



genes studied, TCF7L2 and CDKAL1 emerged as prominent T2DM genes in our population showing significant
association in the multivariate context as well as interaction with the other genes studied. Our study also
brought out IGF2BP2, SLC30A8, HHEX, CDKN2A/B, PPARG genes as significantly interacting among them as
well as environmental factors such as BMI, alcohol and smoking were found to be interacting with TCF7L2,
CDKAL1, CAPN10 genes as well, providing support for gene–gene and gene–environment interactions in the
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manifestation of T2DM in this population. However, further studies among different Ind
with relatively large samples are required with an emphasis on gene–gene and gene–envir
tions before one can reach unequivocal conclusions on the nature of gene–gene and gen
interactions and/or cumulative effect of the risk alleles of different genes in the Indian pop
which may help in developing predictive markers for T2DM.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.mg
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